کاربرد معادلات سیتیکی در توصیف سرعت آزاد شدن پتاسیم غیر تبادلی در شماری از خاک‌های همدان

عليضا حسینی پور

چکیده

بیان معادلات سیتیکی در توصیف سرعت آزاد شدن پتاسیم غیر تبادلی در خاک‌های همدان اجرای است. هدف این پژوهش کاربرد معادلات سیتیکی در بررسی سرعت آزاد شدن پتاسیم غیر تبادلی در تعدادی از خاک‌های استان همدان به وسیله عصاره‌گیری مرحله‌ای با استفاده از سیرینک رگی در مدت ۵۵۰ ساعت و هم‌گمرک نتایج‌های سرعت آزاد شدن معادلات با خصوصیات خاک بود.

نتایج این پژوهش نشان داد که سرعت آزاد شدن پتاسیم غیر تبادلی در این‌ها سریع و سبب کند بود. پتاسیم غیر تبادلی آزاد شده در دامنه ۰/۲۰۵-۲/۷۹ مولار در کیلوگرم بود. پتاسیم غیر تبادلی آزاد شده به روش اسید سیرینک پس از ۶۵۰ ساعت با گنچ‌چیشی تیادان کاتیونی، پتاسیم غیر تبادلی در صندوق اجزای خاک هم بستگی معنی‌داری داشت. با توجه به یاد بودن ضرایب چشمه و کم بودن خطای استاندارد پراورد، سرعت آزاد شدن پتاسیم غیر تبادلی به وسیله معادلات روش اول انتشار هالفولوری و تابع تابعی تشریح شد. دامنه تغییرهای ضرایب سرعت در معادله مربوطه اول انتشار هالفولوری و تابع تابعی به ترتیب: [۰/۳۰۱-۰/۷۶۵] توپ و [۰/۳۰۱-۰/۷۶۵] توپ. نتایج این پژوهش نشان داد که ضرایب سرعت در معادلات مربوطه اول انتشار هالفولوری و تابع تابعی با تعادل از خصوصیات شیمی‌ای خاک و در صندوق اجزای خاک هم بستگی معنی‌داری داشت. نتایج این تحقیق هنچنین نشان داد که اسید سیرینک رگی می‌تواند در بررسی سرعت آزاد شدن پتاسیم غیر تبادلی استفاده شود.

واژه‌های کلیدی: پتاسیم غیر تبادلی، آزاد شدن، اسید سیرینک، همدان

مقدمه

در دلیل عدم بررسی سرعت و اکنش‌های شیمیایی در خاک عبارتند از: افزایش بینی اکنش‌ها با چه سرعتی به تعادل یا شبه تعادل می‌رسند و (ب) پیش بینی مکانیسم و اکنش‌ها(۲۴). برای فهم کامل سیتیکی و اکنش‌های شیمیایی خاک، دانستن معادله سرعت با قانون سرعت که

di/dt = K[A]b × [B]a

که در این معادله:

a، b: سرعت

85
از تحقیقات معادله الوریج برای توصیف سرعت و اکتشافات پتاسیم استفاده شده است. در بررسی های فیزیکی برای اولین بار در مدلریج جدید، رابطه بین لایه‌های باعث انتخاب این الگوریتم‌هایی از معادله الوریج قبیل کاربرد کلیسی از معادله الوریج پیوسته کرده. در مطالعه آزاد شدن کاربرد جدید از خاک‌های آبیک در زمان کمتر از 1000 ساعت معادله الوریج می‌تواند بر داده‌های بریش شود.

هنگامی که تغییرات در سطح همگن باعث انتزاع گردانی برای معادله الوریج گردید شده ولی در اینجا فقط بردنی همگنی که سیستم مرتبه برای اندازه‌گیری کامل به‌پرس کرده است.

معادله الوریج برای توصیف سرعت و اکتشافات در کانی‌های رسی و خاک استفاده شده است (2013، 2014 و 2015).

یک معادله رابطه از بعضی از این معادلات وابسته را برای محاسبه ضرایب سرعت بیشترین می‌کند. بنابراین می‌تواند برای تعیین توان Documentometri اکتشافات شد. انتزاع جدول‌های معادله الوریج و معادله الوریج ساده شده، معادلات مربوطه یک مدل برای سرعت و فضای وجود دارد.

