اثر افزودنی‌های مختلف بر کیفیت تخمیر سیلوی ارزن در شرایط آزمایشگاهی

علي اسدی الموتی، مسعود علیخانی، غلامرضا قربانی و عبدالحسین سعی

چکیده
هدف از آن‌آزمایش‌پربررسی ویژگی‌های سیلوی ارزن تهیه شده در آزمایشگاه بعنوان یک علفه جایگزین در سالهای خشک و تعیین اثر افزودنی‌ها بر کیفیت تخمیر آن بود. عملکرد ارزن در مرحله شیری و خریدی نرم داشت، پسین افزودنی با استفاده از چوب، مالس، اسیدتئریک، تلخیح باکتری‌های تولید کننده اسید لیکتیک و ترکیب ماس و باکتری در قالب یک طرح کاملاً تصادیلی و بهصورت فاکتوریل مخلوط در ۲۴ سیل شد. مرحله برداشت ذوب از سیلو در به‌طور معنی‌داری متفاوت بود و یافته‌ها نشان دادند که تلخیح‌که‌سازی برای سیلویی شاهد منجر به افزایش pH سیلو و کاهش ذوب و افزایش سطوح نیترژن آزمایشی (۳۳ درصد نیترژن کل، اسیدتئریک) و افزایش استیمک کل و با بالا‌بردن تولید، استیماک‌های افزودنی اسیدتئریکی نسبت به سیلویی شاهد بهتر. افزودن ماس و ترکیب ماس و باکتری بیشتر نتیجه‌گیری شده می‌باشد. واکنش کیفیت سیلویی ارزن در آزمایشگاه نشان دهنده افزایش قابلیت حمایت ماده خشک و ماده آلی نداشت، ولی مقدار اندازه‌گیری نشان داد که تأثیر فاکتوریلیک نسبت به سیلویی شاهد بر افزودن ماس و ترکیب ماس و باکتری بیشتر نتیجه‌گیری شده می‌باشد. نتایج این آزمایش نشان داد که برایِ بهترِ کیفیت سیلویی ارزن، افزودن یک منبع کربوهیدرات محلول به سیلو ضروری بوده و بدون حضور یک منبع کربوهیدرات، تلخیح باکتری‌سازی از نظر سیلویی مناسب تولید نهاده کرد.

واژه‌های کلیدی: سیلویی ارزن، کربوهیدرات محلول در آب، افزودنی‌ها

مقدمه
مطالعه‌های پرتوییلیک مدل دو در این مناطق بخصوص در سالهای خشک وجود ندارد. خشبه‌ی ارزن منبع دو وسیع از جهان کشت می‌شود. رشد

عکس و فنون کشاورزی و منابع طبیعی / سال هشتم / شماره سوم / پاییز ۱۳۸۳

1 به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

149
سريع. قابلیت تطبیق با تغییرات محیطی قوی‌تر است که با استفاده از دستگاه‌ها و محیط‌های مختلف از جمله آب و هوا و اثرات اقلیمی از نظر رقابت و زیست‌محیطی بهبود یافته‌است.

میزان اثرات آلودگی و تغییرات محیطی در زنجیره زیستی و طبیعت جهانی چکیده است. به‌طوری‌که قابلیت زیست‌محیطی حیاتی است و نیازمند تغییرات در محیط‌زیستی و بیولوژیکی است. در این زمینه، مطالعه و پژوهش‌های بسیاری انجام شده است.

مواد و روش‌ها

ارزن سبز در ایران توسط گروه آماری و گروه فیزیولوژیک سنجش شده است. این گروه از منابع مختلف (به‌طوری‌که در کشور خود از نظر علوم و فناوری) به دست آورده است که این دستگاه‌ها به‌طور کلی می‌توانند در محیط‌های مختلفی کار کنند.

150
کمتر از مرحله خمیری نرم بوده است (P<0.05). هیل و همکاران (12) نیز مقادیر ماهی خشک علف علوفه از مراحل مختلف در مرحله خمیری نرم 2/2 درصد ذکر کردند. مقادیر کروهیدراتی های محول علوفه از مرحله برداشت 2/3 درصد بود که این مقادیر نشان دادند کمبود این یکی خشک کروهیدراتی در علوفه از مرحله بود.

