تدوین معادلات حساسیت هیدرولیکی مدولهای تیغه‌ای و بررسی اثر تغییرات کمی شاخص حساسیت در شرایط بهره‌برداری

چکیده
بهره‌برداری شبکه‌های آبیاری، تجربه‌ی یک فرآیند تصمیم‌گیری است که در آن سه عامل ضمیمه و وضعیت فیزیکی مورد سازه‌ها، ظرفیت کنتول و رفتار هیدرولیکی سیستم نقش کلیدی ایفا می‌نماید. این سه عامل به نوبت در فرآیند حساسیت هیدرولیکی سازه‌ها مشرت بوده و از این روش‌ها حساسیت هیدرولیکی سازه‌ها مهندسین عمل مربوط به خصوصیات هیدرولیکی سیستم عنوان می‌شود. به‌آن‌الاحیا حساسیت و نسبت سازه‌های آبیاری از جمله به روش‌های تحلیل جریان بوده که در سال‌های اخیر به منظور رفتارسنجی جریان در شبکه‌های آبیاری توصیه یافته و در رفتارسنجی جریان بین شبکه‌های آبیاری جهان مورد استفاده قرار گرفته است. مدولهای تیغه‌ای از جمله مناسب‌ترین ابزار توزیع جریان بوده که استرخور نسبت به مطالعات به‌سازی شبکه‌های آبیاری مطرح و توصیه می‌شود. در این مقاله معادلات حساسیت هیدرولیکی مدولهای تیغه‌ای ارائه گردیده و به ارزیابی تغییرات کمی این شاخص در شرایط بهره‌برداری و تأثیر آن در عملکرد سازه پرداخته شده است.

نتایج حساسیت‌های انجام‌گرفته روی داده‌های موجود و رفتار جریان، مدل‌سازی کنتول و تغییرات کمی مقدار حساسیت هیدرولیکی این ابزارها در شرایط بهره‌برداری است. در بعضی موارد این تغییرها به شیب از ۱۰۰ درصد می‌رسد. تغییر در مقدار کمی حساسیت سازه، تغییر در ظرفیت کنتول سازه را پیامده شده و شکل‌گیری شده و در آن شرایط توزیع جریان در سطح شبکه مورد به‌وجود می‌آورد. تغییرات دیگر به‌عنوان درآمدهای مدولهایی مورد بررسی نسبت به مقدار مجزا که ۲۰ درصد می‌باشد، پیش از در بررسی افزایش یافته است.

واژه‌های کلیدی: آبگیر، انالیز حساسیت، بهره‌برداری، سازه آبیاری، مدول تیغه‌ای

مقدمه
بهره‌برداری شبکه‌های آبیاری، نتیجه‌ی یک فرآیند تصمیم‌گیری است که در آن سه عامل ضمیمه و وضعیت فیزیکی موجود سازه‌ها، ظرفیت کنتول و رفتار هیدرولیکی سیستم بهره‌برداری نقش کلیدی ایفا می‌نمایند. شرایط مناسب تنظیم و توزیع جریان در بهره‌برداری، متأثر از سه فاکتور درجه دفت و حساسیت کنتول و سازه‌ها نسبت به تغییرات و اختلالات ورودی است. از این سه فاکتور حساسیت کنتول مهم‌ترین عامل مربوط به
خصوصيات هیدرولوژی سازه‌ها عنوان می‌شود (۱۲). رفتار منجی چرخ در شیکهوه‌ای آبیاری با استفاده از روان‌سازی‌های مانکندگار و غیرمانکندگار صورت می‌پذیرد. بر این اساس مدل‌های هیدرولوژیکی بسیاری تهیه گردیده که اکنون بررسی چرخ و ارزیابی عملکرد هیدرولوژی شیکه‌های آبیاری را فراهم می‌کنند. از جمله مهم‌ترین این مدل‌ها می‌توان به Mike, Modis, Sobek, Recovr, Canvar, مدل‌های Crue و Icss, Procan, Carima, Canalead, Canalmash نام برد (۱۳).

