کاربرد معادلات سینتیک در توصیف سرعت آزاد شدن پتاسیم غیر تبادلی
در شماری از خاک‌های همدان

علي‌رضا حسین‌پور¹

چکیده

اعضای درمانی سرعت آزاد شدن پتاسیم غیر تبادلی در خاک‌های همدان محرور است. هدف این پژوهش کاربرد معادلات سینتیک در بررسی سرعت آزاد شدن پتاسیم غیر تبادلی در تعدادی از خاک‌های استان همدان به وسیله عضو‌گیری مرحله‌ای با استفاده از استد سیتروئک را توضیح دهد ضروری است. برای به دست آوردن معادله سرعت دانستن غلظت واکنش دهنده‌ها، معادله استکومتری و مکانیسم‌های محلول‌زا و جزیره‌زا استفاده می‌کنیم. معادله سرعت به صورت زیر بیان می‌شود (۲۴).

\[\frac{d[i]}{dt} = K[A]^a \times \{B\}^b \]

که در این معادله:

[۱] مقدمه

در این مطالعه بررسی سرعت و اکتشافات شیمیایی در خاک عبارتند از: انف، پیش بینی این که در کارکرد چه سرعتی به تعادل یا شبه تعادل می‌رسد و (ب) پیش بینی مکانیسم واکنش‌ها. برای فهم کامل سنتیک و اکتشافات شیمیایی خاک، دانستن معادله سرعت به قانون سرعت که

¹ استادیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
از تحقیقات معادله الکترین توسط واقعیت و اکتشافات
پاناسیم استفاده شده است. (9) (7) (4) (2) (20). در بررسی
انجام شده به وسیله مدل اول و اولین بنک (15) آزاد شدن پاناسیم
بين لحاظ با استفاده از تکنیک الکتروافلامیون از معادله
الکترین پیوست. لیبر و ناوار(12) دریافتند که آزاد شدن
پاناسیم تایید در حلال (1) میلی مولار کاری کلی از معادله
الکترین پیوست. هاولین و همکاران (6) در مطالعه آزاد شدن
پاناسیم غیر تبادلی از خاکهای آهکی در یلدانه که در زمان کمتر
از 1000 ساعت استفاده الکترین می یوندا در دادهها برآورش شود.
همچنین معادله الکترین چگونگی آزاد شدن پاناسیم غیر تبادلی
در بررسی انجام شده به وسیله کلاکس و جورج (6) را توصیف
کرد. در بررسی رحمت(6، 7) (25) پیشنهاد آزاد شدن
پاناسیم غیر تبادلی به وسیله رژیم تبادل کاتانی با معادله الکترین
توصیف شد. معادله انتشار هیدولوژی برای توصیف آزاد شدن
شكل‌های مختلف و پاناسیم غیر تبادلی در رسه‌های خاک به
طرور رضایت بخش استفاده شده است. (7، 26، 21، 15، 14، 13، 12،
20 و 21). بی‌کیکی از اشکالات استفاده از معادله هیدولوژی در
سیستم‌های خاک ممکن است تفسیرهای متافیزیکی از پارامتر
شبب باشد. همچنین تعدادی از محققین معادله تابع نمایی را در
توجه می‌اندازند پاناسیم غیر تبادلی از خاک به کار برده‌اند (14، 13، 12، 11،
10، 9 و 8). در حال حاضر در مورد سرعت آزاد شدن پاناسیم
غیر تبادلی در خاک‌های هیدمان مطالعات زیادی انجام شده
است. این پژوهش با اهداف زیر انجام شده بود:
1. کاربرد سنتیکی معادلات سیستمیکی در توصیف آزاد شدن پاناسیم غیر
تبادلی به وسیله سیستمیک
2. بررسی هم پیشگی ضرایب سرعت آزاد شدن معادلات
سیستمیکی خاص خصوصیات خاک

مواد و روش‌ها
این پژوهش از 10 نمونه از خاک‌های استان همدان انجام شد.
نمونه‌ها از عمق 30-100 سانتی‌متر برداشت که پس از نقل به
آزمایشگاه در هوا آزاد خشک و برای انجام آزمایش‌های