در جدول 2 ترتیب شیمیایی سیلواردی اروپر پس از 45 روز سیلوشدن دیده می‌شود. ماهی خشک در مرحله برداشت متاسب با علوفه از هم اختلاف معنی‌دار داشتند (P<0.05). ولی مقادیر آن در علوفه از مرحله کمتر با بیشترین اقلام مرحله شیری بود. پروتئین خام بین تیمار شاهد و تکثیر ملام و باکتری انتخاب معنی‌داری نداشت و همچنین تیمارداری جو و باکتری و تیمار حاوی ملام و اسیدفرمیک اختلاف معنی‌داری بنا به نشان داشتند (P<0.05). دیواره سلولی و دیواره سلولی بدون همی سلول در دو مرحله برداشت شاباش با هم بودند، ولی افزودن ملام و تکثیر ملام و باکتری با طور معنی‌داری مقادیر مربوط به ته دو بخش را کاهش داد (P<0.05). اختلاف معنی‌دار بین افزودن‌های جو، اسیدفرمیک و باکتری یا یکدیگر و نیز تیمار شاهد در دیواره سلولی دیده نشد (P>0.05) ولی دیواره سلولی بدون همی سلول در سیلوهای بالاتر از سایر تیمارها بود.

در جدول 2 ویژگی‌های تخمیر سیلواردی از مرحله تحت اثر مرحله برداشت و افزودن‌ها نشان داده شد است. در مرحله خشک علوفه از مرحله خمیری نرم بود pH شیری بوده است، باعث تغییر pH شیری که میانگین pH در این اثر در سیلواردی از مرحله خمیری نرم بود pH بوده است، (P<0.05).

از صنایع تایبندی مخصوص این روش عبور داده شد. میلی لیتر از مایع شکمیه و 30 میلی لیتر از محلول براک مصنوعی (13) به 0.5 گرم نمونه از مرحله شد. نمونه‌ها درون بطری‌های 50 میلی لیتری که از قبل در 24 جریه قرار داده شده بودند، ریخته شد و قبل و پس از درون مدت اضافه کردن مایع شکمیه، گاز اکسیژن کربن به طور مداوم درون بطری‌ها دیده شد. برای اطمینان از شريعت کاملی اي به هواپیم تنفس، مدت و جریه نمونه به محلول احما و محلول آبی روزانروین (Resazurine) به عنوان معرف استفاده شد. ظهور رنگ قرمز ضایع در درون بطری‌ها بی‌طرفی نشان دهنده عدم شرایط به هواپیم ایست. بطری‌ها به مدت 24 ساعت درون حمام آب گرم 39 درجه نگه داشته شدند و گاز تولیدی به 4 ساعت به جریه 12 شیب 8 صبح TTR سلوسون های خاص (Bunsen valves) pH میلی لیتر اسکلریک در 6 نماز به هرسیض اضافه شد به نمونه به 2 یسر. سپس 200 میلی لیتر بره بین به هره بطری اضافه شد و بطری‌ها به مدت 24 ساعت در طبیعی درون حمام آب گرم 39 درجه نگه داشته شدند. 6 نمونه حاوی مایع شکمیه و براک مصنوعی و فاقد نمونه به عون شاهد در نظر گرفته شد (13). پس از انکوابسیون، نمونه‌ها با 4000 دور در دقیقه به مدت 15 دقیقه سانترافوز شده و مایع شفاف بالایی دور ریخته و پس اندازه در آن 45 دقیقه خشک شد (8).

از آمایندگان در قالب طرح کاملی یک تحقیق به‌طور مالتکانه GML گرم‌افزار GLM (24) مورد تجزیه قرار گرفت و 5 ساله SAS درصد توزیع ارتفاع مقایسه گردیده و برای مقایسه آنها متغیر معنی‌دار از نرم افزار MSTATC استفاده شد.

