همپستگی نیتروژن اورژون خون، نیتروژن اورژون شیر و باروری گاهی شیره

محسن بابا‌شاهی، غلامرضا قربانی و حمید رضا رحمانی

چکیده

هدف از این بررسی ارژیجاب و وضعیت تغذیه‌ای گاو‌داری‌های اعیان‌پذیر و همچنین برسی وجود درهم و رابطه بین نیتروژن اورژون شیر و باروری در ناحیه‌های مختلف مطالعه بود. بدین ترتیب نموداده‌های بزرگ و درجه تغذیه‌ای گروه‌های مختلف از 9 گاو‌داری مصرفی، جمعی آماری، واقعیت رابطه بین نیتروژن‌های اورژون شیر و باروری از نظر تغذیه‌ای جمع‌آوری شد. علاوه برای شرایط مختلف، این تحقیق نشان داد که درصد باروری گاو‌ها در انتهای تغذیه‌ای جمع‌آوری شده به ترتیب بین 7.4 و 8.8 درصد از تغییرات نیتروژن اورژون شیر را توجه می‌کند. علاوه برای نبود ضریب تبیین احتمالاً بهدلیل میزان‌های تغذیه‌ای نامطلوب و ویساترک‌های جهیز در روزهای مختلف بوده است.

یک رابطه منفی محتوی شکلی بین نیتروژن اورژون‌های شیر و باروری از نظر تغذیه‌ای استفاده شد.

نتایج این پژوهش نشان میدهد که اگرچه نیتروژن اورژون شیر ابزار مناسبی برای پیش‌بینی تغذیه‌ای گاهی شیره است، ولی بهعنوان یک ابزار برای کنترل بازی تولید می‌تواند مناسب نباشد.

واژه‌های کلیدی: نیتروژن اورژون، نیتروژن اورژون شیر، باروری، مدیریت تغذیه‌ای گاو شیری

مقدمه

ارزو مهی‌ترین محوصل فرعی سوخت و ساز پروتئین در پستانداران است. پروتئین‌های مصرف شده به وسیله گاو معمولاً به آمیانک تجزیه می‌شود. آمیانک جذب شده و چون باری‌های حیوان سمی است به سرعت کیفی به اورژون تبدیل می‌شود. اورژون گوگ‌پیکی است که سریعاً در تمام
شیر دوشنه‌ها ی ابداعی با آنالیز موقعیتی و کل شیر کاکز از نظر مقدار اوره اختلافی ندارند (4 و 13). نمونه‌ها در کارخانه خاص به‌وجود آمیزشگاه منتقلاً شده و تا انجام آلبالو تهیه در سرده‌مان 10-20 درجه سانتی‌گراد به صورت محدود تهیه و دارند. انجام‌داده

تأثیر بر گلوژ آئر شیر ندارد (14 و 20).

با استفاده از لوله‌های خالاً (Venoject) و هم‌نیا (EDTA) از 170 رأس گاو 5 میلی‌لیتر نمونه خون دارد. نمونه‌ها در کارخانه خاص به‌وجود آمیزشگاه برده شده و به مدت 20 دقیقه با سرعت 3000 دور در دقیقه سانتریفوژ گردیدند. از هر نمونه یک میلی‌لیتر پلاسمای برای آلبالو تهیه به‌صورت محدود تهیه و داده شد. در همین مدت، به‌منظور تعیین درصد پروتئین و چربی خاصی بگذاری شد. نمونه‌ها به‌منظور تغذیه‌ای کارگزاری دیگر جمع‌آوری و اطلاعات مربوط به‌گاه‌های مورد مطالعه نیز از طریق فرم‌های ویژه‌ای که برای این منظور به‌هسه نسبت به جمع‌آوری گردید.

آنالیز نمونه‌ها

مقدار پنتوز اوره در نمونه‌های خون و شیر به‌وسیله استیالت مونوکسیم (کیت درمان کاکز ساخت ایران) با استفاده از اسکروتومتر با طول و موج 240 نانومتر تعیین شد. به منظور تعیین نمونه‌های شیر نرسید در دمای آزمایشگاه 45 گشتایی شده و پس از مخلوط کردن کامل نمونه‌ها، جهت جداسازی چربی، در دمای 4 درجه سانتی‌گراد به مدت 15 دقیقه با سرعت 1500 دور در دقیقه سانتریفوژ گردید. سپس از آن، چربی نمونه‌ها با استفاده از چپ خلاً از سطح لوله جمع‌آوری شد. برای رسوب دادن پروتئین نمونه‌ها 1 میلی‌لیتر از لیزر تک استیک ساده (TCA) به مخلوط و به مدت 5 دقیقه اجبار داده شد. سپس محلول‌ها با سرعت 2000 در دقیقه و دما