برای مواد ترکیب شونده به طور مجزا (مرتبه جزئی واکنش). سرعت واکنش‌ها در خاک و در سنگ‌مایه زندگی همیشه به
رها و واکنش‌ها دارد. اندازه‌گیری‌های آزمایشگاهی با
میرا تعیین ماکم‌های یکپارچه. هر گونه داشته شود. به علت اینکه فقط اثرات یکی با
بعضی از متفاوت‌ها قابل اندازه‌گیری سرعت واکنش به
طرور نانو توصیف شده و مرتبه واکنش در واقع شده می‌باشد. این است. واژه مسئولین‌مان به کمی ارزش را در احساس‌ها می‌دهد.
ولی در اینجا فقط بدن می‌کنیم که سیستم مربوط به
اندازه‌گیری کاملاً به پیچیده است. (25 و 26).
فیزیکی و شیمیایی از اکل ۲ میلی‌متری عبور داده شدند.

بافت خاک شامل بافت خاکی به روش بیت (۶) در عصاره‌های ۲/۱ محلول با خاک (محلول کریک سیستم pH ۱/۱۰ مولار)، خاک‌هایی هیدرات‌کرکی در عصاره ۲/۰ آب مفید به خاک (۱۹) ماده آلی با روش اکسایسکرسیز (۱۹) و نامی‌یابی تیاتر کانی‌های خاکی با روش استاتس سیدیم (۲۰) در محلول در عصاره ۲/۱ آب مفید به خاک تیجین گردید (۹). همچنین تیاتر خاکی غیر تیاتریک مولار جوشن عصاره‌گری شد (۲۱)。

بررسی سرعت آزاد شدن پتامیس غیر تیاتریک به روش عصاره‌گری متوازن به سیستمی به فسفات به گلف توریست در ۱۰ میلی‌متری یک نیمگام بیشتر شود از آزاد شدن پتامیس غیر تیاتریک چکلی‌گری خواهد کرد (۲۲)، به‌نابراین برای چکلی‌گری از این عمل از عصاره‌گری متوازن استفاده شد و در فواصل زمانی ۲۴، ۴۸ و ۷۲ ساعت نتایج آن گرفته شد. در این‌جا به ذکر این اک نگه‌داشته خاک‌های برسی به روش کریک سیستم pH ۱/۱۰ مولار انجام شد (۲۲). به‌نابراین این مقدار را تا ۲۵ میلی‌متری یک نیمگام بیشتر گردید. سپس پس اسید سیستمی به فسفات به گلف توریست به گلف توریست و محلول روبی جمع آوری گردید. سپس ۲۵ میلی لیتر اسید سیستمی به فسفات به گلف توریست به گلف توریست نش اک نگه‌داشته خاک‌های صاف شده به روش ظرف سینی برد یک نیمگام به تیجین گردید. سپس مدل‌های سیستمی مرتبه صفر، مرتبه اول و معدنی پخش هدف‌نامه و ماده‌دان نمایی و معدنی رویچ را بر مقدار پتامیس غیر تیاتریک آزاد شده برای تیجین به خاکی و انتهای رهایی، سازگاری باعث اقتصاد پتامیس به تیجین گردید. این‌ها با ماهیت‌های پیش‌ترین پیش‌ترین تحقیق کنید.
جدول 1. خصوصیات فیزیکی و شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>محل نمونه</th>
<th>بر داری</th>
<th>نمونه</th>
<th>کاتانی</th>
<th>الکتریکی</th>
<th>پ - هاش</th>
<th>کیفیت هدایت</th>
<th>پنبه</th>
<th>دربش هدایت</th>
<th>کردن آلی</th>
<th>کلسیم معادل رس</th>
<th>شدن</th>
<th>رس</th>
<th>پن‌ها</th>
<th>کلسیم غیر تبدیل</th>
<th>کلسیم غیر تبدیل</th>
<th>کلسیم غیر تبدیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>امام زاده کوه</td>
<td>2.88</td>
<td>119</td>
<td>257/0</td>
<td>5/0</td>
<td>0/0</td>
<td>0/0</td>
<td>110</td>
<td>11/0/0</td>
<td>16/5/0</td>
<td>6/4/0</td>
<td>3/2/0</td>
<td>522</td>
<td>4/0</td>
<td>2/0/0</td>
<td>4/0/0</td>
<td>2/0/0</td>
</tr>
<tr>
<td>2</td>
<td>گل نیا</td>
<td>3/02</td>
<td>230</td>
<td>240/5</td>
<td>2/0</td>
<td>3/0</td>
<td>6/0</td>
<td>0/0</td>
<td>6/0</td>
<td>6/8/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>دیس ابلد</td>
<td>3/02</td>
<td>337</td>
<td>17/1/5</td>
<td>3/2</td>
<td>1/1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>حسام آباد</td>
<td>5/79</td>
<td>293</td>
<td>39/5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>حیدرآباد</td>
<td>2/88</td>
<td>216</td>
<td>37/5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>6</td>
<td>پاسی راه همدان</td>
<td>1/38</td>
<td>387</td>
<td>19/1/5</td>
<td>1/1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>7</td>
<td>اول جاده قامیش</td>
<td>3/0</td>
<td>214</td>
<td>15/5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>8</td>
<td>قامیش</td>
<td>1/09</td>
<td>238</td>
<td>47/5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>9</td>
<td>فرامین</td>
<td>0/51</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>10</td>
<td>کورچن‌چن</td>
<td>0/91</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>
کاربرد معادلات سیمیک در توصیف سرعت آزاد شدن پتاسیم غیر تبادلی...