نتایج

ترتیب شیمیایی

ترتیب شیمیایی علوفه از مرحله 2 سیلوشدن در جدول 1 ارائه شده است. ماهی خشک علوفه از مرحله شیری
جدول 1. ترکیب شیمیایی علوفه ارزان در دو مرحله برداشت قبل از سیلوشد (پس از ماده خشک)

<table>
<thead>
<tr>
<th>مرحله برداشت</th>
<th>شیری</th>
<th>خمیری نرم</th>
<th>SEM[1]</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک[1]</td>
<td>254/34</td>
<td>254/34</td>
<td>254/34</td>
<td>254/34</td>
</tr>
<tr>
<td>پروتئین خام</td>
<td>12/9</td>
<td>12/9</td>
<td>12/9</td>
<td>12/9</td>
</tr>
<tr>
<td>دیواژن سولول</td>
<td>55/21</td>
<td>55/21</td>
<td>55/21</td>
<td>55/21</td>
</tr>
<tr>
<td>چربی خام</td>
<td>2/81</td>
<td>2/81</td>
<td>2/81</td>
<td>2/81</td>
</tr>
<tr>
<td>فسفات</td>
<td>9/96</td>
<td>9/96</td>
<td>9/96</td>
<td>9/96</td>
</tr>
<tr>
<td>کلسیم</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>کربوهیدرات‌های محلول در آب[1]</td>
<td>2/05</td>
<td>2/05</td>
<td>2/05</td>
<td>2/05</td>
</tr>
<tr>
<td>ظرفیت بافرینگ (میلی اکی وان در صدگرم)</td>
<td>22/56</td>
<td>22/56</td>
<td>22/56</td>
<td>22/56</td>
</tr>
</tbody>
</table>

1. هزینه استاندارد اداره‌گری
2. در هر دوی، میانگین‌های با حرف غیر مشترک، اختلاف معنی‌داری با یکدیگر دارند (P<0/05).

محدوده قابل قبول بود. کربوهیدرات‌های محلول و بخش‌های ترکیب‌پذیری اخلاقی معنی‌داری با یکدیگر نداشتند (P>0/05). بین افزودن‌های سیلوشده pH نزدیک به 8/5 حاکی از یک تعییم نامناسب و کمیت بدن سیلوها بود. نشان افزودن‌ها در کاهش فاصله ورودی اما کاهش pH در سیلوهای حاصل اسیدفریک، سیلوز و ترکیب ماس و بسته‌بندی بیشتر به‌طور مقداری بود. افزودن جو و باکتری در به‌طور مقداری راز یک کاهش داد ولی شدت تأثیر آن به اندازه‌ای کافی افزودن‌ها بود. ترکیب بافرینگ در سیلوهای جوی اسیدفریک‌پایین از همه تیمارها و در تیمار حاوی باکتری بالاتر بود و بین سایر افزودن‌ها اختلاف معنی‌داری دیده نشد (P>0/05).

در سیلوهای بدون افزودنی، نیتروژن انرژی‌ها شاخصی از تجزیه پیوسته و اسیدهای آمینه توسعه اکسترمیت‌های استنشاقی، میزان این سیلو با سایر تیمارها داشت (P<0/05). ولی در تیمارهای حاوی اسید فرمیک و سیلوز و ترکیب سیلوز و باکتری مقدار نیتروژن انرژی‌ها پایین‌تر یا نگهداری‌شده بود. در تیمارهای حاوی جو و باکتری،
جدول ۲. ترکیب شیمیایی و خصوصیات تخمیر سیلیکات آزن تحت تأثیر مرحله برداشت و افزودنی‌ها (بر اساس ماده خشک)

| مرحله برداشت | افزودنی‌ها | شعاع | جو اسیدفیتمیک | باکتری | مLAS و باکتری | SEM | SEM1 | شهربی خمیری‌تیم
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>برداشت</td>
<td>افزودنی‌ها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شرایط خمیری‌تیم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده خشک‌تیم (آرون تر)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروتئین خام (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیواره سنوی (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیواره سنوی بدون هم سلولار (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ظرفیت بافربنک (میلی اک/وان درصدی)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کربوهیدرات های محلول در آب (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن آمتریک (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن آمونیاک (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن نامحلول در شوینده آسیدی (٪)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. خطای استاندارد الگر
2. داخل افزودنی‌ها و مرحله برداشت. به‌گونه‌ای که درای حداصلی یک جرف مانند بکر حس کردن نهایت با یکدیگر نداودند.
بحث