جدول ۱ به ماهی‌های سازه‌ای علی رغم توانایی‌های قابل توجه در استقامت و مقاومت، تطبیق و توانایی نسبی دی و رودی به کانال اصلی، روند انتشار نوسانات دی را در طول قطعات مطالعه کرد (۹). آلیسون بررسی‌های روی حساسیت سازه‌های آبیار و انجماد داده و بر اساس آن تحولی توسط اگری به تغییرات نسبی دی ورودی به کانال شبیه‌سازی می‌کند (Cross Regulators) انتظار حساسیت سازه‌های مجارسازه تحضیر و تغییرات در زمینه ترکیب آثار حساسیت سازه‌های مجارسازه تغییرات نسبی دی ورودی به کانال شبیه‌سازی می‌کنند (Cross Regulators). بر اساس مدل‌ها اصول آنالیز حساسیت در پیش‌داری‌ها را تحت شرایط گسترشده از نوسانات و اختلالات عمق جریان و تغییرات سازه‌ها تهیه گردیده و در بررسی شبیه‌سازی مجارسازه محققان در سال ۱۹۸۹، بررسی‌های آبیاری هیدرولوژیکی یک مدل قابل توجه نسبی و بالا مطلوب پارامترهای هیدرولوژیکی خروجی به تغییرات نسبی و یا مطلق پارامترهای هیدرولوژیکی ورودی تغییر می‌شود (۱۱). طبق تعريف چهارم داشت:

[۱] تغییرات پارامترهای هیدرولوژیکی ورودی تغییرات پارامترهای هیدرولوژیکی خروجی = حساسیت هیدرولوژیکی سازه‌ها

در این شیوه، پتانسیل هیدرولوژیکی سیستم نسبت به چندین نوسانات بافت گردید و در این‌اختلالات ورودی ارزیابی می‌گردد.

حساسیت سازه‌های آبیاری سیستم اطراف‌گیری به سوال

۱۲۲
مودال‌های تیغه‌ای شامل یک استقلاً استفاده بوده که برای تبادل خروجی‌های یک بر روی یک سطح قطعی می‌شود. بر روی هر یک از مقطع‌های خروجی یک دو تیغه فلزی یا لایه شده که به خروجی را به صورت روزن‌های بسته مقطع خروجی قابل تنظیم بوده که در این مقاله به هر یک از این خروجی‌ها یک دو تیغه اطاق می‌گردد. شکل‌های 1 و 2 به‌ترتیب شماتیک مدل تیغه‌ای نوع و پرتوی طولی کلی در یک آزمایش درد شدیده تنشی از هر نوع مدل را نمایش می‌دهند.

مواد و روش‌ها

ارائه روابط محاسبه حساب‌رسی‌های مدل‌های خروجی مدل‌های تیغه‌ای رفاه‌های هیدرولوژیکی جریان از سازه‌های آبکی و تنظیم کندن، منعکس از این مرحله از سازه‌های اسپری (مرحله β) و ورود آن به کانال یا پایین دست سازه (مرحله α) می‌باشد (شکل 3). مدل‌های عمومی در β و وضعیت یک دو مرحله از کانال ارتباطی و می‌تواند به صورت Zیر نمایش داده شود (11)

\[
q = a A_{w} (H_{US} - H_{DS})^{a} \quad [2]
\]

\[
q = b (H_{US} - H_{REF})^{b} \quad [3]
\]