![نمودار 1: پتاسیم غیر تبادلی آزاد شده به عنوان تابعی از زمان در خاک‌های مختلف مطالعه شده](image)

شکل 1. پتاسیم غیر تبادلی آزاد شده به عنوان تابعی از زمان در مراحل اولیه عصاره‌گیری در خاک‌ها متفاوت می‌باشد. به طوری که 168 ساعت پس از شروع آزمایش به تبادلی مقدار پتاسیم غیر تبادلی از خاک شماره 1۰ و کمترین آن از خاک شماره ۲ آزاد شد.

عملکرد بر نفوذ پتاسیم غیر تبادلی آزاد شده در مراحل اولیه مقدار پتاسیم غیر تبادلی آزاد شده در مراحل بعدی نیز متفاوت است، به طوری که بیشترین کمترین مقدار پتاسیم غیر تبادلی پس از ۲۵۰۰ ساعت از خاک شماره ۲ و خاک شماره ۳ آزاد شد. (جدول ۱) نتایج تجزیه‌های آماری نشان داد که پتاسیم غیر تبادلی آزاد پس از ۵۰۰ ساعت هم‌سانتی متری دارای چاپ پتاسیم غیر تبادلی خاک‌های (۹۸/۵٪) گنجایش تبادل

ادامه می‌باشد. مقدار پتاسیم غیر تبادلی آزاد شده در مراحل اولیه

شکل 1. پتاسیم غیر تبادلی آزاد شده به عنوان تابعی از زمان در خاک‌های مختلف مطالعه شده

![نمودار 2: نمودار نشان دهنده مقدار پتاسیم غیر تبادلی آزاد شده در مراحل اولیه و بعدی](image)

نحوه مشابه آزاد شدن پتاسیم غیر تبادلی در خاک‌ها با استفاده از روش‌های شیمیایی مانند تشریفات برای سیدیم (۲)، رژیم تبادل کاتیونی (۳)، و استفاده به‌طور آزمایش‌هایی از آزاد شدن سریع اولیه پتاسیم را به آزاد شدن پتاسیم لیثی و آزاد شدن کالسیر را به آزاد شدن پتاسیم بین لایه‌ای نسبت داده‌اند.