مطالعات مربوطه و روش‌ها

این پژوهش در 10 نمونه از خاک‌های استان همدان انجام شد. نمونه‌ها از 30 - 5 سانتی‌متر براپداست که پس از انتقال به آزمایشگاه دو هوا آزاماشیش در هوا آزاد خشک و برای انجام آزمایش‌های
لبرسی سرعت آزاد شدن پتاسیم غیر تبدیلی به روش عصاره‌گیری متونی با اسید سیتریک و غلظت 10 میلی‌متری انجام شد (10, 11). در این تحقیق ۲۵۰ گرم از نمونه‌های استخراج از کلسیم (در دو تکرار) در لوله ساتریپوز ریخته و به آن مخلوط مایع و مواد پتاسیم پادکسته شد. نمونه‌ها به ترتیب ۱۰ ساعت در ۵۰ درجه سانتئژ در داخل انباشت و در دمای نهایی ۷۰ درجه سانتئژ نگهداری شدند. لازم به ذکر است که تمام به طور کلی اگر غلظت پتاسیم در محلول زیر حدود ۱ مول در متر بیشتر شود از آزاد شدن پتاسیم غیر تبدیلی جلوگیری می‌کند (۲۳). بنابراین برای جلوگیری از این عمل از عصاره‌گیری متونی استفاده شد و در فواصل زمانی ۶۵/۰۰، ۱۲۰/۰۰، ۱۸۰/۰۰ و ۲۴۰/۰۰ ساعت، سیستم‌سنجی با ۳ هزار تا ۵ هزار دقت ساتریپوز و محلول روان جمع آوری گردید. سیستم ۲۵ میلی‌لیتر اسید سیتریک دیگر اضافه و نکا داد نمونه‌ها تکرار شد. غلظت پتاسیم نمونه‌های صاف شده به روش ضریب ستیجی نامنه‌ای تعیین گردید. سپس مدل‌های سینتیکی مربوط مرتبه اول معادله پخش هدلفنی معادله تابع نمایی و معادله الویج را بر مبنای پتاسیم غیر تبدیلی آزاد شده بازخوانی می‌باشد و نوع تاپیسی غیر تبدیلی با مراحل اولیه زیاد بود و سپس کند شده و با سرعت نسبتاً ثابت ۵۵۰ ساعت.
جدول 1. خصوصیات فیزیکی و شیمیایی خاکهای مطالعه شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>محل نمونه</th>
<th>ب- هاش</th>
<th>قبیلیت هدایت تندیسی</th>
<th>تندیسی</th>
<th>کاتیون‌آمیزی</th>
<th>کلیسی معمول</th>
<th>کلیسی غیر تندیسی</th>
<th>کربن آلی</th>
<th>میلیت</th>
<th>رس</th>
<th>سیلیت</th>
<th>فضای مایع</th>
<th>پ - اراضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>امام زاده کوه</td>
<td>10/50</td>
<td>0/50</td>
<td>40/85</td>
<td>11/9</td>
<td>89/2</td>
<td>17/5/0</td>
<td>8/5</td>
<td>5/8</td>
<td>5/0</td>
<td>11/0</td>
<td>10/7/2</td>
<td>1/0</td>
</tr>
<tr>
<td>5</td>
<td>خیابان</td>
<td>10/72</td>
<td>0/80</td>
<td>32/87</td>
<td>12/8</td>
<td>89/8</td>
<td>17/6/2</td>
<td>8/5</td>
<td>5/8</td>
<td>4/0</td>
<td>11/0</td>
<td>11/7/2</td>
<td>1/0</td>
</tr>
<tr>
<td>6</td>
<td>پلیس راه همراه</td>
<td>10/50</td>
<td>0/50</td>
<td>40/85</td>
<td>11/9</td>
<td>89/2</td>
<td>17/5/0</td>
<td>8/5</td>
<td>5/8</td>
<td>5/0</td>
<td>11/0</td>
<td>10/7/2</td>
<td>1/0</td>
</tr>
<tr>
<td>7</td>
<td>اول جاده قائم‌نی</td>
<td>10/50</td>
<td>0/50</td>
<td>40/85</td>
<td>11/9</td>
<td>89/2</td>
<td>17/5/0</td>
<td>8/5</td>
<td>5/8</td>
<td>5/0</td>
<td>11/0</td>
<td>10/7/2</td>
<td>1/0</td>
</tr>
<tr>
<td>8</td>
<td>قائم‌نی</td>
<td>10/50</td>
<td>0/50</td>
<td>40/85</td>
<td>11/9</td>
<td>89/2</td>
<td>17/5/0</td>
<td>8/5</td>
<td>5/8</td>
<td>5/0</td>
<td>11/0</td>
<td>10/7/2</td>
<td>1/0</td>
</tr>
<tr>
<td>9</td>
<td>کورچیان</td>
<td>10/50</td>
<td>0/50</td>
<td>40/85</td>
<td>11/9</td>
<td>89/2</td>
<td>17/5/0</td>
<td>8/5</td>
<td>5/8</td>
<td>5/0</td>
<td>11/0</td>
<td>10/7/2</td>
<td>1/0</td>
</tr>
</tbody>
</table>
کاربرد معادلات سیستمی در توصیف سرعت آزاد شدن پناسیم غیر تبادلی...

