کنترل بیولوژیکی و زراعی بیماری نقطه سیاه سپز زمینی

مهدی نصر اصفهانی\(^1\) و احمد مرتضوی\(^2\)

چکیده

بیماری نقطه سیاه سپز زمینی یک بیماری قارچی بوته و عامل ایجاد آن Colletotrichum cocccodes (syn. Catramentarum) است که با تولید آسروب به صورت نقطه سیاه، رنگ روبی قسمت‌های سیاه‌پوش کیا آلوده و بالاخره ساعت زیرزمینی ظاهر می‌گردد. بررسی‌ها نشان داد که بیماری معمولاً در اواخر فصل این دوره و گکشت نمیدهد. برای تعیین میزان آلودگی گیاه سپز زمینی به بیماری نقطه سیاه و تیز اثر کشتن کاربرد محسوسات قبل از سپز زمینی روی این بیماری در منطقه فریدن اصفهان بی‌کیفیت دارد. مزارع کشت سپز زمینی به عمل آمده تولید مشخص نمود که میانگین آلودگی گیاهان سپز زمینی مورد کشت در این منطقه 34/48 درصد است. تجزیه داده‌های حاصل از بررسی‌های زراعی در منطقه نشان داد که آبیاری یک ساله از کمترین آلودگی به ترتیب در مقایسه با کشت گندم، بولنج از جهت پرخوردار است. بررسی‌های بیولوژیکی بیماری نقطه سیاه در قالب یک طرح بررسی‌های کاملاً تصادفی با استفاده از نیم‌بر فرایند آنتانکومیت در ذهن غده‌های بذری سپز زمینی افزودن آن در رهیافت‌های کشت به صورت تلقیه‌ای و تحقیق‌های Trichoderma harzianum غده‌های بذری و آلودگی اسپور در رهیافت‌های کشت غده‌های سبز زمینی شناس داد که فرایند آنتانکومیت موبح گیاه زمینی نهایی نقطه سیاه سپز زمینی است. هر چند کمترین آلودگی در نیمه‌بر تلقیه‌ای غده‌های بذری و افزودن نیم‌بر فرایند آنتانکومیت به کلاک در مقایسه با سایر تیمار‌ها بود. البته میزان کاهش بیماری سبز زمینی به روش کنترل و مقادیر اسپور استفاده داشته است. بررسی تعداد ساقه، انواع ناز و محاسبه نسبت، رنگ طولی گیاه و میزان محصول نشان داد که این فرایند آنتانکومیت موبح از نظر میزان کاهش بیماری و همچنین محلول موبح آن به‌طور مداوم انجام داشته است. بررسی مقایسه حساسیت 24 رقم سبز زمینی تجاری به بیماری نقطه‌سیاه سپز زمینی نشان داد که افزودن مورد بررسی واکنش‌های منفی و حساسیت داشته نسبت به بیماری موبح از خود نشان داده‌هند که عمده کسری رقم داره کمترین آلودگی را داشته و پس از آن به ترتیب اسپورت، کیمی، کاریکایی و مور از اختلاف بسیار کمی واقع شده‌اند. پیشنهاد آلودگی روی رقم مارچک که پس از آن ارتقای کروی و موانع تار کردن می‌باشد و بهبود ارتقای در حد فاصل این رو طیف را می‌کند.

واژه‌های کلیدی: سبز زمینی، نقطه سیاه، Colletotrichum cocccodes.
مقدمه
عملیات بیماریهای سبیب سبب زمینی (Colletotrichum) که قرار خاک‌زاد است، به عنوان میکروبی گیاه‌زی (rhizoctonia syn. Catramentarium) نام‌گذاری می‌شود. این بیماری از جمله بیماری‌های زراعی مانند بیماری‌های فراوان در غلظ و خانواده گراین می‌باشد که در کشورهای مختلف گزارش شده است. علائم برخی از عوامل اصلی شامل تیغ‌های نیز بوده که به علت تغییرات در محیط زیست می‌تواند به‌عنوان میکروبی گیاه‌زی به‌شمار رود. این بیماری به‌عنوان یکی از بیماری‌های مؤثر بر روی درخت در مقاومت قابل توجهی در برابر بیماری نقطه سیاه برخوردار نیستند. (۳۵) و (۷۷)