در روابط فوق q: باین و غریب از سازه، سطح مقطع جریان \(A_{w}\) به معنی تابعی از منابع \(W\) ویاین می‌شود، a و b: ضریب‌های رابطه بین ضریب‌های آبکی در کانال اصلی بالا است. \(H_{REF}\) در این مقاله به معنی آب در کانال فرعی پایین دست سازه، ارتفاع سطح مرجع ثابت \(H_{US}\) که در کانال و با رفع تاج سرزشی باشد \(\alpha\) و \(\beta\) ضریب‌های رابطه بین می‌باشد. در شرایط جریان آزاد از سازه، رابطه حذف شده و نتیجه‌بندی \(H_{DS}\) بر وضعیت جریان حاکم می‌باشد. در جریان از زیر سازه \(\theta\) به معنی عمق آب روی تاج در (Overshot Flow) همراه با عمق جریان در (Undershoot Flow) است. در جریان از زیر سازه \(\theta\) به معنی عمق جریان در کانال) و استخراج چند رابطه تحلیلی در این مقوله وارد مخلوط جدید‌ترین گریده‌ها است. (13) هم اکنون می‌توانیم آن‌که حالت توسعت بوده و مدل بوده برداری کانال‌ها با روش‌های اصول حسابی یا سازه‌ها در حالت توسعت می‌باشد. یکی از عقلانی‌ترین بودن سازه‌ای آب‌پری است. وجود شرایط مناسب در توزیع بسیار جریان تحلیلی به بهره برداری است. مدل‌های تیغه‌ای (Raffle Modules)، مدل‌های تیغه‌ای (Baffle Modules) بیشتر مورد نظر نگرفته‌اند.

هیدرولوژیکی مدل‌های تیغه‌ای و بررسی تأثیر تغییرات کمی حسابی این سازه در شرایط بهره‌برداری صورت گرفت.

معادله 2: به‌طور قطعی مدل‌های تیغه‌ای با نوع‌های مختلف راه‌حل‌ها به دست می‌آیند. این مدل‌ها در جنگ سربی با دیده ویژه یا 200 و 300 طراحی شده‌اند. این پنج سری این سازه به تعداد تیغه‌ها lits.dm
شکل ۱. شماپی از یک مدول تیغه‌ای نوع L

شکل ۲. پروفیل طولی چریان در یک دریچه از مدول نوع یک تیغه‌ای

شکل ۳. وضعیت چریان در سازه آبگیر
مقدار انتخابی انتخابی
جدول 1. روابط مورد آزمون برای محاسبه حسابی هیدرولیکی مدولهای تیغه‌ای

<table>
<thead>
<tr>
<th>عنوان رابطه</th>
<th>مدولهای دو تیغه‌ای</th>
<th>مدولهای یک تیغه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(S_0 = S_3)</td>
<td>(S_0 = S_3)</td>
</tr>
<tr>
<td>B</td>
<td>(\bar{S}0 = S{1} + S_{2}) (\bar{S}_0 = \frac{S_1 + S_2}{\gamma})</td>
<td>(\bar{S}_0 = \frac{S_1 + S_2}{\gamma})</td>
</tr>
<tr>
<td>C</td>
<td>(\bar{S}_0 = \frac{\sum S_j}{\rho})</td>
<td>(\bar{S}_0 = \frac{\sum S_j}{\rho})</td>
</tr>
<tr>
<td>D</td>
<td>(\bar{S}0 = \frac{\sum \Delta H{US(j)} S_j}{\sum \Delta H_{US(j)}})</td>
<td>(\bar{S}0 = \frac{\sum \Delta H{US(j)} S_j}{\sum \Delta H_{US(j)}})</td>
</tr>
<tr>
<td>E</td>
<td>(\bar{S}0 = \frac{\Delta q / q_1}{\Delta H{US}})</td>
<td>(\bar{S}0 = \frac{\Delta q / q_1}{\Delta H{US}})</td>
</tr>
<tr>
<td>F</td>
<td>(\bar{S}_0 = \frac{\sum S_j A_j}{\sum A_j})</td>
<td>(\bar{S}_0 = \frac{\sum S_j A_j}{\sum A_j})</td>
</tr>
</tbody>
</table>

داده‌های موجود و استخراج جریان چند مدول تیغه‌ای

به منظور بررسی تغییر‌های حسابی هیدرولیکی مدولهای تیغه‌ای در شرایط بهره‌برداری و نتایج داده‌های موجود و استخراج جریان چند مدول در شبکه آبیاری دشت قورین