4 درجه سانتی‌گراد به مدت 15 دقیقه سانتریفوژ گردید. نمونه‌ها دارای 1 میلی‌لیتر از مخلوط کردن و برای آنالیز پنتوز اوره به روشی شامل مخلوط کردن و برای آنالیز پنتوز اوره به روش

توصیه‌های جداول استاندارد غذایی (18) تغذیه می‌شود، انتظار می‌رود که نتیجه‌گاری اوره شیر نیاز به مصرف پروتئین اضافه ممکن است بر عملکرد تولید ملی اثر سوء داشته باشد. (ب) مصرف پروتئین اضافی احتیاجات ارزی را افزایش می‌دهد. (ج) مکمل‌های پروتئینی گران ترین بخش جیره است و (د) دفع نیتروژن اضافی آن‌گونه متعاقب آبی را به دنبال دارد (19).

بررسی‌های قلیاً تناقض متناقض درباره رابطه نیتروژن اوره شیر و پروتئین گزارش شده‌اند. در حالتی که در بعضاً کارگاه‌ها (20 و 22) نشان داده شده که افزایش نیتروژن اوره شیر، کاهش باروری را به دنبال دارد، وجود یک رابطه منفی در فصل نسبت (17) با رابطه مثبت در فصل بهار (11) و نسبت رابطه در فصل‌های دیگر سال نیز گزارش شده است. بنابراین به‌منظور ارزیابی وضعیت تغذیه‌ای کارگزاری‌های اسفهان با استفاده از تغییرات و جریان و وجود رابطه بین نیتروژن اوره شیر و پروتئین انتقال گرفته است.

مواد و روش‌ها

جمع‌آوری نمونه‌ها

به‌منظور تعیین رابطه بین نیتروژن اوره خون و شیر به‌وسیله باوری، نمونه‌های خون و شیر از 9 کارگزاری شهرستان اصفهان، از 20 بهمن 1380 تا 30 فروردین 1381 جمع‌آوری و در تیم‌به‌مرجع‌و رابطه با ماه بعد تایید نتایج نتیجه‌گیری گاز‌ها تهیه گردید. حدود 10 میلی‌لیتر نمونه شیر از 290 رأس گاو شیری زاده‌شناسی جمع‌آوری گردید. نمونه‌ها در حالت لقیح صح گرفته می‌شد. این انتخاب به‌چنین دوشنه‌اوله در رختنی‌ها دندان دوش‌شماری، نزدیک به‌ویژه در این مورد، جمع‌آوری شده، به‌عنوان به‌روشی که با کروموم جمع‌آوری می‌شود. قیال‌نشان داده شد که نمونه‌های
در زور اوایل تلقیح پس از زایمان جمع‌آوری شد، بدین حال که نتایج آزمایش آسیب‌های وابسته به این اطلاعات جمع‌آوری شده توسط باوربری‌ها (2) و نمونه‌های سلول‌های دیگر (3) تعیین گردید. انرژی جهت در درصد دیواره‌های برون‌السولولی مهم سلول‌های زده شد (1).

تحلیل آماری
تجزیه آماری داده‌ها با استفاده از نرم‌افزار SAS (proc GLM) برای تعیین رابطه بین تیترودون اروه خون (متفجر مستقل) و تیترودون اروه شیر (متغیر وابسته) استفاده شد. رابطه بین تیترودون اروه خون (متفجر وابسته) و عوامل جهشی (متفجر مستقل) نیز با استفاده از رگرسیون ساده خطی محرک و گردید. عوامل جهشی وارد شد به مدل شامل درصد پروتئین خام، غلظت انرژی (نکسیپن جنرال) و نسبت پروتئین به انرژی (نکسیپن) بود.

