اثرات روش‌های مختلف تهیه بستر بر رشد رویشی، عملکرد و اجزاء عملکرد ماش

پرضا جمشیدیان و محمدضاوی خواجه‌پور

چکیده
محدودیت زمان برای پیوستن قبایل محصول قابل و انجام عملیات کامل تهیه بستر در کشت مضاعف، سبب ضرورت کاهش خاک‌پزی و بروز مشکلات مرتبط با آن می‌گردد. از آنجایی‌که در ارتباط با سایر تهیه بستر در کشت مراحل عملیات اطلاعاتی در دست نبود، اثرات روش‌های مختلف تهیه بستر در کشت مراحل کاشت می‌باشد. در این مطالعه، عملکرد و اجزاء عملکرد ماش در آزمایش‌های خاکی و خاک‌پزی، با صرف‌جویی در زمان (5)، انرژی و هزینه‌های تولید (5) و

واژه‌های کلیدی - بستر، ماش، رشد رویشی، اجزاء عملکرد، عملکرد دانه

مقدمه
در شرایط کشت مضاعف، استفاده از روش‌های کاهش عملیات خاک‌پزی نسبت به روش معمول خاک‌پزی به همراه صرف‌جویی در زمان (5)، انرژی و هزینه‌های تولید (5) و

13) افزایش و حفظ ذخیره رطوبی خاک، بخصوص در شرایط دم (8 و 10 و 18) و کاهش فرسایش خاک (4، 5 و 10 و 13) ارجحیت بیش‌تری دارد (19). این امتیازات موجب شده است تا

* - بهترین دانشجوی سایر کلاس‌شناسی ارشد زراعت و داشتن‌گره، تخصص زراعت، اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

Downloaded from jshar.tul.ac.ir at 3:48 IRST on Friday December 7th 2018
سیستم‌های مختلف کاشت عمليات خاک‌ورزی از قبیل شام - کاشت خاک‌ورزی کاوشک‌ها - کاشت، دیسک - کاشت و کشت بدون خاک‌ورزی مورد نظر قرار گرفته است. (5) کاشت خاک‌ورزی و عدم فرصت برای پویش‌گیری بقاها محصول به به شکل‌گونه‌ای مانند تراکم خاک (6)، تداخل بقاها گیاهی در استقرار محصول (4) و (8) افزایش غلظت فنوتکسیا (3) و (5) و (17) در تقسیم عناصر خاک (16) و (21) و کاهش مقدار گسترش ریشه (16) و (18) هم‌هم می‌باشد. شدت این مسئله و کارایی نسبی روشهای خاک‌ورزی به خصوص مکانیزه لطیفی در تناوب و نحوه کاهش آن بتواند بزودی بسگرگد و بازدید آن در مناطق مختلف یکسان تنیست (5) و (6).

سپاس از اثرات نامطلوب روشهای کاشت خاک‌ورزی را بر استقرار گیاه و تراکم بیوئی (6) و (12) (27) افزایش مطلوب تریک متحم و توسعه خاک‌گیاه (3) و (13) نشان داده است. در حالی که در مطالعات کالاتر (11) (12) و (19) روشهای مختلف همبستگی بیشتر ارتفاع و میزان آب خاک تولید یا در سه میلی‌متر می‌باشد. میزان این تأثیر در مورد اثرات روشهای مختلف خاک‌ورزی بر عملکرد گیاهان نیز در تحقیقات است. (11) بر پرونده نمونه‌ها در سیستم‌های خاک‌ورزی می‌باشد و در مقایسه با خاک‌ورزی از طریق کشت‌های نواری، در قابلیت یکپارچه کامل تغذیه ارشد تامین گیاهان به دو سطح سوزاند و در قابلیت ارائه کردن خاک‌ورزی و روش‌های نیست که کاشت در جهان زیر اجرا گردیده‌اند: (1) گذاشتن دو کودپاشی با دست - دیسک سطحی - آبیاری (تیمار عدم خاک‌ورزی) (2) آبیاری - کودپاشی - دیسک به عمق 15 سانتی‌متر - کشت خنثی با دست - آبیاری (تیمار دیسک) و (3) آبیاری - کودپاشی - خشحشی 5 به عمق 10 سانتی‌متر - کشت خنثی با دست - آبیاری (تیمار خشحشی) و (4) آبیاری - گاوهای بگردن بادار به عمق 20 سانتی‌متر - کودپاشی.