عوامل زیادی بر آزاد شدن پتاسیم غیر تبادلی تأثیر دارند. خصوصیات کانی‌های حاره پتاسیم که نقش مهمی در آزاد کردن پتاسیم غیر تبادلی دارند شامل ساختارهای بلور و ترکیب

89
شیمیایی کانالی، جهت گیری هیدروکسیل سامتیک، منشا بار
لایهای، درجه تخلیه کانال از نتایج و تغییر پارامترهای در
کانال هامست(23). به دلیل تغییر در صدای رس و سیبیت و
همچنین تفاوت نوع و مقدار کانال های رسی در پشت سیبیت و
رس خاک‌های برسی شده، مقدار نتایج غیر تبادلی آزاد شده
در خاک‌های منفعت دار می‌باشد. در این رابطه، برای تغییر نوع
کانال های رس در خاک‌ها، به تحقیقات بشری نیاز است.

جدول 1: معادلات سنی‌تیکی استفاده شده.

<table>
<thead>
<tr>
<th>معادله</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[\ln(K_c - K_s) = \ln K_w - K_c t]</td>
<td>مرتبهٔ اول</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[(K_c - K_s) = K_w - K_c t]</td>
<td>مرتبهٔ مرتفع</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[\text{این چیپ گرافیک ساختاری و همچنین تفاوت نوع و مقدار کانال‌های رسی در پشت سیبیت و رس خاک‌های برسی شده، مقدار نتایج غیر تبادلی آزاد شده در خاک‌های منفعت دار می‌باشد. در این رابطه، برای تغییر نوع کانال‌های رس در خاک‌ها، به تحقیقات بشری نیاز است.}</td>
<td></td>
</tr>
</tbody>
</table>

شیمیایی کانالی، جهت گیری هیدروکسیل سامتیک، منشا بار
لایهای، درجه تخلیه کانال از نتایج و تغییر پارامترهای در
کانال هامست(23). به دلیل تغییر در صدای رس و سیبیت و
همچنین تفاوت نوع و مقدار کانال‌های رسی در پشت سیبیت و
رس خاک‌های برسی شده، مقدار نتایج غیر تبادلی آزاد شده
در خاک‌های منفعت دار می‌باشد. در این رابطه، برای تغییر نوع
کانال‌های رس در خاک‌ها، به تحقیقات بشری نیاز است.

مدل سنی‌تیکی
پنج مدل سنی‌تیکی برای تشریح سرعت آزاد سرعت آزاد شدن پتاسیم غیر تبادلی استفاده شده(جدول 2). ضرایب تنش و تغییرات
استفاده‌بردار و معادلات سنی‌تیکی توسط تشریح سرعت آزاد
شن پتاسیم غیر تبادلی در جدول 3 آورده شده است. معادلات
که سرعت آزاد شدن پتاسیم غیر تبادلی را توضیح می‌دهند بر
اساس ضرایب تنش و انتخاب استفاده‌بردار برور، انتخاب
می‌شوند. به علاوه دیگر معادلاتی که ضریب تنشیک بالا و
اشتیاب استفاده‌بردار بر آورد کم داشته باشند به عنوان معادلاتی که
سرعت آزاد شدن پتاسیم غیر تبادلی را بهتر توصیف می‌کند.

مقدمه
با توجه به جدول 2 معادل‌های الیوت به دلیل قابلیت بودن ضریب
تشخیص و معادله‌های صفر علی‌رغم بالا بودن ضریب
تشخیص به دلیل بالا بودن انتخاب استفاده‌بردار برور، می‌تواند
آزاد شدن پتاسیم غیر تبادلی از خاک‌های برسی شده را
تویض کند. در حالی که معادلات استقرار هیدروکسیل، تابع نمایی
و مرتبهٔ اول به دلیل نبا بودن ضرایب تنشیک و کم بودن