آمار سو در اکثر بیماری‌ها در کشاورزی موجب شده است که روش‌های کنترل و به‌ویژه غیرشیمیایی از جمله بیولوژیک مورد توجه قرار گرفته که در این راستا از قرارهای آنانوکینسیس (۳۷) تولانایی و گونه Trichoderma و Trichoderma viride به‌عنوان مایه‌های کنترل این بیماری و رهایی روی و سبب سبب زمینی اکثر در این اثرات رسانده و مشخص هم‌بسته می‌باشد که افزودن اسپور این آنانوکینسیس به خاک به‌عنوان موثر می‌دانده. (۷۹) گروهی زنده و مورد ارزیابی زمینی با استفاده از نتایج گزارش‌های زیاد و F.solani و Fusarium oxysporum سپر زمینی شامل F.solani و Fusarium oxysporum SPM به‌عنوان سبب نمونه‌های کارکردی نزدیک به‌عوامل بیماری‌های سبیب شیمیایی. (۳۸) همچنین در هر شرایط محصولات شامل پوست‌پودکی رژیکوتروپی‌ها چند‌نفر می‌باشد که افزایش و ازدیاده‌ای بیماری‌های سبیب می‌باشد.

بیماری نقطه سیاه سبب زمینی یکی از بیماری‌های سبب زمینی است که ناکارشی در مزارع بیولوژیک با آن توسط فن تولانایی آنانوکینسیس از سنار نماینده باشد و فقط در ایران اخوت و همکاران (۷۳۷) تولانایی و گونه Trichoderma و Trichoderma viride گزارش دیگری نیز با استفاده از نتایج گزارش‌های زیاد و F.solani و Fusarium oxysporum SPM به‌عنوان موثر می‌دانده. (۷۹) گروهی زنده و مورد ارزیابی زمینی با استفاده از نتایج گزارش‌های زیاد و F.solani و Fusarium oxysporum SPM به‌عنوان سبب نمونه‌های کارکردی نزدیک به‌عوامل بیماری‌های سبیب شیمیایی. (۳۸) همچنین در هر شرایط محصولات شامل پوست‌پودکی رژیکوتروپی‌ها چند‌نفر می‌باشد که افزایش و ازدیاده‌ای بیماری‌های سبیب می‌باشد.
کنترل بیولوژیکی و زراعی بیماری نطفه سیب زمینی

در هرسال فقط یک محسوس کشت یک می‌گردد که معمولاً گذم، جو و آب پذیرفته (5-6 ساله) در تالاب با سیب زمینی است و یا این که زمین بهصورت آب‌زدایی به‌مدت یک سال رها می‌گردد.

2. بررسی آزمایشگاه کنترل بیولوژیکی بیماری

امکان مناسب برای بیماری نطفه سیب زمینی در آزمایشگاه بررسی شد و قبل از آن C. cocodes از استفاده از اسپورت قرار آن اکونوست، T. harzianum تبدیل آن به خان در بیماری نطفه شده قبلاً با نیاز به مکانیزم که همچنین بررسی و مقایسه حساسیت 24 رم سیب زمینی نجردی بین بررسی بوده است.

مواد و روش‌ها

1. بررسی انالوگی بیماری در منطقه

برای تعیین میزان آنالوگی گیاه سیب زمینی به بیماری نطفه سیب، در فرودن اصفهان اقامت به بررسی و تدویننیویس یک مشابههای خردزاده لغایت مهم گردید. بنده ذهن تعداد یکصد عدد بیماری به منطقه هر مزرعه به طور تصادفی انتخاب شده و از یکشانه‌ای طبقه‌بندی و ساختار بیماری بررسی یک بسیار جدی‌هبود که برخوردار بود که برای بررسی تعداد انتخاب گردید.

3. بررسی کنترل بیولوژیکی بیماری در مزرعه

در بررسی آزمایشگاه بررسی نطفه سیب C. cocodes از استفاده از اسپورت قرار آن اکونوست، T. harzianum تبدیل آن به خان در بیماری نطفه شده قبلاً با نیاز به مکانیزم که همچنین بررسی و مقایسه حساسیت 24 رم سیب زمینی نجردی بین بررسی بوده است.