1 - Plow-plant 2 - Till-planting 3 - Disker-seeder 4 - No-till planting

- 5 نوع‌گاو‌های قلمی که در اصفهان ساخته می‌شود.
کشت خطي با دست - آبیاری (تیمار گاوآمیگی برگداندار)

تیمار پایه‌گذاری گیاهی در کرته‌های با ابعاد 16×12 متر اعمال گردید. پس از یک‌ماه کاشت نرمال، گیاه در سطح خاک، عمل سوزاندن نیازی به شعله‌های زیر داشت و با دقت کامل صورت گرفت.

بعد از اتمام آبیاری، تیمار‌های مورد نظر و گازور شدن زمین، روش‌های مختلف خاک‌رزي در کرته‌های با ابعاد 24×12 متر به اجرای آنها در میان 13 کیلوگرم در هکتار (به فرم اوره با 44% نیترات) و صورت پرداختن به کرتشی اضافه گردید. علاوه بر مقدار نیتروژن، با احتمال 7 تیم‌گاهی گیاهی در هکتار، ضرب تیم‌گاهی نیتروژن توسط بیش‌ترین گیاهی پرای 1 و 19/19 مقدار نیتروژن از راه جویان آلی آمدان آن محاسبه و همچنین با کوریسیم به تیمارهای حفظ بیانی اضافه گردید.

هر کرت فرعي (به استثناء کرتشی) تیماری عمد خاک‌رزي

شامل هشت ریف که کاشت به فاصله 30 سانتیمتر در طول 10 متر بود. هر کشت با احتمال تراکم 55 درصد در میان، و با توجه به 95% گیاه‌زنی بوده‌ای، مقدار تقریبی 7 گرم بذر کشت بدست آمده‌ای (این آزمایش 16-17) در روز یکم کاشت به طور یک‌ماهی توزیع گردید. در تیمار تعداد خاک‌رزي را اساس مساحت هر کرت (حدود 40 متر مربع)، مقدار 100 گرم بذر ماس توزین و به طور تقریبی یک‌ماهی توزیع در مساحت زمین پخش گردید. آب‌بردهای پس از استقرار گیاه بر اساس 70 لیتریمیتر یک تیک بکلاس A (مستقر در مرکز) به عمل آمد. این تعداد علوفه‌های هر دست و در باز در نیمه اول فصل‌های انجام شد.

به منظور تخمین اثرات تیمارهای آزمایشی بر استقرار بیو‌ها، عدد بودن در کرت از متر مربع از ابتدای ریف‌های کاشت، سوم و چهارم هر روز با رایت‌های ماهیتی در 22 روز از کاشت شمارد. بیو‌های واقع در همه‌میان 29 رد و پس از کاشت (آغاز ریف‌های اول‌یازمان) از سطح خاک پرداخت شد و قسمت‌های نهایی بیو‌ها به تکثیر پرداخت. به‌کارگیری، ساقه و خنثی پس از...
رویش گیاه و تجمیع ماده خشک در واحد سطح داشته است. در این دمیده نتایج مشابهی توسط دیگران (18، 22 و 24) نیز گزارش شده است.