شکل 1. پناسیم غیر تبادلی آزاد شده به عنوان تابعی از زمان در خاک‌های مطالعه شده

کاتیون خاک‌ها (\(\text{mg} / \text{kg}\))، درصد رس (\(\%\))، درصد سیلیت (\(\%\))، و درصد شن (\(\%\)) دارد.

الگوی مشابه آزاد شدن پناسیم غیر تبادلی در خاک‌ها با استفاده از روش‌های شیمیایی مانند تزریق نیترات بران سدیم (4)، رژیم تبادل کاتیونی، و استثماره آلی (1، 17، 19 و 20) دیده شده است. بیوته و همکاران (3) آزاد شدن سریع اولیه پناسیم را به آزاد شدن پناسیم لیهای و آزاد شدن کندتر را به آزاد شدن پناسیم بین نسبت دادند.

عوامل زیادی بر آزاد شدن پناسیم غیر تبادلی تأثیر دارد.

خصوصیات کاتیون‌های حاوی پناسیم که نقش مهمی در آزاد کردن پناسیم غیر تبادلی دارند شامل: ساختارهای بلور و ترکیب

ادامه می‌یابد. مقدار پناسیم غیر تبادلی آزاد شده در مراحل اولیه عصاره‌گیری در خاک‌ها منتفی است. به طوری که 168 ساعت پس از شروع آزمایش پیش‌ترین مقدار پناسیم غیر تبادلی از خاک شماره 10 و 24 کمترین آن از خاک شماره 2 آزاد شد.

علی‌الوداده بر تفاوت پناسیم غیر تبادلی آزاد شده در مراحل اولیه مقدار پناسیم غیر تبادلی آزاد شده در مراحل بعدی نیز متفاوت است. به طوری که بیشترین در کمترین مقدار پناسیم غیر تبادلی پس از 2500 ساعت از خاک شماره 2 و خاک شماره 3 آزاد شد (جدول 1). نتایج تجزیه‌های آماری نشان داد که پناسیم غیر تبادلی آزاد شده پس از 2500 ساعت هم بستگی معمولی با پناسیم غیر تبادلی خاک‌های \(\text{mg} / \text{kg}\) دارند.
جدول 2. معادلات سینتیکی استفاده شده

<table>
<thead>
<tr>
<th>معادله</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(K_{c} - K_{0}) = \ln K_{c} - K_{0}t)</td>
<td>مربوطه اول</td>
</tr>
<tr>
<td>((K_{c} - K_{0}) = K_{c} - K_{0}t)</td>
<td>مربوطه سفر</td>
</tr>
<tr>
<td>(K_{c} = a + b.\ln t)</td>
<td>الوریج ساده شده</td>
</tr>
<tr>
<td>(K_{c} / K_{m0} = a + b.\ln t)</td>
<td>انتشار هالولو</td>
</tr>
<tr>
<td>(\ln K_{c} = a + b.\ln t)</td>
<td>تابع نمایی</td>
</tr>
</tbody>
</table>

در این معادلات، \(K_{0} \) به ترتیب پتانسیل غیر تبادلی آزاد شده در زمان 1 و پتانسیل غیر تبادلی که در حال تعادل آزاد می‌شود (22).

شیمیایی کانی، جهت گزاره‌های هیدروکسیل ساختاری، منشا بار نیاز به استاندارد برآورده می‌شود.

ضریب سرعت آزاد شدن پتانسیل غیر تبادلی در معادله مربوطه: \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت و CECE و K کمترین ضریب سرعت در خاک شماره 4 با کمترین K کمترین آن در خاک شماره 1 با کمترین در صد ن یافته بوده است.