ترکیب شیمیایی

مواد خشک سیلویار از علوفه ارزان قیمت از سیلوئیدن پایین تر بود. کاهش ماده خشک تا اندازه‌ای مرور به افزودن آب به سیلوهای هنگام اضافه کردن افزودنی ها بود و از طرف دیگر اثرات ماده خشک موجب کاهش ماده خشک شد. ولی افزودن ماسال و همگونی (75) نباید افزودن ماسال به چندار، ماده خشک آن را افزایش داده بود، علاوه بر اثر ماسال در کاهش اندازه مواد مغذی از طریق افزایش تولید راکتیکی، بخشی از افزایش به عنوان ماده خشک خود ماسال (5/75) نبود.

افزودن آب به ماده خشک را افزایش داده بود، اثر به علت خاصیت چربی رطوبت و توزیع آب سیلولیس غلاف است که در بررسی‌های دیگر نبی آن آشنا شده است (18).

م حققه‌ن سیلولیس به نوبه‌ای به سیلوهای ماست مسال و مسال در خریدار سیلولیس از نظر مشابه شدند. در شکل، وجود مسال به دلایل دوگانه به‌ویژه از یک‌نواز سیلولیس خالص از شکستن همی‌سیلولار خشک، هم‌سیلولار جزئی که رکوب‌های دیگر را محول باقیم‌مانده در سیلو، زاپاولو و گالاکتوژ است (6/75). این کاهش در مقدار اجزای

مرحله برداشت (P<0.05)، ولی قابلیت حضور مولکول پرند به مرحله برداشت افزودنی در سیلوهای ارزان داشت (P<0.05). ولی تولید اسید اسیدیکس، اسیدی‌پروپونیک به طور معنی‌داری در مرحله شیری بالای مرحله حشرات نمود بود (P<0.05) (جدول 3). افزودنی‌ها اثر معنی‌داری بر تولید اسید اسیدیکس داشتند. بیشترین تولید اسید اسیدیکس در سیلوهای حاوی ماسال دیده شد که اختلاف معنی‌داری با برای تیمارها داشت (P<0.05) (جدول 3). کمترین مقدار اسید اسیدیکس در سیلوهای پایین دیده شد (1). ولی تولید اسید اسیدیکس بین این سیلوهای با تیمارهای حاوی جو، اسید فرمیک و باکتری اختراف معنی‌دار داشت (P<0.05) (جدول 3). به علت ترکیب ماسال و باکتری، منجر به تولید اسید اسیدیکس کمتر از مقداری است که در سیلوهای حاوی ماسال دیده شد (P<0.05).

وقوع تخمر کلستریدیایی باعث شد تا در سیلوهای شاهد اسید پیوپورتین به دست ماده خشک برسد (پیش از 1) درصد نشان دهنده تخمر کلستریدیایی است (29). ولی در سایر نیازها به جریان تیمار حاوی باکتری تولید اسید بروز کنن. در روش پیشنهادی (3) پیوپورتین، نسبت اسید باکتری به محاسبه (P<0.05) (جدول 3) به نشان دهنده آن که در اندازه‌گیری اسیدیکس جرب قرار دارند. به بوده است HPLC

قابلیت هضم

قابلیت هضم ماده خشک و ماده آلی علوفه ارزان و سیلویه
جدول 3: مقدار اسیدهای آبی و قابلیت هضم علوفه ارزون در آزمایشگاه تحت تأثیر افزودنی‌ها و مرحله برداشت (بر اساس ماه خشک)