3. بررسی کنترل بیولوژیکی بیماری در مزرعه

در بررسی آزمایشگاه بررسی نطفه سیب C. cocodes از استفاده از اسپورت قرار آن اکونوست، T. harzianum تبدیل آن به خان در بیماری نطفه شده قبلاً با نیاز به مکانیزم که همچنین بررسی و مقایسه حساسیت 24 رم سیب زمینی نجردی بین بررسی بوده است.

195
شکل 1 - الف) پوشهای بیوبیومیک آلوده به بیماری نفلهب (ب) سلولهای زیرزمینی آلوده (ج) آسروول
عامل بیماری روی آن تنش داده شده است.
کنترل بیولوژیکی و زراعی بیماری نقده سیب زمینی

شکل ۲-الف: رشد قارچ عامل بیماری (Colletotrichum coccodes) از قسمت آلوده روی سطح کشت.

شکل ۲-بی: آزمایش‌های آن همراه با خار (پرز) توسط استریپسیمیکوسکوب نشان داده شده است.
آزمایش شک‌تنیم به‌صورت زیر در چهار تکرار (کرت) و با 9 مترمربع (320cm²) با چهار ریدرف دو متری در هر کرت در قالب یک طرح آماده بذرکه‌های کمال تصادفی با کشت تعداد 4800 عدد در گردنگاه در تاریکی (از رنگ کرمی به رنگ گل) از رقم کرمی بین میانگین ورود 750 عدد بارا هر گردنگاه بزرگ شناسی نوع شک‌تنیم در هر کرت (تکرار) جمعاً 44 کرت به شرح زیر در نظر گرفته شد:

1. غشته‌های بذری سپی زمینی به اسپورت آناتاوگنست (SE) با میانگین 1/100 عدد اسپورت باری هر ورود T. harzianum
2. افزودن اسپورت آناتاوگنست به خاک به طول ریدرف‌های کشت هر کرت (3 و 9 مترمربع) به میزان 50 میلیلیتر با میانگین (SOI)

3. افزودن اسپورت آناتاوگنست به خاک به روش بالا به میزان

4. افزودن اسپورت آناتاوگنست به خاک به روش بالا به میزان

5. تلفیق تیمار 1 و 2

6. شاهد (افزودن یک صد میلی‌لیتر قارچ عامل بیماری به خاک به میزان 1/10 آسروول و 1/100 تیمار 1)

7. اسپورت به هر میلی‌لیتر کرت برای سایر شک‌تنیما نیز به‌طور یکسان اعمالگری دیده است.

در اجرای نیم‌بانه‌های فوک تیمار آناتاوگنست و آسروول قارچ عامل بیماری به T. harzianum به‌طور جذابیت برای بهترین روش، کشت گردیده بود با PDA به‌طور سری مجموع آوری و غلظت اسپورت آنها توسط میکروکمسوماتور (Hemacytometer) استفاده گردیده است.

اسپورت اسپورت آناتاوگنست قارچ داده شد که میانگین اسپورت روزی هر گردنگاه 5 عدد شمارش گردیده. میانگین اسپورت در هر میلی‌لیتر اسپورت آناتاوگنست در افزودن به خاک 10/3 عدد بود. کلیه شک‌تنیما به‌گونه‌ای سپی صد میلی‌لیتر اسپورت آناتاوگنست قارچ بیماری به غلظت 14/5 آسروول و 7/3 عدد اسپورت در

۲۴. بررسی حساسیت از آنیاکی به اسپورت

میکروسکوپی از آنیاکی به اسپورت (C.coccodes) در قالب یک طرح چهار ریدرف کامل تصادفی سیاه در سه تکرار در کرت هر 375 مترمربع با چهار ریدرف دو متری در قطعه زمینی با آلودگی قابل انجام شد که برای بررسی فاکتورهای کمی و کیفی ارکام موجود توسط بخش تحقیقات بنادر و نهال اصفهان در فردی به اجرا در آزمایش بود. میزان آلودگی ارکام در اواخر فصل بر اساس مشاهده اسپورت روزی
نتیجه بحث
نتیجه‌ی بنص است. بازیافت‌های مکرر در طول فصل زراعی نشان داد که بیماری در اواخر فصل با تشکیل آسروول روز سالم و یا هم‌زمان روز هردو در قسمت‌های مربوط به مشخص گردیده است (35). میانگین و با استفاده از آزمون چند دامنه داتنک (DMRT) انجام شد.

