همیستگی نیتروژن اوره ای خون، نیتروژن اوره ای شیر و باروری گاو‌های شیرده

محسن باشا‌ها، غلامرضا قربانی و حمید رضا رحمانی

چکیده

هدف از این پژوهش ارزيابی و پوشیبندی نیتروژن اوره‌ای اصفهان و نیتروژن اوره‌ای شیر و باروری در نشتی و تلقیح پیس از زایمان بود. برای مغز نیتروژن‌های شیر و خون بین نیتروژن اوره و سایر موارد غذایی نیز بر اساس این نیتروژن‌های شیر و باروری در دسترس پرونده و تهیه نیتروژن‌های مختلفی از این نیتروژن‌های شیر و باروری در دسترس این نیتروژن‌های شیر و باروری را نویجه می‌کنند. علت تاریکه بدن باروبی‌ها در پنجم‌تیبی احتمالاً بهدلیل مدرک تنها تیبی می‌باشد.

نیتروژن‌های مختلفی داشت. برای تغییرات رابطه نیتروژن اوره‌ای شیر و باروری از روش‌های مختلفی استفاده شد. به‌طوری‌که احتمالات نیتروژن‌های شیر و باروری در اغلب نیتروژن‌های شیر و باروری استفاده شد. تغییرات شیمی‌ای در بدن باروبی‌ها بهدلیل مدرک تنها تیبی می‌باشد.

نتایج ۱۵ نمونه‌نامه در محدوده کار گیری نیتروژن اوره شیر ابزار مناسب برای مدیریت نیتروژن‌های گاو‌های شیری است. ویله هجنون یک

واژه‌های کلیدی: نیتروژن اوره، نیتروژن اوره‌ای شیر، باروری، مدیریت نیتروژن‌های گاو‌های شیری

مقدمه

نیتروژن اوره مهیzetین محصول فرعی سوخت و ساز پرورشی در پستانداران است. پرورش‌های اضافی شده به وسیله گاو معمولاً به آمونیاک تجزیه می‌شود. آمونیاک جذب خون شده و چون بارای حیوان سمی است، نیاز به سرعت توسط کبد به اوره تبدیل می‌شود. اوره مولکول کوچکی است که سریعاً در ترمین

1) به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
شیر دوشت‌های ابتدایی با انتهایی و کل شیر گاز از نظر مقدار اثر افتراقی داده‌اند (13). نمونه‌ها در چند بینه به آزمایشگاه متغیر توجه که در تجربه‌های نهایی در سرعت‌های 10-12 درجه سانتی‌گراد به صورت منجید شده‌اند. انجام‌نامه تأثیر بر غلظت اثر شیر تعداد (4 و 20). محتوی ماده (Venoject) با استفاده از لوله‌های جاری خالاً و تست انعکاژ EDTA از 170 راس گاز 1 میلی‌لیتر نمونه خون هنوزمان با بهره نمونه شیر جمع‌آوری گردید. نمونه‌ها در کاور بینه به آزمایشگاه در به تعداد 20 دقیقه با سرعت 3000 دور در دقیقه سانتی‌فریز گردیدند. از هر نمونه یک میلی‌لیتر بالاپسی با آنتی‌ژن نهایی به‌صورت منجید شده در گو و پذیرش مدت، به منظور تعیین درصد پروتئین و جزئیات غذایی گازداری نیز جمع آوری و اطلاعات مربوط به گازهای مورد مطالعه نیز از طرف فرم‌ها و وزهای که برای این آزمایشگاه با صورت منجید نکته‌ای شده در منظور نتهای شده بود جمع آوری گردید.