امکان تغییرات ضریب انتشار پتانسیل غیر تبادلی در معادله انتشار هالولو: \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت T. در مورد این معادله، نیز شیب معادله مربوطه اول پیش‌بینی در صد ن یافته بوده است.

امکان تغییرات ضریب انتشار در خاک شماره 4 با کمترین آن در خاک شماره 1 و جدید دارد. دانه تغییرات پتانسیل غیر تبادلی در معادله انتشار نمایی \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت می‌باشد.

ضریب سرعت آزاد شدن پتانسیل غیر تبادلی در معادله غیر تبادلی \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت می‌باشد.

امکان تغییرات پتانسیل غیر تبادلی در معادله غیر تبادلی \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت T. در مورد این معادله، نیز شیب معادله مربوطه اول پیش‌بینی نیست.

امکان تغییرات پتانسیل غیر تبادلی در معادله غیر تبادلی \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت T. در مورد این معادله، نیز شیب معادله مربوطه اول پیش‌بینی نیست.

امکان تغییرات پتانسیل غیر تبادلی در معادله غیر تبادلی \(10^{-3} \sim 10^{-2} \) میلی گرم در کیلو گرم بر ساعت T. در مورد این معادله، نیز شیب معادله مربوطه اول پیش‌بینی نیست.
جدول 3: ضرایب تشخیص و انتخاب استاندارد برآورده معادلات سرعت در حاکمیت مطالعه شده

<table>
<thead>
<tr>
<th>معادله تایم نمایی</th>
<th>معادله انتشار هذلولی</th>
<th>معادله الرویج</th>
<th>معادله مربوطه اول</th>
<th>معادله مربوطه دوم</th>
<th>معادله مربوطه سفر</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^1</td>
<td>SE</td>
<td>R^1</td>
<td>SE</td>
<td>R^1</td>
<td>SE</td>
<td>R^1</td>
</tr>
<tr>
<td>0.97</td>
<td>0.19</td>
<td>0.97</td>
<td>0.13</td>
<td>0.92</td>
<td>0.08</td>
<td>0.93</td>
</tr>
<tr>
<td>0.97</td>
<td>0.17</td>
<td>0.97</td>
<td>0.15</td>
<td>0.93</td>
<td>0.07</td>
<td>0.93</td>
</tr>
<tr>
<td>0.97</td>
<td>0.16</td>
<td>0.97</td>
<td>0.14</td>
<td>0.92</td>
<td>0.06</td>
<td>0.92</td>
</tr>
<tr>
<td>0.97</td>
<td>0.13</td>
<td>0.97</td>
<td>0.13</td>
<td>0.91</td>
<td>0.05</td>
<td>0.91</td>
</tr>
<tr>
<td>0.98</td>
<td>0.15</td>
<td>0.98</td>
<td>0.12</td>
<td>0.91</td>
<td>0.05</td>
<td>0.91</td>
</tr>
<tr>
<td>0.98</td>
<td>0.17</td>
<td>0.98</td>
<td>0.14</td>
<td>0.93</td>
<td>0.06</td>
<td>0.93</td>
</tr>
<tr>
<td>0.98</td>
<td>0.16</td>
<td>0.98</td>
<td>0.15</td>
<td>0.92</td>
<td>0.07</td>
<td>0.92</td>
</tr>
<tr>
<td>0.99</td>
<td>0.13</td>
<td>0.99</td>
<td>0.13</td>
<td>0.91</td>
<td>0.05</td>
<td>0.91</td>
</tr>
<tr>
<td>0.98</td>
<td>0.12</td>
<td>0.99</td>
<td>0.12</td>
<td>0.91</td>
<td>0.05</td>
<td>0.91</td>
</tr>
</tbody>
</table>
جدول ۲: ضرایب سرعت معادلات سنتیک در خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>معادله تابع نمایی</th>
<th>معادله انتشار هژوولوی</th>
<th>معادله مرتبه اول</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b \times 10^{-1})</td>
<td>(a)</td>
<td>(b \times 10^{-1})</td>
</tr>
<tr>
<td>۱/۲۹۷</td>
<td>۲/۸۷</td>
<td>۷/۸۶</td>
<td>۳/۷۵</td>
</tr>
<tr>
<td>۲/۸۶</td>
<td>۳/۸۸</td>
<td>۶/۰۹</td>
<td>۲/۸۶</td>
</tr>
<tr>
<td>۲/۹۹</td>
<td>۷/۸۹</td>
<td>۲/۹۹</td>
<td>۷/۸۹</td>
</tr>
<tr>
<td>۵/۳۴</td>
<td>۴/۳۴</td>
<td>۴/۳۴</td>
<td>۴/۳۴</td>
</tr>
<tr>
<td>۵/۶۶</td>
<td>۵/۶۶</td>
<td>۵/۶۶</td>
<td>۵/۶۶</td>
</tr>
<tr>
<td>۵/۹۴</td>
<td>۵/۹۴</td>
<td>۵/۹۴</td>
<td>۵/۹۴</td>
</tr>
<tr>
<td>۷/۳۲</td>
<td>۷/۳۲</td>
<td>۷/۳۲</td>
<td>۷/۳۲</td>
</tr>
<tr>
<td>۷/۵۰</td>
<td>۷/۵۰</td>
<td>۷/۵۰</td>
<td>۷/۵۰</td>
</tr>
<tr>
<td>۷/۶۷</td>
<td>۷/۶۷</td>
<td>۷/۶۷</td>
<td>۷/۶۷</td>
</tr>
<tr>
<td>۷/۸۹</td>
<td>۷/۸۹</td>
<td>۷/۸۹</td>
<td>۷/۸۹</td>
</tr>
<tr>
<td>۸/۰۸</td>
<td>۸/۰۸</td>
<td>۸/۰۸</td>
<td>۸/۰۸</td>
</tr>
<tr>
<td>۹/۰۰</td>
<td>۹/۰۰</td>
<td>۹/۰۰</td>
<td>۹/۰۰</td>
</tr>
<tr>
<td>۱۰/۰۱</td>
<td>۱۰/۰۱</td>
<td>۱۰/۰۱</td>
<td>۱۰/۰۱</td>
</tr>
</tbody>
</table>