نتایج بررسی عکس‌العمل ارقام مورد کشت و رایج در منطقه فریدن نشان می‌دهد که بیشترین آلودگی روز میانه با 47/07 درصد از موارد درآمده، مارکاژ و مور (جدول 1) از نظر آماری نیز دارای معنای آماری با یک رویکرد بود. سایر تغییرات نشان داد که بیماری در اواخر فصل با تشکیل آسروول روز سالم و یا هم‌زمان روز هردو در قسمت‌های مربوط به مشخص گردیده است (35).

بررسی آن‌ها کشت سایر محصولات قبل از سبب زمینی روز بیماری نطفه (Coccodies) می‌دهد که آلودگی در مزارع سبب زمینی با آش‌پک ساله 20/51 درصد در مقایسه با کشت گندم با 14/38 درصد، بین‌هایگی (4-5 ساله) 24/0/32 درصد و جو با 23/5/58 درصد آلودگی است (جدول 1). بنابراین این طور نتیجه‌گیری می‌شود که در منطقه، آیت در اواخر فصل اصلی است. (جدول 1) که از لحاظ آماری نیز اختلاف معنی دار است (P<0.05). پایه در این راستا تا کاهش نیز می‌تواند با کمک میانگین گردیده است. (جدول 1) در این که کشت غلات در اواخر با سبب زمینی موجب کاهش بیماری نطفه سیاه می‌شود، مغایر دارد. این میزان آلودگی

قسمت‌های زیرزمینی گیاه سبب زمینی و با تحقیق بوده‌های سالم و آلوده و هم‌چنین وضعیت بیماری برساز روش فوق روز ریشه، ساقه و یا هم‌زمان روز هردو در قسمت‌های مربوط مشخص گردیده است (35).

نتایج به دست آمده از بررسی‌های مبزاره بیولوژیک با پیام‌های نسبت به آیش معکن است در اثر وجود بخی از علف‌های هرز مانند تاج خروس (Amaranthus retroflexus) و تاج‌زری (Solanum nigrum) باشد که در کشت با غلظت مناسب اذیت بیماری می‌کردند. این مطلوب با نظیره‌های دییلارد و نیز راید و پنی پارکر (می‌وزی (31)

میانگین‌گیری با استفاده از آزمون چند دامنه داتنک (DMRT) انجام شد.

نتیجه‌ی بنص است. بازیافت‌های مکرر در طول فصل زراعی نشان داد که بیماری در اواخر فصل با تشکیل آسروول روز سالم و یا هم‌زمان روز هردو در قسمت‌های مربوط به مشخص گردیده است (35). میانگین و با استفاده از آزمون چند دامنه داتنک (DMRT) انجام شد.

نتایج بررسی عکس‌العمل ارقام مورد کشت و رایج در منطقه فریدن نشان می‌دهد که بیشترین آلودگی روز میانه با 47/07 درصد از موارد درآمده، مارکاژ و مور (جدول 1) از نظر آماری نیز دارای معنای آماری با یک رویکرد بود. سایر تغییرات نشان داد که بیماری در اواخر فصل با تشکیل آسروول روز سالم و یا هم‌زمان روز هردو در قسمت‌های مربوط به مشخص گردیده است (35).