آنالیز نمونه‌ها

مقدار نیتروژن اوره در نمونه‌های خون شیر به‌روش دی امستیل مونوکسیم (آنتون درمان کار، ساخت ایران) با استفاده از استیک‌فونومتری با طول و نحو 230 ثانیه‌انه تبعیض داده شد. به‌روش منظور، نمونه‌های شیر نهایی در دامن آزمایشگاه نگهداری شد و پس از مخلوط کردن کامل نمونه‌ها، جهت جداسازی چربی در دمای 4 درجه سانتی‌گرادگردیده‌اند و به‌روش 15 دقیقه با سرعت 1500 دور در دقیقه سانتی‌فریز گردیدند. از آن جریه نمونه‌ها با استفاده از یک بینه آزمایشگاهی قطع دانه پروتئین نمونه‌ها به‌روش کار و استیک اسید (TCA) سرد 1/8 میلی‌لیتر محلول (برای درصد اینده داده‌شده تا محلول تابع بمانند) سپس محلول با سرعت 2000 دور در دقیقه و دمای 4 درجه سانتی‌گراد به مدت 15 دقیقه سانتی‌فریز و آن‌ها 1/2 میلی‌لیتر از مخلوط بالایی برای آنالیز نیتروژن اوره به‌روش دی امستیل مونوکسیم برداشته شد (25).

مورد و روشهای جمع‌آوری نمونه‌ها

به منظور تعیین رابطه بین نیتروژن اوره خون و شیر با میزان باوری، نمونه‌های خون و شیر از 9 گازداری شهروستان اصفهان از 20 بهمن 1382 تا 30 فوریه‌ی 1388 جمع آوری و دو تا سه ماه بعد نتایج تلخ‌گاواها لیت گردید.

حدود 1100 میلی‌لیتر نمونه از 2100 راس‌گاز شیری تزاد هشتم‌این جمع‌آوری گردید. نمونه‌ها همگام تلخ‌گاوا صبح گرفته شدند. به‌روش اینترنتی به جدید دوش، اوله دور ریخته شد و دوش‌های بعدها درون قوطی‌های جاری ماهه نگهدارنده به کروماتوی جمع‌آوری می‌شد. قیالی نشان داده شده که نمونه‌های
در روز اولین تلقیح پس از زایمان جمع‌آوری شد. بدلیل حذف گاوهای قابل از تشخیص آسیپتیک و با ناامید بودن اطلاعات جمع‌آوری شده توسط گارداری‌ها، 20 نمونه گرم و 2 نمونه گرم خون در انالیز نهایی وارد شد. نتایج پیروزی از همی‌سولولی همی‌سولولی خون به روش کلیدال و درصد دیواره سلولی بودند همی‌سولولی سلول روش دو آزمون و همکاران (24) تعیین گردید. انتزاعی جبرانی با توجه به درصد دیواره سلولی بودن همی‌سولولی نتایج زده شد (1).

tabelle آماری

تجزیه آماری داده‌ها با استفاده از نرم افزار SAS انجام گرفت. رگرسیون ساده خطی (proc GLM) برای تعیین رابطه بین نتایج پیروزی از همی‌سولولی (متعادل) و استفاده شد. رابطه بین نتایج پیروزی از همی‌سولولی (متعادل) و عوامل جبرانی (متعادل) با استفاده از رگرسیون ساده خطی محاسبه گردید. عوامل جبرانی وارد شده به مدل شامل درصد پروتئین خام، غلظت انزیم (تئمینی) جبرانی و نسبت پروتئین به نتایج انزیم (تئمینی) بود.