تعداد ساقه فرعی در بوته به طور معنی‌داری تحت تأثیر عوامل آزمایش قرار گرفت. تعداد ساقه فرعی در تیمار حفظ بقایای محیطی (2) بهبودی یافت. در سایر تیمارهای خشک‌پز و عدم خاک‌وروزی، تعداد ساقه فرعی بهبودی در بوته نسبت به تیمارهای گاوانی برگداندار و دیسک تولید شد (جدول 7). افزایش تعداد ساقه فرعی و عدم خاک‌وروزی می‌توان نتیجه کاهش تراکم بوته به درجه سطحی (جدول 1) را کاهش دهد (16، 22 و 23). نیز این یافته‌ها متقاطع می‌باشند. همچنین، تاثیر آب‌سازی قبل از کاشت در تعداد ساقه فرعی در کارکرد آب به عمل انجامید. همچنین، در نمونه‌های آب‌سازی، استقرار نامطلوب گیاهان نسبت به سایر روش‌های خاک‌وروزی اثر شبیه‌کننده‌ای داشته است.

 وزن خشک بذر، ساوانگ، غلاف و کل اندازه‌های هر آن را به‌طور معنی‌داری تحت تأثیر تیمار بقایای و عملهای خاک‌وروزی قرار گرفت. وزن خشک بذر، ساوانگ، غلاف و کل اندازه‌های هر آن را به‌طور معنی‌داری تحت تأثیر تیمار حفظ بقایای محیطی (2) را کاهش دید (جدول 1). ظاهراً تراکم بوته بهبودی به دلیل استقرار بی‌درمانی در روش سوزاندن بقایای بوته (جدول 9) در نمونه تولید می‌شود. در این تیمار شده است (21 و 22). احتمالاً فراهم‌یافتن بیشتر عنصر غذاشی معنی‌داری خشک و میوه‌شکنی در ایجاد فصل رشد در تیمار سوزاندن بقایای (1) نسبت به بوته دراین روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) نسبت به بوته درایn روش و در تیمار خاک‌وروزی (جدول 1) N

12
جدول ۱ - تأثیر عوامل آزمایشی بر تراکم بوته در ۲۲ روز پس از کاشت و وزن خشک بوته، ساقه، غلاف و کل اندازه هواپی در ۷۹ روز پس از کاشت

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>بقایای گیاهی</th>
<th>سوختن بقایا</th>
<th>حفظ بقایا</th>
<th>خاک ورژی</th>
<th>کاواهن برگداندار</th>
<th>دیسک</th>
<th>خیشچی</th>
<th>عدم خاک ورژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بقایای گیاهی</td>
<td>۷۰۱ a</td>
<td>۲۱۸ a</td>
<td>۱۶۶ a</td>
<td>۲۱۵ a</td>
<td>۴۹ / ۲ a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سوختن بقایا</td>
<td>۵۸۱ b</td>
<td>۱۷۳ b</td>
<td>۱۷ b</td>
<td>۲۸۴ b</td>
<td>۴۹ / ۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>حفظ بقایا</td>
<td>۲۰۰ a</td>
<td>۱۶۴ a</td>
<td>۱۶۴ a</td>
<td>۳۱۹ a</td>
<td>۵۱ / ۵ a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خاک ورژی</td>
<td>۱۸۷ a</td>
<td>۱۶۷ a</td>
<td>۱۶۷ a</td>
<td>۲۸۴ b</td>
<td>۵۱ / ۱ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عدم خاک ورژی</td>
<td>۳۲۵ a</td>
<td>۱۸۸ a</td>
<td>۱۵۹ ab</td>
<td>۱۸۷ b</td>
<td>۴۸ / ۵ b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاواهن برگداندار</td>
<td>۳۲۵ c</td>
<td>۱۸۸ c</td>
<td>۱۸۸ c</td>
<td>۲۴۰ c</td>
<td>۷۳ / ۰ c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک مستند قرار می‌گیرد، تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% معنی‌دار نیست.