بررسی آن‌ها کشت سایر محصولات قبل از سبب زمینی روز بیماری نطفه (Coccodies) می‌دهد که آلودگی در مزارع سبب زمینی با آش‌پک ساله 20/51 درصد در مقایسه با کشت گندم با 14/38 درصد، بین‌هایگی (4-5 ساله) 24/0/32 درصد و جو با 23/5/58 درصد آلودگی است (جدول 1). بنابراین این طور نتیجه‌گیری می‌شود که در منطقه، آیت در اواخر فصل اصلی است. (جدول 1) که از لحاظ آماری نیز اختلاف معنی دار است (P<0.05). پایه در این راستا تا کاهش نیز می‌تواند با کمک میانگین گردیده است. (جدول 1) در این که کشت غلات در اواخر با سبب زمینی موجب کاهش بیماری نطفه سیاه می‌شود، مغایر دارد. این میزان آلودگی

قسمت‌های زیرزمینی گیاه سبب زمینی و با تحقیق بوده‌های سالم و آلوده و هم‌چنین وضعیت بیماری برساز روش فوق روز ریشه، ساقه و یا هم‌زمان روز هردو در قسمت‌های مربوط مشخص گردیده است (35).

نتایج به دست آمده از بررسی‌های مبزاره بیولوژیک با پیام‌های
جدول 1. بررسی میزان آلودگی سیب زمینی به بیماری نطف سیاه از کشت محصولات مختلف در فریدن اصفهان

<table>
<thead>
<tr>
<th>نوع محصولات</th>
<th>تبعیض درصد آلودگی روی قسمت‌های زیر زمینی گیاه</th>
<th>ساقه و ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>جو</td>
<td>15/46</td>
<td>22/43</td>
</tr>
<tr>
<td>پونجه*</td>
<td>5/65</td>
<td>30/18</td>
</tr>
<tr>
<td>تند</td>
<td>9/48</td>
<td>15/51</td>
</tr>
<tr>
<td>عالی</td>
<td>1/48</td>
<td>18/29</td>
</tr>
</tbody>
</table>

میانگین

جدول 2. بررسی میزان آلودگی و اثر ارقام مورد کشت سیب زمینی به بیماری نطف سیاه در شیب‌های مختلف فریدن اصفهان

<table>
<thead>
<tr>
<th>ارقام</th>
<th>تبعیض درصد آلودگی روی قسمت‌های زیر زمینی گیاه</th>
<th>ساقه و ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوزیما</td>
<td>18/01</td>
<td>10/4</td>
</tr>
<tr>
<td>دراکا</td>
<td>19/04</td>
<td>12/51</td>
</tr>
<tr>
<td>مارونا</td>
<td>7/48</td>
<td>23/31</td>
</tr>
<tr>
<td>مورن</td>
<td>7/52</td>
<td>17/68</td>
</tr>
</tbody>
</table>

میانگین

محاسبات آماری بر اساس آزمون چند دامنه دانک در سطح 5 درصد اندازه‌گیری توسط که اعداد با حروف مبهم دارای اختلاف معنی‌دار است.

*محاسبات آماری بر اساس روش آزمون چند دامنه دانک در سطح 5 درصد اندازه‌گیری توسط که اعداد با حروف مبهم دارای اختلاف معنی‌دار است.

T. harzianum

نشان می‌دهد که بیشترین آلودگی گیاه سیب زمینی در تیمار SOI به 99 عدد (25 درصد) و کمترین آن در تیمار تلفیقی SE+SOII با 75 عدد (9/8 درصد) در مقایسه با شاهد با 128 عدد (40 درصد) آلودگی در ریشه و ساقه است (جدول 3). بنابراین در میان بین این دو حد قرار می‌گیرند. بدین ترتیب که این عدد (75 درصد) آلودگی در میان بین این دو حد قرار می‌گیرند.

ساقه و ریشه

SE+SOII

که از نظر آماری دارای اختلاف معنی‌دار دارند.

SE+SOII

‎

درما نسبت به شاهد باعث افزایش تعداد ساقه‌های سیب زمینی می‌گردد. این تفاوت در تیمارها ۳ درون‌رسی از شاهد می‌باشد. میزان آلودگی در تیمار SOI به 99 عدد (25 درصد) و کمترین آن در تیمار تلفیقی SE+SOII با 75 عدد (9/8 درصد) در مقایسه با شاهد با 128 عدد (40 درصد) آلودگی در ریشه و ساقه است (جدول 3). بنابراین در میان بین این دو حد قرار می‌گیرند. بدین ترتیب که این عدد (75 درصد) آلودگی در میان بین این دو حد قرار می‌گیرند.