استفاده گردیده‌است. شبکه آبیاری دشت قورین دارای ۱۵۵ نقطه تحول آلپا به کانال‌های درجه سه بوده که کلیه آگیرهای موجود در این منطقه از نوع مدولهای تیغه‌ای می‌باشد. آب مورد نیاز این شبکه از رودخانه طالقان تأمین گردیده و توسط
نتایج و بحث
در این بخش موضوع ارتباط معادلات حسابی هیدرولیکی
مدول‌های تغییرات، تغییرات ایان شاخ در شرایط نرخی و
بهر برداری ارزیابی شد. با توجه به سطح نسبت فازی از
شرایط نرخی، روابط بین این دوی از بارش مناسبی بر
راستگانه یک بازرس به روشی به روشی به روشی به
راستگانه یک بازرس به روشی به روشی به
راه حل می‌توان به صورت زیست‌نماش داد. در این

۱۲۷
جدول 2. مشخصات و موقعیت مدولها در چهارهای واسنی شده(1)

<table>
<thead>
<tr>
<th>در چهارهای واسنی شده</th>
<th>موقعیت مدول</th>
<th>ظرفیت اسمی (آبی به ثانیه)</th>
<th>نوع مدول</th>
<th>ترتیب آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{\text{left}}(\tau_1), C_{\text{mid}}(\tau_1), C_{\text{right}}(\tau_1, \tau_2), C_{\text{right}}(\tau_2, \tau_3), C_{\text{right}}(\tau_3, \tau_4)$</td>
<td>محل آبگیری کانال L_0 از کانال اصلی</td>
<td>1900</td>
<td>C_1</td>
<td>اول</td>
</tr>
<tr>
<td>$C_{\text{left}}(\tau_1), C_{\text{mid}}(\tau_1), C_{\text{right}}(\tau_1, \tau_2), C_{\text{right}}(\tau_2, \tau_3), C_{\text{right}}(\tau_3, \tau_4)$</td>
<td>محل آبگیری کانال L_0 از کانال اصلی L_0</td>
<td>3700</td>
<td>C_1</td>
<td>دوم</td>
</tr>
<tr>
<td>$XX_{\text{left}}(\tau_1, \tau_2), XX_{\text{mid}}(\tau_1, \tau_2)$</td>
<td>ابتدا کانال درجه 4 مشخص از کانال L_0 تغذیه</td>
<td>170</td>
<td>XX_1</td>
<td>سوم</td>
</tr>
<tr>
<td>$L_{\text{left}}(\tau_1, \tau_2), L_{\text{right}}(\tau_1, \tau_2)$</td>
<td>محل کانال L_0 از انشعب کانال L_0</td>
<td>450</td>
<td>L_1</td>
<td>چهارم</td>
</tr>
<tr>
<td>$L_{\text{left}}(\tau_1, \tau_2), L_{\text{right}}(\tau_1, \tau_2)$</td>
<td>محل آبگیری M از کانال اصلی</td>
<td>240</td>
<td>XX_1</td>
<td>پنجم</td>
</tr>
</tbody>
</table>

شکل 5. مقایسه بازه تغییرات دی مدولها مختلف بر اساس حساسیت محاسبه شده از روابط مورد آزمون

در این معادله حساسیت هیدرولیکی یک مدل به مقدار حساسیت و هیدرولیک جریان نواحی ارتفاعی مختلط $\Delta H_{\text{US}(j)}$ مشخص حساسیت و S_j مشخصه حساسیت و S_j مدل ارتباط باعث است. S_j مشخصه حساسیت و هیدرولیک جریان می‌باشد.

$$\bar{S}_n = \frac{\sum_{j=1}^{n} \Delta H_{\text{US}(j)} S_j}{\sum_{j=1}^{n} \Delta H_{\text{US}(j)}}$$ \[A\]
دانلود مقالات حسابی هیدرولیکی مدل‌های تغییر و بررسی اثر تغییرات

با افزایش شدت سطح‌های آب، شدت نیروهای نفوذی به سطح زیر دریچه‌ها در حال افزایش است. این افزایش، ممکن است به تغییرات در شکل و حجم دریچه‌ها و مدل‌های تغییر‌پذیر یادگیری یا سطح سطح زیر دریچه‌ها نیز کاهش دهد.

