نتیجه‌گیری کلی: مدایت‌های دریایی، هیدرولوژی، مدایت شیمی‌سازی ضرایب هیدرولوژیکی

1. به تریب دانشجوی دو درکی و دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز
2. استاد آبیاری، دانشکده، کشاورزی، دانشگاه شیراز
به فرض پیوستگی حفرات خاک به یکدیگر و تکامل مجاری باریک استانهای شکل در خاک است(۲۲).

مقدار هیدرولیکی(0) و پخشگی هیدرولیکی(0) از D(O)

همه‌تنین پرداخته‌های هیدرولیکی خاک بوده و نقش اصلی در حركت آب‌های ژرفی، جریان آب در محیط‌های مختل و انتقال مواد آلی این مکان‌ها ضرایب هیدرولیکی در محیط اشاعه به بالاترین مقادیر خود رسیده و در محیط غیر اشاعه با کاهش رطوبت حجمی، به شدت کاهش می‌یابد. باور و جکسنون(۴) روش‌های زیادی برای اندام‌گیری هیدرولیکی اشاعه در صحرا و به آزمایشگاه‌های داده‌دهند. در حالت غیر اشاعه و نمودن‌های دست نخورده اندام‌های غیر اشاعه ضرایب خیلی مشکل و مستلزم هزینه و وقت زیادی است. کلووت(۱۵) آنان روش‌های برای اندام‌گیری هیدرولیکی(0) و آزمایشگاه‌پیشنهاد کرده‌اند. واتسون(۲۳) به منظور تشریح در انتخاب آزمایش‌ها نیز بسته به نواحی مختلف مقادیر(0) را در رطوبت‌های مختلف برای خاک‌های درشت‌بافت در محیط کوچکی از مکش تعیین نمود. گذراند(۱۰) با استفاده از مقدارهای ریچارد(۲۰) اعمال شرایط مرزی معین برای نمونه خاک مستقر در دستگاه‌های مختلف فشاری در روش آزمایشگاه‌پیشنهاد کرده‌اند. برای تعیین(0) از دستگاه D(O) استفاده می‌کنند. کالسی فر و سپاهوار(۱۴) از روش زیست‌دهل و با K(O) را فرض پیوستگی دارد. نتیجه‌گیری عمل‌هایی می‌باشد.

رهن یا اعمال‌های مختلف تحقیق و به نمونه خاک مستقر در نقطه‌های مختلف فشاری در روش آزمایشگاه‌پیشنهاد کرده‌اند. برای تعیین(0) از دستگاه D(O) استفاده می‌کنند. کالسی فر و سپاهوار(۱۴) از روش زیست‌دهل و با K(O) را فرض پیوستگی دارد. نتیجه‌گیری عمل‌هایی می‌باشد.

راه‌حل این سوال از دستگاه D(O) استفاده می‌کنند. کالسی فر و سپاهوار(۱۴) از روش زیست‌دهل و با K(O) را فرض پیوستگی دارد. نتیجه‌گیری عمل‌هایی می‌باشد.
ارتباط بین مکش‌مونتگی و رطوبت حجمی ((\(\psi(0)\)) را در حالت غیر اشباع، اساس مدل بی‌پیش‌داده با توجه به قراردادن در همین راستا علائم (9) مقدمات‌های و ریا تبدیل جزئی (به‌عنوان انگیزه به سری و توابع کاما) و با دخالت داند مقدمات‌های منحنی مشخصه آب خاک، شکل‌کلی مدل شیمی‌سازی هدایت هیدرولیکی و یک‌خیزگی هیدرولیکی را به‌صورت زیر ارائه کرد:

\[
K(S_p) = \frac{V_m}{S_p} \left[\psi\left(1 - \frac{S_p}{S_m}\right)^m\right]^{n} (mn + 1) B(p, q) \]

\[
D(S_p) = \frac{V_m}{S_p} \left[\psi\left(1 - \frac{S_p}{S_m}\right)^m\right]^{n} \frac{\Gamma(n + 1)}{\Gamma(n)} B(p, q) \]

\[
K(S_p) = \frac{V_m}{S_p} \left[\psi\left(1 - \frac{S_p}{S_m}\right)^m\right]^{n} \Gamma(n + 1) B(p, q) \]

\[
D(S_p) = \frac{V_m}{S_p} \left[\psi\left(1 - \frac{S_p}{S_m}\right)^m\right]^{n} \frac{\Gamma(n + 1)}{\Gamma(n)} B(p, q) \]

که در آن: \(\psi\) ضریب ثابت هستند که از منحنی مشخصه آب خاک به‌دست می‌آیند. \(V_m\) تابع کامل باست \(p=m+1/n\) و \(D(S_p)\) است. بطور کلی، مدل‌های مختلف شیمی‌سازی مقاله گردید.