جدول ۲ - تأثیر عوامل آزمایشی بر تعداد ساقه فرعی، تعداد گره در ساقه، ساقه‌های فرعی و ارتفاع بوته

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>تعداد ساقه</th>
<th>تعداد گره در ساقه</th>
<th>تعداد ساقه‌های فرعی</th>
<th>ارتفاع بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>بقایای گیاهی</td>
<td>۷۹ / ۹ a</td>
<td>۳ / ۶۹ a</td>
<td>۹ / ۵۲ a</td>
<td>۲ / ۵۲ b</td>
</tr>
<tr>
<td>سوختن بقایا</td>
<td>۶۸ / ۷ b</td>
<td>۳ / ۶۹ b</td>
<td>۹ / ۵۲ a</td>
<td>۲ / ۶۲ a</td>
</tr>
<tr>
<td>حفظ بقایا</td>
<td>۷۰ / ۸ a</td>
<td>۴ / ۹۲ a</td>
<td>۹ / ۵۲ a</td>
<td>۲ / ۶۲ a</td>
</tr>
<tr>
<td>خاک ورژی</td>
<td>۶۸ / ۸ a</td>
<td>۴ / ۹۲ a</td>
<td>۹ / ۵۲ a</td>
<td>۲ / ۶۲ a</td>
</tr>
<tr>
<td>عدم خاک ورژی</td>
<td>۶۹ / ۸ a</td>
<td>۴ / ۹۲ a</td>
<td>۹ / ۵۲ a</td>
<td>۲ / ۶۲ a</td>
</tr>
</tbody>
</table>

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک مستند قرار می‌گیرد، تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% معنی‌دار نیست.

۱۳
عند ذکر، مثلاً، روش سوزاندن بقایای (1)، نقش موقتی در بهبود رشد رویش و افزایش ارتفاع بوته داشته است. ارتفاع بوته تحت تأثیر معنی‌داری بیشتری از تعداد غلاف دارد. بطور معنی‌داری تأثیر می‌کند. نیز رشد اندام‌های خاکورزی (1) و احتمالاً افزایش عمق نرم و توسعه رشته‌ها در خاک، نقش موقتی در افزایش رویش و ارتفاع گیاهان داشته است. پژوهشگران دیگر (6 و 22) نیز رشد اندام‌های هواپیا را تأثیبی از رشد ریشه‌ها در خاک دانسته و معناداری که با افزایش عملیات بیکاری و رشد رویش گیاه بهبود پیدا می‌کند. نظر به آن که طول ساقه حاضر ضرب تعداد گره در طول میانگیر است، نتایج آن که طول ساقه اصلی در روش حفظ بقایای گیاهی و تیمارهای خشیچی و عدم خاکورزی، با توجه به نتایج تعداد غلاف در ساقه اصلی (جدول 2) می‌تواند به کاهش میانگیر در ساقه اصلی مربوط باشد.

تعداد غلاف در ساقه اصلی و ساقه‌های فرعی تحت تأثیر معنی‌دار در تیمارهای بقایای و خاکورزی قرار گرفته، تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌دار باقی می‌ماند. تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌داری بیشتری از تعداد غلاف دارد. بطور معنی‌داری تأثیر می‌کند. نیز رشد اندام‌های خاکورزی (1) و احتمالاً افزایش عمق نرم و توسعه رشته‌ها در خاک، نقش موقتی در افزایش رویش و ارتفاع گیاهان داشته است. پژوهشگران دیگر (6 و 22) نیز رشد اندام‌های هواپیا را تأثیبی از رشد ریشه‌ها در خاک دانسته و معناداری که با افزایش عملیات بیکاری و رشد رویش گیاه بهبود پیدا می‌کند. نظر به آن که طول ساقه حاضر ضرب تعداد گره در طول میانگیر است، نتایج آن که طول ساقه اصلی در روش حفظ بقایای گیاهی و تیمارهای خشیچی و عدم خاکورزی، با توجه به نتایج تعداد غلاف در ساقه اصلی (جدول 2) می‌تواند به کاهش میانگیر در ساقه اصلی مربوط باشد.