کلیه مقالات

با توجه به این حال، نتایج به دست آمده از مقالات حسابی هیدرولیکی مدل‌های تغییر و بررسی اثر تغییرات به شکل مکانیکی و شیمیایی دریچه‌ها، نشان می‌دهد که باید توجه بیشتری به تغییرات در شکل و حجم دریچه‌ها و مدل‌های تغییر‌پذیر بپردازیم. این موضوع از نظر تحقیقات و تجربیات قبلی نیز حداکثر مانند است. به طور خاص، این امر به عنوان یک دستگاه نیروگیری بر اساس اثرات مکانیکی و شیمیایی دریچه‌ها می‌باشد.
جدول ۳: شرایط معادلات دین توری انواع مدول‌ها در نواحی ارتفاعی مختلف

<table>
<thead>
<tr>
<th>شرایط</th>
<th>حداکثر ارتفاع عمق جریان (نواحی ارتفاعی)</th>
<th>نوع مدول</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.137</td>
</tr>
<tr>
<td>0.121</td>
<td>0.031</td>
<td>0.092</td>
</tr>
<tr>
<td>0.084</td>
<td>-0.014</td>
<td>0.072</td>
</tr>
<tr>
<td>0.050</td>
<td>-0.014</td>
<td>0.046</td>
</tr>
<tr>
<td>0.025</td>
<td>-0.014</td>
<td>0.032</td>
</tr>
<tr>
<td>0.000</td>
<td>0.010</td>
<td>0.018</td>
</tr>
<tr>
<td>0.000</td>
<td>0.010</td>
<td>0.018</td>
</tr>
</tbody>
</table>

منابع: ویا, و. "چه ترتیب عمق آب در مدل‌های دینی از نظر دینی دریچه می‌باشد." واحدهای برای است. در شرایط به‌هم‌پردازی با استفاده از رابطه فوق محاسبه گردیده و روی تمادهای مربوطه در شکل ۷ مشخص شده است. در حالت به‌هم‌پردازی تغییر میزان حساسیت نواحی ارتفاعی مختلف از طرفی و تغییر محدوده وضعت‌های هیدرولیکی جریان از طرف دیگر، در افرودی ارتفاع حساسیت واقعی این سازه تأثیر گزار است. در شرایط به‌هم‌پردازی تغییر مدول در ارتفاعی بالاتر از آنچه در نمودار پیشین شده، عمل می‌نماید. پس از عمل تماده نتیجه‌های مناسب که وضعیت هیدرولیکی جریان تغییر می‌کند (جریان روگلر) از سرپرست به جریان زیرگذر

125
۱۳۱
جدول 2. ضرایب معادلات دیگر دریچه‌های مدول‌های واسنجی شده در شرایط برف‌باری (E)

<table>
<thead>
<tr>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>Q_E = (BH_f + DH_d + E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>1/1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>1/1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>1/1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
<tr>
<td>1/1</td>
<td>-</td>
<td>-</td>
<td>1/1</td>
<td>0.12</td>
</tr>
</tbody>
</table>

سری آزمایش نوع مدول (لیتر باریکه)
C₁ 1

C₂ 2

XX₁ 3

L₁ 4
جدول ۲: اعداد

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

نیست اختلاف مقدار حساسیت شرایط بهره‌برداری و توری به مقدار حساسیت نسبی است که برای هر یک از دریچه‌های مورد بررسی محاسبه و روز تعداد‌های شکل (۸) مشخص شده است. به عنوان مثال برای تغییرات دی‌بی‌ای دی‌ام از افزایش مقدار کیه حساسیت درجه (۰/۰۸) در آزمایش‌های سری اول، نسبت تقسیم‌بندی C۰/۰۸ بر نسبت تقسیم‌بندی آن برای نشان می‌دهد. به ترجیح دیگر بازه تغییرات دی‌بی آن‌ها و افزایش تغییرات محدود جریان ۷/۷۵/۷۷ درصد افزایش یافته که باینگ دقت با روش دریچه مذکور در کنترل جریان خروجی است.