90
جدول ۳: ضرایب ت تشخیص و اشتیاک استاندارد پرآورده معادلات سرعت در خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره هرکل</th>
<th>معادله روبرو</th>
<th>معادله مربوطه اول</th>
<th>معادله مربوطه اول</th>
<th>معادله متغیرهای</th>
<th>معادله متغیرهای</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R¹</td>
<td>SE</td>
<td>R¹</td>
<td>SE</td>
<td>R¹</td>
</tr>
<tr>
<td>1</td>
<td>0/97</td>
<td>0/12</td>
<td>0/97</td>
<td>0/33</td>
<td>0/97</td>
</tr>
<tr>
<td>2</td>
<td>0/97</td>
<td>0/77</td>
<td>0/97</td>
<td>0/59</td>
<td>0/97</td>
</tr>
<tr>
<td>3</td>
<td>0/97</td>
<td>0/16</td>
<td>0/97</td>
<td>0/56</td>
<td>0/97</td>
</tr>
<tr>
<td>4</td>
<td>0/88</td>
<td>0/18</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>5</td>
<td>0/88</td>
<td>0/13</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>6</td>
<td>0/88</td>
<td>0/16</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>7</td>
<td>0/88</td>
<td>0/17</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>8</td>
<td>0/88</td>
<td>0/21</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>9</td>
<td>0/88</td>
<td>0/18</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
<tr>
<td>10</td>
<td>0/88</td>
<td>0/13</td>
<td>0/88</td>
<td>0/56</td>
<td>0/88</td>
</tr>
</tbody>
</table>
جدول 2: ضرایب سرعت معادلات سیستمی در خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>معادله مربوطه اول</th>
<th>معادله انتشار هدولولی</th>
<th>معادله تابع نمایی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b x 10^-6</td>
<td>a</td>
<td>b x 10^{-6}</td>
</tr>
<tr>
<td>2/61</td>
<td>2/97</td>
<td>1/7</td>
<td>2/66</td>
</tr>
<tr>
<td>2/69</td>
<td>2/97</td>
<td>1/1</td>
<td>6/89</td>
</tr>
<tr>
<td>4/67</td>
<td>2/33</td>
<td>10/2</td>
<td>2/63</td>
</tr>
<tr>
<td>4/74</td>
<td>3/44</td>
<td>10/6</td>
<td>1/33</td>
</tr>
<tr>
<td>3/22</td>
<td>3/50</td>
<td>8/3</td>
<td>5/9</td>
</tr>
<tr>
<td>3/57</td>
<td>4/66</td>
<td>1/0</td>
<td>4/1</td>
</tr>
<tr>
<td>3/22</td>
<td>3/50</td>
<td>8/3</td>
<td>5/9</td>
</tr>
<tr>
<td>3/22</td>
<td>3/22</td>
<td>7/7</td>
<td>2/46</td>
</tr>
<tr>
<td>3/22</td>
<td>3/22</td>
<td>7/7</td>
<td>2/46</td>
</tr>
</tbody>
</table>

نتایج این پژوهش نشان داد که ضریب سرعت آزاد شدن در معادله مربوطه اول همیستگی معنی‌داری با گنجایش تبدیل کانونی (9/63) درصد رس (2/76) و درصد کربنات کلسیم داشت. ضریب سرعت آزاد شدن در معادله انتشار هدلونولی همیستگی معنی‌داری با گنجایش تبدیل کانونی (9/63) درصد رس (2/76) و درصد کربنات کلسیم داشت. همچنین ضریب سرعت آزاد شدن در معادله تابع نمایی همیستگی معنی‌داری با 2/46 درصد رس (2/76) و درصد کربنات کلسیم داشت. تظاهرات این پژوهش بخشی از یک طرح ملی می‌باشد که هزینه اجرای آن به وسیله معاونان محترم پژوهشی وزارت علوم و تحقیقات و فناوری تأمین شده که باید به وسیله تکمیلی و قدردانی می‌شود. همچنین از سرگرم خانم مهندس ندا هاشمیان که در انجام این پژوهش باید از جانب همکاران داشته باشد، صمیمیت تکمیلی و قدردانی می‌شود.

می‌شود:

پیشگاهی:

نتایج این پژوهش نشان داد که معادلات سیستمی مربوطه اول، انتشار هدلونولی و تابع نمایی می‌تواند در توصیف آزاد شدن پتاسیم غیر تبادلی به وسیله سیستم رقت استفاده شود. همچنین ضرایب سرعت براورد شده به وسیله این معادلات با
مباحث مورد استفاده

1. حسین پورع، م. کلیسی، و ح. خادمی. ۱۳۷۸. سرعت آزاد شدن پتاسیم غیر تبادلی از خاک و اجرای آن در تعدادی از خاکهای گیلان. مجله علوم خاک و آب (۲۳): ۹۹-۱۱۳.