تعداد غلاف در ساقه اصلی و ساقه‌های فرعی تحت تأثیر معنی‌دار در تیمارهای بقایای و خاکورزی قرار گرفته، تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌دار باقی می‌ماند. تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌داری بیشتری از تعداد غلاف دارد. بطور معنی‌داری تأثیر می‌کند. نیز رشد اندام‌های خاکورزی (1) و احتمالاً افزایش عمق نرم و توسعه رشته‌ها در خاک، نقش موقتی در افزایش رویش و ارتفاع گیاهان داشته است. پژوهشگران دیگر (6 و 22) نیز رشد اندام‌های هواپیا را تأثیبی از رشد ریشه‌ها در خاک دانسته و معناداری که با افزایش عملیات بیکاری و رشد رویش گیاه بهبود پیدا می‌کند. نظر به آن که طول ساقه حاضر ضرب تعداد گره در طول میانگیر است، نتایج آن که طول ساقه اصلی در روش حفظ بقایای گیاهی و تیمارهای خشیچی و عدم خاکورزی، با توجه به نتایج تعداد غلاف در ساقه اصلی (جدول 2) می‌تواند به کاهش میانگیر در ساقه اصلی مربوط باشد.

تعداد غلاف در ساقه اصلی و ساقه‌های فرعی تحت تأثیر معنی‌دار در تیمارهای بقایای و خاکورزی قرار گرفته، تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌دار باقی می‌ماند. تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌داری بیشتری از تعداد غلاف دارد. بطور معنی‌داری تأثیر می‌کند. نیز رشد اندام‌های خاکورزی (1) و احتمالاً افزایش عمق نرم و توسعه رشته‌ها در خاک، نقش موقتی در افزایش رویش و ارتفاع گیاهان داشته است. پژوهشگران دیگر (6 و 22) نیز رشد اندам‌های هواپیا را تأثیبی از رشد ریشه‌ها در خاک دانسته و معناداری که با افزایش عملیات بیکاری و رشد رویش گیاه بهبود پیدا می‌کند. نظر به آن که طول ساقه حاضر ضرب تعداد گره در طول میانگیر است، نتایج آن که طول ساقه اصلی در روش حفظ بقایای گیاهی و تیمارهای خشیچی و عدم خاکورزی، با توجه به نتایج تعداد غلاف در ساقه اصلی (جدول 2) می‌تواند به کاهش میانگیر در ساقه اصلی مربوط باشد.

تعداد غلاف در ساقه اصلی و ساقه‌های فرعی تحت تأثیر معنی‌دار در تیمارهای بقایای و خاکورزی قرار گرفته، تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌دار باقی می‌ماند. تعداد غلاف در ساقه اصلی تحت تأثیر معنی‌داری بیشتری از تعداد غلاف دارد. بطور معنی‌داری تأثیر می‌کند. نیز رشد اندام‌های خاکورزی (1) و احتمالاً افزایش عمق نرم و توسعه رشته‌ها در خاک، نقش موقتی در افزایش رویش و ارتفاع گیاهان داشته است. پژوهشگران دیگر (6 و 22) نیز رشد اندام‌های هواپیا را تأثیبی از رشد ریشه‌ها در خاک دانسته و معناداری که با افزایش عملیات بیکاری و رشد رویش گیاه بهبود پیدا می‌کند. نظر به آن که طول ساقه حاضر ضرب تعداد گره در طول میانگیر است، نتایج آن که طول ساقه اصلی در روش حفظ بقایای گیاهی و تیمارهای خشیچی و عدم خاکورزی، با توجه به نتایج تعداد غلاف در ساقه اصلی (جدول 2) می‌تواند به کاهش میانگیر در ساقه اصلی مربوط باشد.
جدول 3 - تأثیر عوامل آزمایشی بر اجزای عملکرد