برای تعیین رابطه بین نتایج پیروزی از همی‌سولولی (متعادل) و درصد آسیپتیک (رگرسیون وایبست) در اولین تلقیح از رگرسیون استوانه‌ای استوانه‌ای (Logistic regression) انجام شد. در این مدل متعادل لایه (در اینجا آسیپتیک) در حالت دارد. یعنی میزان فقط در مقدار را پذیرد. با این حال، متعادل وایبست که متعادل ظاهری با مقدار 1 (آسیپتیک) و (0، عدم آسیپتیک) است. متعادل مستقل نیز غلظت پیروزی از همی‌سولولی در روز دوم تلقیح است. به دلیل وجود گزارش‌های منی با وجود رابطه غیر خطی بین نتایج پیروزی از همی‌سولولی و جبرانی (درجه 2 نتایج پیروزی از همی‌سولولی در مدل نهایی وارد شد. داده‌ها با استفاده از روش لجیستیک (23) به وسیله نرم‌افزار SAS (Proco logistic) مقاله غلظت نتایج پیروزی از همی‌سولولی که در اولین تلقیح آسیپتیک مسلمان با بهره‌مندی که آسیپتیک نیست مسلمان از طریق آزمون 1 انجام گرفت.
نیز تفاوتی در میانگین نیتروژن اوره خون و شیر پافتن نشده (میانگین نیتروژن اوره خون و شیر 16/2 میلی گرم در دسی لتر) ولی عرض از مبدأ نسبتاً یکسان بوده است. در این مورد با توجه داشت که، هنگام محاسبه معادله رگرسیون نخست ضریب رگرسیون با توجه به مجموعه داده‌ها و مستقل از عرض از مبدأ محاسبه شده و پس از آن عرض از مبدأ با توجه به ضریب رگرسیون محاسبه می‌شود. به عبارت دیگر ضریب رگرسیون مستقل از عرض از مبدأ محاسبه می‌شود بالmph نتایج (13) گزارش کردن، پس از تغذیه و هنگامی که نیتروژن اوره خون در حال افزایش است، نیتروژن اوره شیر کمتر و هنگامی که نیتروژن اوره خون در حال کاهش است، نیتروژن اوره شیر بیشتر از خون است.

به نظر می‌رسد که توجه کافیمن و منتپر (14) صحیح نمایندگی که در بررسی بافت و همکاران (4) با اینکه اختلاف معنی‌داری بین نیتروژن اوره خون و شیر وجود نداشته است، بیشترین عرض از مبدأ گزارش شده است. در بررسی ما

شکل 1. میانگین نیتروژن اوره خون و شیر در 9 گاوشاری مورد مطالعه

شکل 2. رابطه بین نیتروژن اوره خون و شیر که به روش رگرسیون ساده خظی محاسبه شده است.

$y = 0.68x + 4.92$

$R^2 = 0.52$
ثبتیت نیتروژن اورژانس خون، نیتروژن اورژانس شیر و نیتروژنی گاه‌های شیره.

واحدهای عرض از مبدأ با توجه به ضرب رگرسیون و $\beta = - \frac{y - \bar{y}}{x - \bar{x}}$ به عبارت دیگر، در تعیین عرض از مبدأ ضرب رگرسیون می‌تواند کمکی جهت تعیین عرض از مبدأ ضرب رگرسیون باشد. به نظر می‌رسد که این امر یکی از دلایل پایین‌تر شدن ضربین نیتروژن اورژانس خون و شیر (نیز زمان توزیع برداری) عامل تعیین کنندهٔ هستند.

رابطه نیتروژن اورژانس شیر و ترکیب‌های معادلات زیر رابطه رگرسیون نیتروژن اورژانس شیر با دصد پروتئین می‌باشد.

$R^2 = 0.22$ (درصد پروتئین $x = 0.3$) (مقداری/درصد) ارزی/پروتئین $x = 1 + 6 / 10$ (مقداری/درصد) ارزی/پروتئین $= 0.5$

همان طور که ملاحظه می‌شود درصد پروتئین جهت 7 درصد $R^2 = 0.22$ (درصد پروتئین به انرژی تناها 10/5 درصد تغییرهای نیتروژن اورژانس شیر را توجه می‌کند. در بررسی‌هایی که با تعداد محدودی (کمتر از 200 گاوان انجام گرفته) رابطه قوی بین پروتئین اورژانس شیر و نیتروژن اورژانس وجود داشته است (10/5 درصد پروتئین) مزروعه‌ای با تعداد بالاتر گاز نیتروژن اورژانس زیادترین درصد پروتئین شیر و نیتروژن اورژانس گروش کردن در بررسی مزروعه‌ای دیگری که در سطح 90 گاوان شیر توسط گرم و همکاران انجمات گرفته درصد پروتئین جهت و تغییرهای نیتروژن اورژانس شیر را توجه کرده‌اند. به نظر این محققین (16) تحت شرایط معنی‌داری، رابطه بین نیتروژن اورژانس شیر و اجزای جهت نسبت به شرایط کنترلی به آزمایش فرضیه راست و این رابطه تحت تأثیر عواملی خارج از کنترل‌های تعیینگیر اعضا قرار می‌گیرد. در یک بررسی (21) انجمات گرفته در 5 گاوان شیر اخلاق معنی‌داری در ترکیب جهت از روزهای متوالی دیده شد. این اختلاف می‌تواند به عوامل مثل