T. harzianum

استفاده از اسپور آنتاگونیست
جدول 3: اثر فارق آنتیگونیست Trichoderma harzianum روی بیماری نقطه سیاه سبب زمینی رقم کوزیما

<table>
<thead>
<tr>
<th>نوبت چرخه</th>
<th>تعداد گیاه آزاده در سرده آبیگی</th>
<th>تعداد ساقه</th>
<th>تعداد میله کوه</th>
<th>میلک</th>
<th>روده</th>
<th>دارو</th>
<th>میزان ساعت (سی)</th>
<th>میزان ساعت (ار)</th>
<th>میزان ساعت (ار+سی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
</tr>
<tr>
<td>2</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
</tr>
<tr>
<td>3</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
</tr>
<tr>
<td>4</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
</tr>
<tr>
<td>5</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
<td>19/800</td>
</tr>
</tbody>
</table>

ملاحظات: آماری بر اساس آزمون چند دامنه دانک در سطح 5 درصد انجام گردیده که اعداد با حروف مشابه اختلاف معنی دار ندارند (پ ها).
بدر، افرودون به خاک رفته‌ها کاشت و یا تلفیقی در SOII و SOI، SE و SOII، SE موجب کاهش بیماری نسبت به نوع تیمار و میزان اسپور آناتاگونیست مورد استفاده گردیده است. این بررسی ها با گزارش‌های اخیر و مهاکاران (29) در توانایی این قارچ با انرژی به خاک در کاهش بیماری نقش سایا، با سایر گزارش‌ها (6) و حتی روز محصولات دیگر شامل پرفروش مری جالیز در اثر R. solani (32) مربوط گیاههای چندندانگ در اثر F. udum (33) و نیز بر علیه پژوهشگر گروه فنگکی (30) موافقت دارد. چگونگی کنترل بیولوژیکی بیماری توسط قارچ آناتاگونیست عامل غیاب در کاهش بیماری، رقابت تغذیه‌ای، ایجاد مفاصل و افزایش تحمل گیاه به نشان‌های محیطی در زمان رشد، فعالیت هیرپراکراتیسم، خاصیت پایداری گروه ترشحات ماکرو خارج سلولی و ترشحات فاز رول می‌باشد. از نظر میزان مولکول سلول، پروتئین، میزبانها می‌گردد (19، 25) و (6) اخیراً نیز مایل ترین توجه رهبری که به قارچ بیماری باغشده (22) که در خیال یک از گروه‌های تریکو درما به گیاهان ترا ریخته ای ایجاد مفاصل به بیماری‌های مثل جرب سبب می‌شود. نتایج بعضی از بررسی‌های انجام شده است (19، 25) و (6) از آزمایش‌ها آناتاگونیست به‌منظور انرژی به خاک و یا غشای غذایی دیگر موجب کاهش قابل توجه بیماری نقطه سایا، بلکه از اندیش رشد و نمو گیاه سبب زمینی نیز در دردآورشته است (جدول 3). مقایسه میانگین افزایش‌های سبب بیماری‌های 5/86 در سه گزارش SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارdupon به خاک رفته‌ها کاشت و یا تلفیقی در SOII و SOI، SE و SOII، SE موجب کاهش بیماری نسبت به نوع تیمار و میزان اسپور آناتاگونیست مورد استفاده گردیده است. این بررسی ها با گزارش‌های اخیر و مهاکاران (29) در توانایی این قارچ با انرژی به خاک در کاهش بیماری نقش سایا، با سایر گزارش‌ها (6) و حتی روز محصولات دیگر شامل پرفروش مری جالیز در اثر R. solani (32) مربوط گیاههای چندندانگ در اثر F. udum (33) و نیز بر علیه پژوهشگر گروه فنگکی (30) موافقت دارد. چگونگی کنترل بیولوژیکی بیماری توسط قارچ آناتاگونیست عامل غیاب در کاهش بیماری، رقابت تغذیه‌ای، ایجاد مفاصل و افزایش تحمل گیاه به نشان‌های محیطی در زمان رشد، فعالیت هیرپراکراتیسم، خاصیت پایداری گروه ترشحات ماکرو خارج سلولی و ترشحات فاز رول می‌باشد. از نظر میزان مولکول سلول، پروتئین، میزبانها می‌گردد (19، 25) و (6) اخیراً نیز مایل ترین توجه رهبری که به قارچ بیماری باغشده (22) که در خیال یک از گروه‌های تریکو درما به گیاهان ترا ریخته ای ایجاد مفاصل به بیماری‌های مثل جرب سبب می‌شود. نتایج بعضی از بررسی‌های انجام شده است (19، 25) و (6) از آزمایش‌ها آناتاگونیست به‌منظور انرژی به خاک و یا غشای غذایی دیگر موجب کاهش قابل توجه بیماری نقطه سایا، بلکه از اندیش رشد و نمو گیاه سبب زمینی نیز در دردآورشته است (جدول 3). مقایسه میانگین افزایش‌های سبب بیماری‌های 5/86 در سه گزارش SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موارد افزایش‌های 5/86 در SE و SOII، SE و SOII، SE می‌که بیشترین افزایش در موار
جدول 2: میزان آل‌الوگی برخی ارقام تجاری سپ زمینی به بیماری نطفه سیاه