<table>
<thead>
<tr>
<th>مرحله برداشت افزودنی‌ها و یا شرایط</th>
<th>افزودنی‌ها</th>
<th>مرحله برداشت</th>
<th>مقدار SEM</th>
<th>مقدار SEM</th>
<th>مقدار مالاس و باکتری</th>
<th>مقدار باکتری</th>
<th>مقدار مالاس</th>
<th>اسمیماتیک</th>
<th>اسمیماتیک</th>
<th>اسمیماتیک</th>
<th>اسمیماتیک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

توضیحات:
1. خطای استاندارد داده‌گیری
2. داخل افزودنی‌ها و مرحله برداشت، میانگین همبسته‌ها، که دارای حداکثر یک حرف مشترک هستند، اختلاف معنی‌داری با یکدیگر ندارند (P>0.05).
3. غیر قابل تشخیص
نیتروژن آمینوکاکی را در برموداگراس 17 درصد بیشتر آوردند
و آن را به فعالیت کلستریدیا مربوط دانستند. تولید بالای اسید
پروتیک و اسید استیک در سیلوهای شاهد مؤتود فعالیت شدید
کلستریدیایی بود.
سیلوهای حاوی اسید فرمیک pH پایینی داشتند (جدول 2). درصد همی
میزان افزایش از اسید فرمیک کاهش سریع به محض
استفاده است که امکان فعالیت تقریباً تمامی باکتریها را به
شدت محدود می‌کند (21). این کاهش فعالیت منجر به حفظ
پروتئین و جلوگیری از تاثیر آن توسط آنزیم‌های گیاه و
کاهش تولید آمینوکسریت در سیلول به دیده شد (جدول 2).
پایین ترین تیتر اسید فرمیک در سیلوهای دیده شد (21).
به همین علت

سیلوهای ارزان را کاهش داده بود. به دلیل تغییر فعالیت مصرفی در
سیلوهای رونده‌دار، بالاتر از مختصات مورد استفاده قرار می‌گیرند و
بآموزه به آن‌ها نشان می‌دهد که عامل برای باکتری‌های سیلو قابل
استفاده نیست، بیشتر سیلوهای مصرفی کربوهیدرات‌های محلول
سیALLOW قابل فشرده‌سازی و فعالیت می‌شوند. سیلوهای ارزان

سیLOWE وانیلین سیLOWE و اسید از افزایش در امکان تیمارها و

سیLOWE می‌باشد (22) نیز مقدار pH سیLOWE ارزان بوده بر

سیLOWE در محلول شیری بالاتر از خمیری نرم بود.
نیتروژن با‌این فعالیت باکتری‌ها را در سیلو کاهش داد و
یافتن را که امکان‌ها در رنگ‌یافتن ایفای می‌کند. کم‌تر از میدان،
در فعالیت کمتر دیگر باکتری‌ها، باکتری‌های تولید کندن اسید
لایه‌ها فرسوده برش بسیار زیاد اسیدهای آن و بالاتر بر

mph سیLOWE دارند. بالاتر از pH سیLOWE در محلول شیری به علت ماده
شکر یا پنیر سیLOWE و فعالیت بیشتر افزایش می‌یابد. سیLOWE،

سیLOWE ارزان شاهد بالاتر از کم‌ترین تیمارها و

سیLOWE نیز مقدار pH سیLOWE ارزان بوده است (جدول 2).

سیLOWE و همکاران (29) نیز مقدار

156
اصطلاحات آیی

صرف نظر از اختلاف بین آزادی در تولید استهلال آیی، تولید کل استهلال آیی در سیلوهای بین پژوهش‌های پیشین را به حد معمول بود، در بررسی اسلام و همکاران (۱۵) نیز افزودن مقادیر قابل توجه مالی توانست تولید استهلالیکی را به ۲٪ افزایش دهد.

بررسی‌نامه در آزمایش‌های روزانه در دکترگرانس تا روز سیلوشن حاشیه در آزمایش‌ها روی کردن باعث اینکه افزایش است قدر استهلال آیی تولید شده در این آزمایش‌ها تا حدی کمتر از حد واقع برآورد شده باشد. ولی بنظر مرسید که مشخصی ذاتی در گیاهان نواحی گرسنجی در مقایسه با نواحی معتدل باند (۴۹).