175
جدول ۱. نتایج آنالیز مقیاس بین گروه‌های مختلف نیتروژن اوره شیر و میزان باروری در اولین تلخپ پس از زایمان

<table>
<thead>
<tr>
<th>احتمال (p)</th>
<th>Odds ratio</th>
<th>انحراف معیار</th>
<th>بقیه</th>
<th>گروه مرجع</th>
<th>گروه مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>1.19</td>
<td>0.37</td>
<td>0.174</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.058</td>
<td>1.94</td>
<td>0.188</td>
<td>0.357</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.24</td>
<td>1.46</td>
<td>0.132</td>
<td>0.13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.167</td>
<td>1.63</td>
<td>0.364</td>
<td>0.504</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.75</td>
<td>1.23</td>
<td>0.193</td>
<td>0.109</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.45</td>
<td>1.75</td>
<td>0.309</td>
<td>0.285</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل ۳. میزان باروری در رده‌های مختلف نیتروژن اوره شیر

شکل ۴. مقایسه میانگین غلظت نیتروژن اوره شیر گاوهای آبیستن و غیر آبیستن در اولین تلخپ (p=0.09)
نتایج به دست آمده در این بررسی با گزارش محققین دیگر (10، 11) با تفاوت‌های درودی آنها یک رابطه منفی ضعیف را ایجاد کردند. به طوری که احتمال آن‌که گازهای اروری از نتایج آزمایشی 15/4 میلی‌گرم در سیسمی‌پذیری (22) به طور معنی‌داری کمتر از گازهای با نیترژن اوره شیر پایین‌تر بوده است. گونه و همکاران (9) یک رابطه منفی غیر خطی بین نیترژن اوره شیر و باوروری گزارش کردند. به گونه‌ای که گازهای با نیترژن اوره شیر از 187/2 تا 187/1 میلی‌گرم در سیسمی‌پذیری میزان باوروری کمتری را در مقایسه با گازهای با نیترژن اوره شیر کمتر از 18/4 یا پیشرفت کمتری را در 187/2 میلی‌گرم در سیسمی‌پذیری داشتند. گونه و همکاران (12) یک رابطه منفی غیر خطی به دست آورده‌اند که باید اروری گالک در سطح میانه (16/9) تا (16/1) میلی‌گرم در سیسمی‌پذیری پیشرفت از نیترژن‌های پایین و بالایی نیترژن اوره شیر داشته است. در بررسی گرو همکاران (11) در فصل پنجم احتمال آبستنی گاوهایی که نیترژن اوره شیر پیشرفت‌های بالاتری بودند از مطالعه منفی و همکاران (17) افزایش نیترژن اوره شیر در فصل نامناسبی باشند. برای نیز داشتند. این در واقع مطالعه (11) در پیش‌بینی فصول رابطه بین نیترژن اوره شیر و باوروری وجود نداشت.

اگر چه توجه خاصی برای وجود این رابطه در بررسی و ساخت شده است. می‌توان به نتایج آزمایشی اگرچه نیترژن اوره شیر یک شباهت خوبی نغزه‌ای است ولی شناخت مناسب برای کنترل بارده تولید شناختی گازهای نمی‌تواند باشد (8).

منبع مورد استفاده

1. قربانی، غ.1361/اصول پروپورژنگری گازهای شیری و بینش آزمایش‌های ایرانی. اصفهان.