<table>
<thead>
<tr>
<th>رنگ و ساقه*</th>
<th>رنگ</th>
<th>ساقه زمینی</th>
<th>ارقام سپ زمینی</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/66</td>
<td>25/66</td>
<td>18/66</td>
<td>ماریچک</td>
<td>1</td>
</tr>
<tr>
<td>12/66</td>
<td>9/66</td>
<td>13/66</td>
<td>کورزما</td>
<td>2</td>
</tr>
<tr>
<td>13/66</td>
<td>28/66</td>
<td>12/66</td>
<td>مونالوا</td>
<td>3</td>
</tr>
<tr>
<td>23/66</td>
<td>28/66</td>
<td>19/66</td>
<td>مارفونیا</td>
<td>4</td>
</tr>
<tr>
<td>12/66</td>
<td>9/66</td>
<td>cdef</td>
<td>هیبرام</td>
<td>5</td>
</tr>
<tr>
<td>12/66</td>
<td>6/66</td>
<td>16/66</td>
<td>ولکانو</td>
<td>6</td>
</tr>
<tr>
<td>1/66</td>
<td>18/66</td>
<td>bdef</td>
<td>قاموشا</td>
<td>7</td>
</tr>
<tr>
<td>1/66</td>
<td>18/66</td>
<td>bdef</td>
<td>ایستا</td>
<td>8</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>آئولا</td>
<td>9</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>فرسکو</td>
<td>10</td>
</tr>
<tr>
<td>7/66</td>
<td>14/66</td>
<td>18/66</td>
<td>موندلالن</td>
<td>11</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>باراک</td>
<td>12</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>آئیتا</td>
<td>13</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>پشنپی</td>
<td>14</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>دراگا</td>
<td>15</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>گریولن</td>
<td>16</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>اریگو</td>
<td>17</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>دیدامانت</td>
<td>18</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>مورن</td>
<td>19</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>کاردینا</td>
<td>20</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>کاسموس</td>
<td>21</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>کیزیر</td>
<td>22</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>اسکورت</td>
<td>23</td>
</tr>
<tr>
<td>-</td>
<td>27/66</td>
<td>12/66</td>
<td>دژرین</td>
<td>24</td>
</tr>
</tbody>
</table>

*محاسبات آماری بر اساس روش آزمون چند دامنه دالکن (P<0.05) استفاده گردیده است.

نتایج به دست آمده از بررسی‌های حساسیت ارقام تجاری (C. coccodes) به بیماری نطفه سیاه در جدول چهارم مشاهده می‌گردد. در نهایت، هدف کاهش بیماران مشاهده محصول در نظر است. با پاک‌کردن در این ارتباط، آگستینا نیز برداشت‌های آن تحسین‌کننده است. به لحاظ اقتصادی و همچنین قابلیت اجرای برنامه آن توصیه می‌گردد. این نتایج، بیماری‌های نطفه سیاه را به آسانی تشخیص می‌دهند.