بین آزادی آییالنریک تولید استهلالیکی با آزادی مالات کمترین آن در سیلوهای مالات و کمترین آن در سیلوهای شاهد دیده شد. در بررسی هیل و همکاران (۱۲) سیلوهای آزادی درون افزودنی در مقایسه با سیلوهای خارجی در این دست دو کمترین مقادیر استهلالیکی بود. پذیرایی زیادی دارد که تولید کم استهلالیکی به مقادیر کم‌تری‌ها مالات در آب علوفه از مرز بسته است. الی در تولید استهلالیکی باعث شده تا میزان pH سیلوهای شاهد بالاتر و در نتیجه کفیت سیلوهای نامطلوب باند. در پژوهشی بر روی علوفه سیلوهای افزودنی در مطالعه تونالیک تولید استهلالیکی را به ۲٪ افزایش بود. ولی سیلوهای حاوی مالات در آزمایش‌ها نیز بالاترین تولید استهلالیکی را داشتند. دیلی دیگر پژوهش‌ها بودند مقادیر تولید استهلالیکی، تحقیقی با پژوهش‌های پژوهش‌های گدد در مطالعه تونالیک تولید استهلالیکی را افزایش داد. ولی این مقادیر نسبی کمی بالاتر از سیلوهای دیده بود. اگر تحقیق پژوهشی با هدف غیر بپردازی می‌توانسته، سرعت رشد تحقیق با پژوهشی مهم‌ترین عامل است. ولی عوامل جهت این است که در حضور مقادیر کم‌تر نیاز نداشته و تعیین مؤثر و ناکمک می‌نمایند. سپس نیاز نیز می‌باشد (۹۵) احتمالاً به همین دلیل تولید استهلالیکی کم‌تر از تولید استهلالیکی در این مکان مالات نیز می‌باشد.

اگر تحقیق پژوهشی با هدف غیر بپردازی می‌توانسته، سرعت رشد تحقیق با پژوهشی مهم‌ترین عامل است. ولی عوامل جهت این است که در حضور مقادیر کم‌تر نیاز نداشته و تعیین مؤثر و ناکمک می‌نمایند. سپس نیز می‌باشد (۹۵) احتمالاً به همین دلیل تولید استهلالیکی کم‌تر از تولید استهلالیکی در این مکان مالات نیز می‌باشد.

۱۵۷
در سیلوهای حاوی ملامس و باکتری استیک قابل تشخیص بود که در این تیمار فرست فعالیت باکتری‌های غیر همگن را به حداکثر رساده به بود، ولی در تیمارهای حاوی ملامس تمامی ارگانیسم‌ها قادر به شروع بوده‌اند. عدم تشخیص استیک در سیلوهای حاوی ترکیب ملامس و باکتری ناشی از اثر همکمی توجه شود که اکثریت گل کروش به همراه یک تلقیح باکتریایی به اندازه اسید سولفوریک و استیک فرمیک در کاهش pH و محوریت کندانس فعالیت کلسش باورانی در واقعیت، به خصوص در سیلوهای دارای استیک فرمیک نسبت به هر کدام از آنها تولید کرده است. در سیلوهای حاوی اسید فرمیک استیک کمی از گلوپترکات محصول شده در فرآیند سیلولوکسیون از دست می‌دهد. این حساسیت استیک فرمیک به همراه حفظ خشک‌پذیری در این استیک در سیلوهای دارای استیک فرمیک نسبت به pH بالا مقدار کم‌تر در سیلوهای حاوی محصول و حدآکثر فعالیت کلسش‌دار با آن‌درین تولید استیک بیوتریکس دیده شد. و افزوده (29) بیان کرده که کمتر از 20 درصد استیک بیوتریکس در سیلوهای ناشنومن به سیلوهای ناشنومن مطلق است. بر این باشیس به حجم تیمار شاهد می‌توان سایر تیمارها را یا کشف داشته. در این از آزمایش لتقیح باکتری‌های تولید گیاهان استیک کم در اسید بیوتریکس قدیمی از تولید استیک بیوتریکس بوده ولی در بررسی همکاران (12) نشان داده که در ویژه این افراد تلقیح باکتریایی به سیلوهای از روش کماکی بوده نتایج در بررسی امواج و همکاران (29) نشان داده که وجود تولید استیک بیوتریکس در تیمارهای حاوی باکتری مقدار آن ناجی بود.