مواد و روش‌ها

در 9 خاک با یک متنوع از اراضی روسیه نماد (شهرستان سلاموست، روستاهای دیگر سیبانس، گلباکس، جنگل، مرادیل، مبارک آباد، بروگوت آباد، امروز آب و اسماول فلز (وان این شهرستان ازپیمایی) با بالاته متنوع، همچنین به استفاده در نخوده، با نمودهای دستی (بی‌پیش‌داده) از طرف خاک و دقت 5 سانتی‌متر و به ارتقاء 3 سانتی‌متر) در مکش‌مونتگی منحنی به‌صورت دست نخوده، با نمودهای دستی (بی‌پیش‌داده) از طرف خاک و دقت 3 سانتی‌متر) در مکش‌مونتگی منحنی به‌صورت دست نخوده، با نمودهای دستی (بی‌پیش‌داده) از طرف خاک و دقت 3 سانتی‌متر) در مکش‌مونتگی منحنی به‌صورت دست نخوده.

\[\lambda = mn\]

بروزگار و کوری (5) معلامه‌های خود را با فرض به‌صورت زیر برای محاسبه \(D(S_p)\) و \(K(S_p)\) به‌پیش‌داده کرده‌اند:

\[D(S_p) = (K(S_p))^{(n+1)/n} \]

\[K(S_p) = (K(S_p))^{n+1}/(\alpha(\lambda(0,0)))\]

وان گنوختن و همکاران (22) برنامه کامپیوتری D(0) برای تعیین دیگ در اراضی‌های کوارتی (D(0) و \(K(0)\) بر اساس اطلاعات اندازه‌گیری منحنی مشخصه آب خاک ارائه نمودند.

\[\lambda = mn\]

روش زه‌کشی داخالی، در حالی‌های مختلف از مقدار متغیر
3. روش آمایشگاه‌گزارش‌گر (10)

در این روش پس از قرار گرفتن نمونه اشعه در دستگاه صفحات فشاری، مقادیر حجم آب خروجی از آن در فشار نسبت به زمان اندازه‌گیری شده، سپس به‌ترين شبکه خاتمین منحنی بین مقادیر حجم آب باقی مانده در نمونه نسبت به زمان تعیین و سپس از روابط زیر مقداری که مربوط به مقدار D(0) محاسبه می‌شود.

\[
D(0) = \frac{tBL^2}{\pi^2}
\]

\[
K(0) = \frac{tBV \cdot pGL^2}{V' \cdot \Delta P}
\]

که در اینها، V و V' به ترتیب حجم نمونه خاک (L^3)، فشار اعمال شده به نمونه (ML-T^-1) و حجم آب باقی مانده در نمونه اشعه (L') پس از حصول به حالت تعادل است که از روش مقدار آب خروجی محاسبه می‌گردد.

4. روش پیشنهادی در یوزه حاضر

معادله دفرانسیل جریان آب در نمونه‌های خاک در جهت عمودی با استفاده از معادله ریچاردز (20) به صورت زیر ارائه شده است:

\[
\frac{\partial \phi}{\partial t} = \nabla \cdot (\phi \nabla h)
\]

با انتگرال گیری از معادله (16) در Z، از محدوده صفر تا طول نمونه و پس از ساده‌نمودن، معادله زیر حاصل می‌گردد:

\[
\frac{\partial V}{\partial t} = -V \left(K(0) \frac{\partial \phi}{\partial Z} \right) / (Lp)
\]

که در این روش مقدارهای حجم آب خروجی از نمونه نسبت به زمان (سانتی‌متر مکعب بر ساعت)، حجم خاک (سانتی‌متر مکعب)، تغییرات فشار اعمال شده نسبت به عمق در نمونه خاک (دین بر سانتی‌متر) می‌باشد.