نتایج این پژوهش نشان داد که ضریب سرعت آزاد شدن در معادله مرتبه اول همبستگی معنی داری با گناچایی تبادل کاتیونی \((r = 0.۶۳) \) درصد رس (۸۰% - ۶۵%) و درصد قربانی کلسیم داشت. ضریب سرعت آزاد شدن در معادله انتشار هژوولوی همبستگی معنی داری با گناچایی تبادل کاتیونی \((r = 0.۴۱) \) درصد رس (۸۰% - ۶۵%) و درصد قربانی کلسیم معادله (۸۰% - ۶۵%) داشت. همبستگی ضریب‌سرعت آزاد شدن در معادله تابع نمایی \((r = 0.۷۶) \) و درصد قربانی کلسیم معادله (۷۶% - ۸۰%) داشت.

نتایج تغییرات این پژوهش نشان داد که معادلات سنتیک مرتبه اول انتشار هژوولوی و تابع نمایی می‌تواند در توصیف آزاد شدن تبادلی به وسیله مدل شیشه‌ای رقیق استفاده شود.

پژوهش بر اثر تأثیر این معادلات با می‌شود.

سیاسازی

این پژوهش بخشی از یک طرح ملی می‌باشد که هزینه اجرای آن به وسیله معاونت محور پژوهشی وزارت علوم، تحصیلات و فناوری تأمین شده که بدنی وسیله تشکر و فردی می‌شود.

همچنین از سرگار خانم هدیه‌نیا هاشمیان که در انجام این پژوهش باید از جانب همکاری داشته‌اند، صمیمانه تشکر و فردی می‌شود.

نتایج
مباحث مورد استفاده

1. حسین پورع، م. کلیباسی و ح. خامدی. ۱۳۷۹. سرعت آزاد شدن پتاسیم غیر تبادلی از خاک و اجرای آن در تعدادی از خاک‌های
 گیلان. مجله علوم خاک و آب (۱۴۲) ۱۲۵-۱۳۳.

 Madison, WI.

 Methods of Soil Analysis. Part 3: chemical methods. SSSA, Madison, WI.

 central region soils of Iran.17th world congress of soil Sci. 14-21 August ,Bangkok, Thailand.

 Part 3: chemical methods. SSSA, Madison, WI.

 Methods of Soil Analysis. Part 3: chemical methods. SSSA, Madison, WI.

 Soil Analysis. Part 3: chemical methods. SSSA, Madison, WI.

25. Sparks, D. L. and P. M. Jardine. 1984. Comparison of kinetics equation to describe potassium-Calcium exchange in
 pure and in mixed system. Soil Sci. 138: 115-122.

 Methods of Soil Analysis. Part 3: chemical methods. SSSA. Madison, WI.