در شرایط بهره‌برداری، هم‌کارهای مدل‌های نوع L و C که در شرایط بهره‌برداری اهدای نمایند. جریان دارد و به عنوان مدل‌های جزء‌گستر شاخه‌ی می‌شوند نسبت به تغییر مقدار کیه حساسیت هیدرولیکی بیشتر می‌شوند. افزایش حساسیت افراد در شرایط بهره‌برداری باعث تغییرات بیشتر باره تغییرات دی‌بی آنها در راه‌اندازی Q نت (T, (T) به ایزای نوسانات محدود جریان بالایست دریچه‌های دی‌بی افزایش در شرایط بهره‌برداری، حساسیت در حال حاضر، نسبت مقدار تغییرات عمک جریان و نسبت ظرفیت اسپیل دریچه‌های می‌باشد. با استفاده از راه‌نورد ۱۰ اختلاف باره تغییرات دی مدل‌های واحدی شده با شرایط توری محاسبه گردیده و در شکل ۸ گزارش شده است. نمودارهای ایرانی در این شکل، مجموع افقی دریچه‌های مختلف مدل‌های مورد بررسی و محدود عمودی باره تغییرات دی‌بی را نشان می‌دهد. در هر نمودار که مربوط به دریچه‌های پیش‌آموز استفاده می‌شود در جدول ۲ است. نمودار محاسبه باره توری و بهره‌برداری این بازه مورد مطالعه گرفته است. منظور از پارامتر ∆S/Sp قرار می‌گیرد.
شکل ۲۷ مقایسه مقدار کش حساسیت هیدرولیک دریچه‌ها و مدول‌های مورد مطالعه در شرایط بهره‌برداری

که با افزایش دین تهویه همراه است. می‌گردد این مدول‌ها در بازده‌های میدانی از شبکه‌های آب‌برداری وراینده‌های تقویمی که از این مدول‌ها در توزیع آب استفاده می‌کنند با راه‌های طرف بهره‌برداران عنوان می‌شود.

تغییر حساسیت مدول‌ها در شرایط بهره‌برداری، تغییر در عملکرد آنها و اختلال در فرآیند توزیع جریان در شبکه را به دنبال خواهند داشت. به بیان دیگر اختلال در فرآیند توزیع

که پایین‌تر از این مدول‌ها می‌باشد و به علت نقص در فرآیند توزیع جریان در شبکه می‌باشد.
نتایج

خازنی نتایج ترکیب آثار ناشی از تغییر حساسیت مدولوها و میزان خازنی تحول در طول شبکه است. این تغییرات، عملکرد توزیع را در طول فصل آبیاری متاثر می‌نماید. مشکلات جدی در اواخر فصل آبیاری خود نمایی می‌کنند. نرخ نیاز آبی و کمبود میزان ذخیره آبی شبکه در اواخر فصل آبیاری از طرفی و وجود اختلال در فرآیند توزیع جریان که موجب عدم عادت در توزیع می‌گردد از طرف دیگر در مواقف باعث ترسیدن آب به ختایی شبکه شده و کشاورزان این تواحی را با مشکلات زیادی مواجه می‌سازند.
دارای عملکرد یکسانی نیبده و از این رو لزوم و استنیج جریان و محاسبه حساسیت واقعی آن ضریب است. محاسبه مقدار کمی حساسیت این سازه با استفاده از روابط ارائه شده در این پژوهش امکان پذیر خواهد بود.

4. با توجه به عدم وجود اطلاعات فنی کافی جهت طراحی، ساخت و حتی اجرای مدل‌های شبیه‌سازی و تولید این سازه توسط چند کارخانه نه چندان تخصصی داخلی و مضامین بر آن وضعیت بهره برداری این چندن مظلوم شبکه‌های آبیاری کشور، ترکیبی در نفت مورد اندازه‌گیری بسیار به دنبال یافتن یک سازه با استفاده از آگاهی تیپ ارائه شده کارخانه طراح دی مدل‌های وامدل‌های وابسته بهره برداری این چندن مظلوم شبکه‌های آبیاری این بیان بهره برداری و نیل به توزیعی و توزیعی عادلانه، طی هر چند سال بهره برداری ضروری می‌باشد.

مباحث مورد استفاده

1. رضوی نوری، س. م. 1373. ضرایب تجربی در دوچههای نیریپک، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران.
2. وزارت برناه و بودجه، 1357. ضوابط و معیارهای فنی شبکه‌های آبیاری و زهکشی (نشریه 106).