با داشتن اطلاعات مربوط به میزان فشار وارد و دیگر آب خروجی، مقادیری از معادله 17 محاسبه می‌شود. از معادله

ش. بعد از اتمام آزمایش‌ها، بافت پوشیده از نمونه‌های خاک انتخاب گردید (11) و سپس مقادیر هدایت هیدرولوژیکی (K) و هدایت هیدرولوژیکی (D) برای هریک از خاک‌ها از روش‌های زیر محاسبه شد.

1. استفاده از معادله (19) و واگذاری (22) RETC

با یک‌گیگی پر افزایش از داده‌های اندیشه‌گیری شده منحنی مشخصه آب خاک است که برای این راستا باید ضرب ضرایب معادله‌های 8 تا 10 منبع شونده، ترم‌افزار مندل وان گاذخون (21) را در چهار حالات مختلف RETC شیب‌سازی مشخصه آب خاک بر اساس اطلاعات مشاهده‌ای منحنی به‌نظر می‌گردد. سپس مقادیر (K0) ضریب‌های این منحنی به‌نحوی ضریب‌های انتخاب به‌هنهایی حالات شیب‌سازی شده با D(0) و R در حساب انتخاب به‌هنرهای محاسبه‌ای از مدل‌های معمول (19) و با بوردین (6) برآورد می‌گردد.

2. استفاده از مدل‌هایی هیدرولوژیکی گرین و کورری (12)

گرین و کورری (12) مقادیر هدایت هیدرولوژیکی (K) را با داشتن اطلاعات منحنی مشخصه آب خاک اندیشه‌گیری شده، مقادیر ضریب هدایت هیدرولوژیکی اشعه (Kmn) و دمای آب از معادله زیر به‌دست آورده‌اند:

\[
K(0) = 3 - \sigma \Phi / (\mu \gamma)
\]

که در این‌جا معادله (12) هدایت هیدرولوژیکی خاک (L^-1):

\[
L = K(0) / K \int \frac{h}{h_0} dh
\]

که در ریاضیات خاک (Kmn) بر طول حجمی آب خاک (Kmn) نسبت

\[
K_{mn} / K_{mn} \int (L^{-1}) \int h_0 dh
\]

همچنین داشته باشیم که این است که با برای‌زمان‌ها مکش در گروه‌های

\[
L = \int \frac{h}{h_0} dh
\]

تعداد کل کلاس‌ها بین نقاط حجمی اشعه و

\[
K_{mn} / K_{mn} \int (L^{-1}) \int h_0 dh
\]

حداقل رطوبت مشاهده شده، شتاب پی. تقریباً (L^{-1}) کشش سطحی
تغییر ناپایداری و پیش‌بینی میدرولیک در خاک غیر اشعاع با استفاده از...
شکل ۱. مقادیر اندازه‌گیری و شیب‌سازی شده منحنی مشخصه آب خاک در پایتخت‌های رس لای، لوم، رسی، رسی لای، لوم و رسی به ترتیب در سری‌های تمر، دیژ، سیاوش، گلابشی، مرادعلی و مبارک آباد)

شکل ۲. مقادیر اندازه‌گیری و شیب‌سازی شده منحنی مشخصه آب خاک در پایتخت‌های شیب، شنی، لوم، رسی، شنی لومی و لوم رسی لایی به ترتیب در سری‌های اسماعلی قلعه، آمروذ آغاج، بورخون آباد و جهانورد.
شکل 2. حجم آب باقی مانده درمنویه خاک (بافت لومی) رطوبت حجمی آب خاک (cm²/ cm³)

شکل 3. حجم آب خارج شده درمنویه خاک (بافت لومی) رطوبت حجمی آب خاک (cm²/ cm³)

شکل 4. هدایت هیدرولیکی در خاک دیژ سباوش (cm²/ cm³/ s)

شکل 5. هدایت هیدرولیکی در خاک تمر سلماس (cm²/ cm³/ s)
شکل ۸: هدایت هیدرولیکی درخاک جهانلو (بافت لوم سنگی)

شکل ۹: هدایت هیدرولیکی درخاک مرادی (بافت لوم سنگی)
تعمیم هدایت و پخش‌دهی‌های میدرولوکی در خاک غیر اشباع با استفاده از...