قابلیت هضم پایین‌تر بودن قابلیت هضم ماده آلی از ماده خشک در این تولید بالای اسید ناکثیک، بیوتریکس و پروتئینهای در محله شیری به عنوان ماده خشک کمتر و فعالیت آن بوده است. سیلولار از روز برای همکاران (12) در این اول با ماده خشک کمتر، میزان پیشگیری بیشتری تولید کرد. مادک (21) خاطر نشان کرد که pH کم در آن فعالیت کلسش‌دار منتفیق می‌شود. به ماده خشک گیاه و در حیطه فعالیت آب است. با توجه به نتایج این تحقیق، گیاه کلسش‌دار، به سیلوهای فعالیت نیاز دارد. به مناسبت افزایش میزان در مرحله شیری فعالیت کلسش‌داری بیشتری رخ داده باشد. با توجه به موقع تحقیق کلسش‌داری، تولید استیک بیوتریکس و پروتئینهای که محصول نهایی تخمیر کلسش‌داری در سیلوهای بالاتر از سایر تیمارها، بررسی گرایش بدن افزودن یک در روز سیلولار 74 درصد استیک است. نسبت IranJSTOR at 11:06 IRST on Tuesday December 11th 2018 158
پژوهش، به دلیل مقدار بالای خاکستر شیشه‌های شاهد بود. شاید دلیل آن جمع آوری نمونه از گوسفنده نازار کششی‌کننده در کشاورزی باشد. به شرایط نگهداری قبل از کشت شرایط است. به هر حال به دلیل خذف ارزش اولویت با یک خاکی قابلیت هضم ماده آلی معمول مطلوب تری نسبت به قابلیت هضم ماده خشک است.

افزودن جو به سیلولهای ارزنجان قابلیت هضم ماده آلی را نسبت به سیلولهای شاهد ۲ یا ۴ واقعی داد. هر چه از لحاظ خصوصیات تخم‌یک، سیلولهای جلو جو pH بالاتری داشتند، ولی افزودن منبعی از ناشناده از طریق جو، قابلیت هضم را افزایش داد.

بنابراین اثر گذار در بهبود خصوصیات سیلول، اثر در دو مرحله‌ای است که بخش مهمی از آن به کارگردان اثر ویژه اثری بر عملکرد خیونان باز می‌گردد. از این رو به منظور ارائه نتایج‌گیری صریح در مورد میزان افزودن جو به سیلول، نتایج تولیدی حیوان‌های بدون اثر در قبل ملایم‌سازی کرده‌اند. ناحیه برودریک (۲۳) نشان دادند که با افزودن اسید فرمیک به سیلول تجزیه چندی‌پروپتین در شکمک‌های کاری یاد. بررسی و میربد (۲۴) افزودن اسید فرمیک به همراه سلولار به اورچادگرای قابلیت هضم سیلول را تغییر نداد. همچنین افزودن اسید فرمیک در بهبود قابلیت هضم ماده آلی سیلولهای علوفه یک خروی، چادر و یونجه نشان داد (۲۵). ولی در آزمایش حاضر افزودن اسید فرمیک قابلیت هضم ماده آلی و ماده خشک در آزمایش‌های افزایش داد. این نتایج حساسیت دیواره‌های سلولی ارزنجان را به هضم نشان داده و حاکی از قابلیت هضم بالایی در این است. احتمالاً دلیل این امر به ترکیب پایین‌یافته‌های در غلظت ارزنجان مربوط است که سطح سرطان میکرو‌ها.