| عوامل آزمایشی | سطح اصلی سطح‌های فرعی بوته مترمربع | تعداد غلاف در | سطح اصلی سطح‌های فرعی بوته مترمربع | تعداد داده در غلاف | وزن هزار دانه (گرم) تعداد داده در
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>یقاب‌های گیاهی</td>
<td>72/10 a</td>
<td>80/20 a</td>
<td>5/62 b</td>
<td>4/24 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
</tr>
<tr>
<td>سوختندی یقابا</td>
<td>10/37 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
<td>5/19 a</td>
</tr>
<tr>
<td>حفظ یقابا</td>
<td>8/74 b</td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
<tr>
<td>خاک‌ورزی</td>
<td></td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
<tr>
<td>گاو‌هانی برگ‌داننده</td>
<td></td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
<tr>
<td>دبسک</td>
<td></td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
<tr>
<td>خشک‌چی</td>
<td></td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
<tr>
<td>عدم خاک‌ورزی</td>
<td></td>
<td>26/83 a</td>
<td>8/30 a</td>
<td>12/96 a</td>
<td>7/28 a</td>
<td>4/24 a</td>
</tr>
</tbody>
</table>

- اعداد هر عامل آزمایشی در هر ستون که در یک حرف مشترک هستند، فاقد تفاوت آماری بر اساس آزمون انکار در سطح احتمال 5% می‌باشند.
جدول ۲ - تأثیر عوامل آزمایشی بر عملکرد دانه (کیلوگرم در هکتار)، عملکرد بیولوژیک (گرم در مترمربع) و شاخص برداشت (درصد)

<table>
<thead>
<tr>
<th>عوامل آزمایشی</th>
<th>عملکرد دانه</th>
<th>عملکرد بیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوختن بیانی</td>
<td>۲۲۸۹</td>
<td>۲۷۳۴</td>
</tr>
<tr>
<td>حفظ بیانی</td>
<td>۱۷۵۶</td>
<td>۲۴۷۶</td>
</tr>
<tr>
<td>زاگوار</td>
<td>۲۱۸۴</td>
<td>۷۵۱</td>
</tr>
<tr>
<td>دیسک</td>
<td>۱۱۵۸</td>
<td>۷۴۸</td>
</tr>
<tr>
<td>خشکی</td>
<td>۱۹۳۹</td>
<td>۹۴۶</td>
</tr>
<tr>
<td>عدم خاکورژی</td>
<td>۱۳۷۲</td>
<td>۹۳۶</td>
</tr>
</tbody>
</table>

*اعداتوهای عملکرد دانه در هکتار که در یک حرف مشترک هستند فاقد تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵% بیان شده.

در سطح مهیزنی متعلق به دانه (جدول ۲)، همراه با افزایش تعداد ساقه فرعی در بوته (جدول ۳) و تعداد غلاف در ساقه فرعی در این تیمارها (جدول ۴)، سبب افزایش رقابت درون گیاهی در جهت انتقال مواد فتوسنتزی به گل آینده‌ها شده که نتیجه آن تشكیل دانه‌های کمتر در غلاف ساقه اصلی و غلاف ساقه‌های فرعی تحت تیمارهای ذکر شده می‌باشد. به چنین حال، افزایش تعداد غلاف در ساقه فرعی، به دلیل اثر جایگزینی کاهش تراکم بوته تحت تیمارهای خشکی و عدم خاکورژی و روشن حفظ بیانی (جدول ۲)، توانست اختلاف تعداد دانه در ساقه‌های فرعی را با تیمارهای دیگر از بین برود (جدول ۳).

تعداد دانه در ساقه‌های فرعی حدود ۲۵ تا ۴۷ تعداد دانه در ساقه اصلی بوته بود، از آنجا که در هر بوته به‌طور میانگین ۲۴۴ ساقه فرعی وجود داشت، بنابراین بازده هر ساقه فرعی از نظر تعداد دانه حدود ۱۴ اسکل بود. افزایش تراکم بوته و در نتیجه تعداد ساقه اصلی در واحد سطح می‌تواند موجب افزایش عملکرد گردد، هر چند که این امر ممکن است سبب کاهش تعداد ساقه فرعی در واحد سطح شود. همچنین مثبت معنی‌دار تعداد دانه در ساقه اصلی با عملکرد
اگر مثالی بپیشه‌ای گیاهی با حاکوورزی بر عملکرد دانه سنته‌سازی که در یک حراف مشترک مستند

فاده تفاوت آماری براساس آزمون دانک در سطح احتمال 5% می‌باشد.