شکل 12. هدایت هیدرولوکی در خاک آمود آغاج
(بافت لوم رس شنی)

(cm²/cm²)

شکل 11. هدایت هیدرولوکی در خاک پورغون آباد
(بافت شنی لومی)

(cm³/cm³)

شکل 13. هدایت هیدرولوکی در خاک اسماعل قلعه
(بافت رس لای)

(cm³/cm³)
جدول ۱. مشخصات فیزیکی و میانگین مقادیر هیدروлогیک اشیاء و مقادیر ضربای ثابت مدل واگشت خیه و همکاران (۱۴) در انواع نمونه‌های خاک

| رنگ اشیاء | ناحیه خاک | پردازش‌های حجمی | ضربای ثابت مدل واگشت | ضربای ثابت مدل واگش
جدول 2: انتخاب مناسب‌ترین مدل‌های شیب‌سازی مقادیر (6) در انواع خاک‌های مختلف در مقایسه با روش پیشنهادی

<table>
<thead>
<tr>
<th>D(θ) مناسب‌ترین مدل‌های پیش‌بینی (6)</th>
<th>K(θ) مناسب‌ترین مدل‌های پیش‌بینی (6)</th>
<th>بافت خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل (19) با m و n متغیر</td>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>رضایت لایه</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لوم رضایت</td>
</tr>
<tr>
<td>فارز دارد</td>
<td>فارز دارد</td>
<td>لوم شنی</td>
</tr>
<tr>
<td>کریم و کوری (12)</td>
<td>رضایت شنی</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
</tr>
<tr>
<td>نهایت</td>
<td>نهایت</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
</tr>
<tr>
<td>فارز دارد</td>
<td>کریم و کوری (12)</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
<tr>
<td>نهایت</td>
<td>نهایت</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
<tr>
<td>فارز دارد</td>
<td>کریم و کوری (12)</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
<tr>
<td>نهایت</td>
<td>نهایت</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
<tr>
<td>فارز دارد</td>
<td>کریم و کوری (12)</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
<tr>
<td>نهایت</td>
<td>نهایت</td>
<td>لاور</td>
</tr>
<tr>
<td>m=1-1/n مدل (19) با m و n متغیر</td>
<td>لاور</td>
<td></td>
</tr>
</tbody>
</table>
مناسبی در انتخاب بهترین مدل به مظور شبیه‌سازی ضریب کننده

در نظر گرفته شد.

ارزیابی پیش‌بندیگی هیدرولوژیک

محاسبه مقدار پیش‌بندیگی هیدرولوژیک، با مدل‌های معمولی ریژن (D(0) بر اساس معادله (18) از روی پیشنهادی، مقدار K(0) براساس معادله (19) در مقایسه با روش پیشنهادی مدل، در نتیجه، در داده‌های بهترین نسبت به مدل‌های دیگر ارائه کرده است. با این حال که، میزان مقدار K(0) در مدل معمول (19) بر اساس مناسب‌ترین برازش مناسبی می‌باشد. در این راستا، مناسب‌ترین برازش مناسبی می‌باشد. در این راستا، مناسب‌ترین برازش مناسبی می‌باشد. در این راستا، مناسب‌ترین برازش مناسبی با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف مدل معمول (19) با استفاده از چهار حالت مختلف M(0) در شرایط کاری بر مدل عمومی (19) را انتخاب نمود. نتایج یافته و همکاران (22) نشان می‌داد که برای مدل عمومی (0) به روابط K(0) می‌تواند مناسب شود. مدل عمومی (m = 1) / n

با T و به توجه به نتایج زیرا تابع به‌دست آمده از مدل‌های موجود، به دلیل منجر به در نظر گرفتن در شرایط مختلف، روش پیش‌بندی در پژوهش حاضر می‌تواند راکر
نمایش چگالی هیدرولیک در گیرنده‌های آب‌رسی

Shape 15: Hydrodynamical Giovanni (showing)

Shape 18: Hydrodynamical Giovanni (showing)
شکل 20. پخش‌گی هیدرولیکی در خاک بورفون آباد (بافت سنگی بدون هال)

شکل 19. پخش‌گی هیدرولیکی در خاک مبارک آباد (بافت رسی)

شکل 21. پخش‌گی هیدرولیکی در خاک آمورد آغاج (بافت لوم رسی سنگی)
نعم هدایت و پیش‌بینی‌گر هیدرولوژیکی در خاک غیر اشباع با استفاده از...
منابع مورد استفاده