برای تعیین رابطه بین تیترودون اروه شیر (متفجر مستقل) و درصد آسیب‌های وابسته در اولین تلقیح از رگرسیون (Logistic regression) استفاده شد. در این مدل متغیر پاسخ (در اینجا آسیب‌های) در حال داده دارد، بنیج می‌توانند فقط بر مقدار را پیش‌بردند. بنابراین، متفجر وابسته به متغیر ظاهری با دو مقدار 1 (بهتر) و 0 (بدنی عادی) است. متفجر مستقل نیز غلظت تیترودون اروه شیر در روز تلقیح است. به‌دلیل وجود گزارش‌هایی مبنی بر وجود رابطه غیر خطی بین تیترودون اروه شیر و پارانی نوع درجه 2 تیترودون اروه شیر نیز در مدل نهایی وارد شد. داده‌ها با استفاده از روش لجستیک (2) و پسیله نرم‌افزار SAS نرم‌افزار Prolog به نمایش و قرار داده شد. رابطه آنتی‌ژن (آنتی‌ژن) بسته به سلول‌های دیگر (Prolog) مقدار غلظت تیترودون اروه شیر که در اولین تلقیح آسیب‌های شدند بانه‌ها که آنتی‌ژن نشان داده شدند از طریق آزمون 1 انجام گرفت.

نتایج و بحث
رابطه تیترودون اروه خون و شیر نمونه‌های شیر و خون به ترتیب از 190 و 170 راس گاو شیری
نیز تفاوتی در میانگین نیتروژن اوره خون و شیر پاپت نش (میانگین نیتروژن اوره خون و شیر 16/2 میلی گرم در دسی لتر).

ولی عرض از میداً نسبتاً بهترین به دست آمد.
در این مورد با پیدایش توجه داشته که، هنگام محاسبه معادله رگرسیون نخست ضریب رگرسیون با توجه به مجموعه داده‌ها و مستقل از عرض از میداً محاسبه شده و پس از آن عرض از میداً با توجه به ضریب رگرسیون محاسبه می‌شود. به عبارت دیگر ضریب رگرسیون مستقل از عرض از میداً محاسبه می‌شود.

پالمکونیست (13) گزارش کردن، پس از تغذیه و هنگامی که نیتروژن اوره خون در حالت افزایش است، نیتروژن اوره شیر کمتر و هنگامی که نیتروژن اوره خون در حالت کاهش است، نیتروژن اوره شیر بیشتر از خون است.

به نظر می‌رسد که توجه کافیان و منتیر (14) صحیح نمی‌باشد. چرا که منظور نماینده در بررسی بانک و همکاران (4) با این که اختلاف معنی‌داری بین نیتروژن اوره خون و شیر وجود نداشت، بیشترین عرض از میداً گزارش شده است. در بررسی ما

شکل 1. میانگین نیتروژن اوره خون و شیر در 9 گادواری مورد مطالعه

شکل 2. رابطه بین نیتروژن اوره خون و شیر که به روش رگرسیون ساده خطی محاسبه شده است.
نتیجه‌ی اصلی: تأخیر در مشاهده عرض از مبدأ با توجه به ضریب رگرسیون \(b = -0.7 \)

\[R^2 = 0.7 \]

\[\text{ماهان طور که ملاحظه شد می‌تواند درصد پروتئین جهش 7}

\[\text{درصد} \]

\[R^2 = 0.7 \]

\[\text{و نسبت پروتئین به انرژی نهایی} \]

\[R^2 = 0.7 \]

\[\text{تغییر‌های نتیجه‌گر انرژی شیر را توجه می‌کند. در}

\[R^2 = 0.7 \]

\[\text{بررسی‌های که با تعداد محدودی (کمتر از 200) گاو در}

\[R^2 = 0.7 \]

\[\text{گرفته رابطه قوی بین پروتئین جهش و نتیجه‌گر انرژی شیر وجود}

\[R^2 = 0.7 \]

\[\text{داشت است (2).} \]

\[R^2 = 0.7 \]

\[\text{مزرعه‌ای با تعداد بیشتری گاو نیز رابطه قوی بین درصد}

\[R^2 = 0.7 \]

\[\text{پروتئین جهش و نتیجه‌گر انرژی شیر گزارش کردن. در بررسی}

\[R^2 = 0.7 \]

\[\text{مزرعه‌ای دیگری که در سطح 90 کاغذ غیره توسط اگر}

\[R^2 = 0.7 \]

\[\text{همکاران انجام گرفته درصد پروتئین جهش و نسبت پروتئین به}

\[R^2 = 0.7 \]

\[\text{انرژی جهش بروی بنزین تا نهایی و 5/9 درصد تغییر‌های نتیجه‌گر}

\[R^2 = 0.7 \]