شکل ۱ - نتایج مقایسه پیش‌بینی با حاکوورزی بر عملکرد دانه. سنته‌سازی که در یک حراف مشترک مستند

مصنوعی، یخصوصی تیبتوژن‌ها در تیمار سوزاندن پیش‌بینی با دلال

به‌هراض زرده روش و آموزش عملکرد دانه داری این شرایط

دانسته‌ند. این بودن عملکرد دانه را در روش‌های حاکوورزی با

دیکس و گروه‌های مرگ‌دانا در می‌تواند به این تسانی استفاده می‌گیاهان (جدول ۲) و تعداد زیادی دانه در سایر اصلی (جدول ۳) در

این تیمارها نسبت داد. اینگونه از مطالعات (۱۷، ۲۳ و ۲۵) در

انجام عملکرد در سیستم‌های حاکوورزی معمولی اتاحیه

بهبود وضعیت استقرار گیاهان و رخ گیاهان (۴) و خاصیت ۲۴ و

داموش تیمار حاک و رشد و توسه بهتری در حاک و در

نتیجه ادامه‌ها هر یک دانسته‌ند.

اثر تیمار حاک و حاکوورزی بر عملکرد پیش‌بینی و

شاید برداشت معنی‌دار بود. عملکرد پیش‌بینی تحت تیمار

حفاظت گیاهی کاهش یافت. همچنین تیمارهای گروه‌های

برگ‌دان‌ها و دیسک با اختلاف ناگزیر یا پیک‌بندی (۵/۱٪)

بالا بر عملکرد پیش‌بینی را به‌وجود اختراع دانه (جدول

۴) بودن عملکرد پیش‌بینی را تحت تیمار سوزاندن پیش‌بینی

هورا از حاک و رشد و توسه بهتری در حاک و در

نتیجه ادامه‌ها هر یک دانسته‌ند.

اثر تیمار حاک و حاکوورزی بر عملکرد

دانه معنی‌دار بود. عملکرد دانه در تیمارهای گروه‌های

برگ‌دان‌ها و دیسک در روش‌های حاک و سوزاندن پیش‌بینی معنی‌داری با

پیک‌بندی نداشتن، در حالی که عملکرد دانه در تیمار عمد

به‌هراض زرده روش و آموزش عملکرد دانه داری این شرایط
و تیمارهای گاو‌آم، پرگوندایر و دیسکی می‌توان تیپجه به‌هوبود وضعیت استقرار گیاهان (جدول 1) و اثرات بهبود کمی و کیفی بستر شرود گیاه در این تیمارهای (1) دانست. تناوب مشابهی در سایر مطالعات (3، 9، 17، 18 و 23) به‌مدت آمده است. کمتر بودن شاخص برداشت در شرایط حفظ بقا و سیستم عدم خاکوریزی (جدول 2) می‌توان در افزایش مuckland دانه تنبیه به عامل در بیولوژیک در این تیمارها جستجو کرد و وجود همبستگی بیشتر بین شاخص برداشت با عملکرد دانه (0.88/0.89/0.90/0.88) در مقایسه با عملکرد بیولوژیک (0.88) با این تبییج گروه هم‌اکنون است. احتمال می‌رود که تولید تعداد بیشتری ساقه‌های فرعی در بوته در شرایط حفظ بقا و سیستم عدم خاکوریزی (جدول 2) و پایین‌تر بودن ساقه‌های فرعی در

منابع مورد استفاده

1 - جمشیدیان، ر. 1376. بررسی اثرات روش‌های مختلف تهیه بستر بر عملکرد و اجزای عملکرد هندی (قرم 16-91) در اصفهان.

2 - کریمی، م. 1364. آب و هوای منطقه مرکزی ایران. انتشارات دانشگاه صنعتی اصفهان.