مطالعه دار.
نظر آماری نیز در یک گروه قرار گرفتن (5/0) و کمترین
آلوگدن در رقم ذرهبی با 12 رصد بوده است. رقم موانعی نیز با
۵/۷ درصد آلوگدن در گروه دیگری واقع شد و پس از آن
مارفون، هیدرال و فاموسی به ترتیب با ۴/۲۴، ۲۳ و ۴۱
ارقام ایستگاه آنولا، فرسکو، مونیاپلیا و دراگا نیز به ترتیب با
۴/۲۴، ۳۷/۷۶ و ۳۷/۶۶ دارند. در ۱۲ رصد دیگری
و سپس سایر ارقام در مانند یافته در هر گروه که از نظر
آماری نیز معنی دار هستند (5/0) و (جدول ۴).

بررسی هوا روي ارقام نشان می دهد که حساسیت ارقام ذرهبی،
اسکوکر، کاسموس و کارلینا و مورن به ترتیب با
آلوگدن ۱۵، ۱۸، ۲۱ و ۲۴، ۲۵ و ۲۷ رصد نسبت به سایر
ارقام در این بررسی ها کمتر است که ارقام مورن، کاسموس،
کارلینا و کیتزر در یک گروه قرار گرفته (5/0) و (وا
سایر ارقام اختلاف معنی دار دارند (5/0). و وضعیت آلوگدن
روی قسمتی های زیرزمینی گیاه مثل ریشه، ساقه زیرزمینی و یا
هژومن روي هر در به تفکیک بررسی ثابت که در این
ارتباط بعضی با اختلاف معنی دار در مقایسه با یکدیگر دیده
می شود (5/0). آلوگدن هژومن روي ریشه و ساقه ، بررسی
آماری نشانه است. چون یک بخش از برخی از ارقام مورد بررسی
این هژومن و جادو داشته است. (جدول ۴) البته در این جا
این باید درصد آلوگدن ساقه به زیرزمینی را به پیش نماید نشان داشت
چون گیاه بیشتر در معرض بیماری قرار گرفته و ممکن است
پای در آید ولی روی ریشه کمتر حالت اهمیت است چون
مکان است قسمتی از ریشه را در بر گیرد. بنابراین گیاه کمتر
در معرض خطر مگر و می توان نمودر.

نتایج این پژوهش های انجام شده روی بیماری نطفه سیاه
سپی زمینی (C.coccodes) نشان می دهد که بیماری در اواخر
فصل، با تشکیل آسروی روی ریشه و ساقه زیرزمینی به
صورت نافاطح سبب زمینی می شود که به راحتی قابل
مشاهده است (شکل ۱ و ۲).
منابع مورد استفاده

1. ابرازی، محمد. 1368. ارتباطات و روزنامه‌های پژمتره‌ای Streptomyces، Trichoderma. برای کنترل بیولوژیکی.

2. بردی، کریستین. 1368. تاثیرات پایداری بر روی گیاه‌های بیماری‌زای Phytophthora capsici. کشاورزی کرج، 15-0100 ماه، ص. 148.

3. بیمکسی، A. و. نیکبازی. 1377. بررسی امکان بیماری‌زایی با پیامدهای زیستی. Trichoderma. خلاصه مقالات پژربانی دهمین کنگره گیاهپزشکی ایران، دانشگاه رازی کرمانشاه، 16-200.

4. ایگلسی، A. و. نیکبازی. 1377. بررسی امکان بیماری‌زایی با پیامدهای زیستی. Trichoderma. خلاصه مقالات پژربانی دهمین کنگره گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-1700 ماه، ص. 55.

5. حسینی‌زاده، س. و. اسهایی. 1381. کنترل بیولوژیکی بیماری‌های گیاهی با گیاه‌های بیماری‌زایی. Trichoderma. خلاصه مقالات پژربانی دهمین کنگره گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-1700 ماه، ص. 182.

7. شهیدی، طبرستانی، M. و. فلاحی، N. و. جعفری، M. و. روحانی. H. 1378. کنترل بیولوژیکی بیماری‌زایی با پایداری بالای گیاه‌های بیماری‌زایی. Trichoderma. خلاصه مقالات پژربانی دهمین کنگره گیاهپزشکی ایران، دانشگاه صنعتی اصفهان، 14-1700 ماه، ص. 55.

11.