\[\text{ارور شیر را توجه می‌کند (16). به‌طور این محققین (16)}

\[R^2 = 0.7 \]

\[\text{ تحت شرایط مختلف، با شرایط بین نتیجه‌گر انرژی و}

\[R^2 = 0.7 \]

\[\text{اجزای جهش نسبت به شرایط کنترل شده از آزمایشی ضریب تر}

\[R^2 = 0.7 \]

\[\text{است و این رابطه تحت تأثیر عواملی خارج از کنترل‌های}

\[R^2 = 0.7 \]

\[\text{پذیرفته‌ای عادی قرار می‌گیرد. در یک بررسی (21) انجام گرفته}

\[R^2 = 0.7 \]

\[\text{در 5 کاغذ غیره اخلاقی معنی‌داری در ترتیب جهش با در}

\[R^2 = 0.7 \]

\[\text{روزهای متوالی دیده شد. این اختلاف می‌تواند به عواملی مثل}

\[R^2 = 0.7 \]

175
جدول 1. نتایج آنالیز متغیر بین گروه‌های مختلف نیتروژن اوره شیر و میزان باروری در اولین تلقیح پس از زایمان

<table>
<thead>
<tr>
<th>احتمال (p)</th>
<th>Odds ratio</th>
<th>انحراف معیار</th>
<th>B</th>
<th>گروه مقدار</th>
<th>گروه مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>1/19</td>
<td>0.37</td>
<td>-0.174</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.58</td>
<td>1/42</td>
<td>0.188</td>
<td>-0.357</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0.32</td>
<td>1/42</td>
<td>0.132</td>
<td>-0.163</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.167</td>
<td>1/42</td>
<td>0.364</td>
<td>-0.502</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0.57</td>
<td>1/42</td>
<td>0.034</td>
<td>-0.194</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.45</td>
<td>1/42</td>
<td>0.075</td>
<td>-0.285</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

شکل 3. میزان باروری در رده‌های مختلف نیتروژن اوره شیر

شکل 4. مقایسه میانگین غلظت نیتروژن اوره شیر گاو‌های آبیستن و غیر آبیستن در اولین تلقیح (p<0.05)
نتایج به دست آمده در این برسی با گزارش‌های محققین دیگر.

۱۳۰۳ تفاوت‌هایی که اثرباره مصرف بدنی در حیوانات قرمز که در فصل نیتروژن اثر شیر بیشتری از میلی‌گرم در دسی‌لیتر (۲۲) به مقدار مصرف بدنی کمتر از گاوهایی با نیتروژن اصلی شیر پایین‌تر بوده است. گونه و همکاران (۹) یک رابطه منفی غیر خطی بین نیتروژن اثر شیر و قهوه‌ای گزارش کرده‌اند که گونه‌ای با غلظت نیتروژن اثر شیر کاهش داشته باشد (۱۷) ۱۸/۳ تا ۱۲/۴ میلی‌گرم در دسی‌لیتر، میزان باروری کمتری را در مقایسه با گاوهایی با نیتروژن اثر شیر کمتری از یا بیشتر از یا بیشتر از یا بیشتر از با یدکی غیر خطی به دست آمده است. گونه و همکاران (۱۱) در فصل بهار احتمال آب‌سانی گاوهایی که نیتروژن اثر شیر بیشتری داشته باشند با لازم‌بودن و در مطالعه مبنی و همکاران (۱۷) افزایش نیتروژن اثر شیر در فصل تابستان کاهش باروری را به دنبال داشته است. در این دو مطالعه (۱۴) در بیش از صد رابطه بین نیتروژن اثر شیر و باروری وجود نداشت.

اگر چه توجه‌های خاصی برای وجود این رابطه در برسی مواردی وجود نداشت، ولی می‌توان چنین نتایج را نشان داده‌ایم. احتمالاً به هر یک از فرآیندهای موجود مصرف بدنی، مصرف ماده غیر خشک یا مصرف بدنی کمتری داشته و تحت تمرین منفی تأثیر قرار گرفته بوده و این میزان نیتروژن اثر شیر پایین‌ترین نیز داشته‌اند. از میان انرژی و پروتئین، تعدد

منابع مورد استفاده

۱. قربانی، غ. ۱۳۷۱. اصول پرورش گاوهای شیری. ویرایش اول، انتشارات امیرکبیر، اصفهان.