بررسی نقش کلیستوسپورم در زمستان‌های گذرانی

بیماری سفیدک سطحی انگور در استان خراسان

محمد حاجی‌نژاد شهرباز، یحیی زاده، عباس شریفی‌تهراوی، سید محمود اخوت و عباس صفرزاده

چکیده

این پژوهش به منظور بررسی نقش کلیستوسپورم در زمستان‌های گذرانی و عامل مولد مایه تلفیق اولیه در ایجاد اپیدمی بیماری سفیدک سطحی

انگور در استان خراسان انجام گرفت. بر اساس نتایج به دست آمده زمستان‌های گذرانی

U. necator در هر یک از مراکز مطالعه داشتند. آسکوموره‌ها

میزان آسکوموره در دوره از بازشناسی جوانه‌ها و گل دهن در زمانی که باید دستگاه ابزاری به دام انداخته و

آسکوموره‌ها به صورت دوره‌ای از مهاره‌ها تا اندازه‌ها شهرت‌دار از کلیستوسپورم‌های سطحی برگ‌های تغییر داده در باغ‌های توضیح کاهش یافته و در طول مهاره‌ها تا دو یا سه دوره روزانه می‌پدید می‌کنند. در مهاره‌های زنی آسکوموره‌ها به تدریج کاهش یافته و در طول

به‌طور کامل اب، آسکوموره‌ها به طور دائم در هر یک از دوره‌های خونی، جوانه‌ها و شکستن آسکوموره‌ها در طول دوره بلوغ

آسکوموره‌ها از حدود 3 کرم در پاییز به 4 کرم در زمستان و 6 گرم در اواخر باغ نرسید.

پیش‌بینی میزان کاهش متقابل دوباره آسکوموره‌ها در برابر شکستگی در زمستان اتفاق افتاده که به میزان 4/5 گرم پروردید. بیماری‌زاپی‌آسکوموره‌ها بالا رفته برگ‌های بی‌سالان انتها شد که تفکر آنها را به عنوان مایه تلفیق نخست‌اولیه نشان داده و مشخص می‌کند که

کلیستوسپورم شکل اصلی زمستان‌های گذرانی

واژه های کلیدی: کلیستوسپورم، آسکوموره، زمستان‌های گذرانی، سفیدک سطحی، انگور

1. استادیاران پژوهش مرکز تحقیقات کشاورزی و منابع طبیعی استان خراسان، مشهد
2. استادان کیا پزشکی، دانشگاه کشاورزی، دانشگاه تهران، کرج

225
مقیده

سفیدک سطحی انگور، که توسط U. necator، که توسط ایجاد می‌شود از

لوازم اقتصادی مهم‌ترین بیماری درختان انگور در تمام دنیا

می‌باشد (37) و جود کلیستوسنیم‌های

نخستین پار در ایران از استان فارس گزارش شده است در حالی

که در غالب نقاط انگور کاری ایران دیده شده است. (1)

کلیستوسنیم‌هایی که توسط این گونه تشکیل می‌شوند به عنوان

مهم‌ترین منبع مایع لقحقی اولیه بیماری در ایبیلا، آمریکا، آلمان و

استرلیا گزارش شده است. (38، 27 و 23) چگونگی تشکیل

کلیستوسنیم‌ها و راه‌های آسموسپورها از برگ‌های

جمع‌آوری شده از باغات انگور از آرامش‌های توماس تحقیق‌ها

مختلفی این‌طور شده است (11، 13، 15، 16 و 22). نتایج

تحقیقات در کلیفونیا (30). اروپای غربی (6) و 26 افراپی

جنوبی (33) اینکه کمک به این می‌باشد

در جوانه‌های انگور و در حال خوان انگور به عنوان شکل اصلی زمستان گذاری

یافته و در زمان گذاری این گونه به هنگام

در حال خوان انگور به عنوان شکل اصلی زمستان گذاری این

قاحر در اغلب نواحی انگورکاری دنیا مانده و به

ویژه این که وجود کلیستوسنیم‌های آن روی شاخه و

برگ‌های انگور در آلمان (27 و 22)، فرانسه (38)، رومانی (33)،

کلیفونیا (5)، آمریکا (15) و استرلیا (35) گزارش شده بود.

رگیدک و غلادیون (29) اعتقاد بودند که روش زمستان گذاری

دقیق علمی ویژه لی برای سال‌ها افزایش

U. necator

دانسته که این قاحر به شکل آسموسپور در کلیستوسنیم

زمستان گذاری می‌کند. جوانه زنی آسموسپورها بسیار

قاجار در اواخر سال 1895 (9) دیده شد. بود. اما تحقیق مکرر

انگور با آسموسپور توماس گالی (1895) (6) بوسفورسی در

1923 (28) و آن‌شور در 1924 (3) آزمایش آسموسپورها را

تویت بیماری در کرد. از انجایی که فیکال زمستان گذاری

در جوانه‌های در حال خوان انگور ایشان شده بود

مفحیج زیادی معتقد بودند که قبل آسموسپر باقی این قاحر

در زمستان گذاری آن کم یا ضروری نیست و فقط مهم در

...
بررسی نقش کلیستوسیوم در زمان گذرانی

... Uncinula necator (Schw. & Burr.)

کادنی(52) ایجادگری شد. برای جمع آوری کلیستوسیوم بعضی عاملی به بار دنیا قطعه بزرگ در یک شیب ایزی آنته مشهور آب مقطع نکن داده شن. داشت کلیستوسیوم با آب آزاد شوند. سپس آب داخل شیب‌ها از الک با قطر مناسبی و میلی‌متری و سپس از الک با قطر مناسبی 5 میکرو متر برای یک جمپی کلیستوسیوم‌ها عبور داده شد. اکثر آنها از سطح الکا جمع آوری و روی سطح دیسک های کاغذی با قطر 10 میلی‌متر به تعداد 30 عدد اکستاکن توزیع شدند. در داخل دریوش هر تنشکت چری کی دیسک کاغذی تعبیه شد و در داخل پایه تنشکت چری نیز در یک گرفت کاغذی توانستند قرار گیرند که با 5 میلی لتر آب مقطع باری اجرا رطوبت اشاعه خش بود و بر روی کاغذ صاف داخل هر تنشکت یاه سه عضو خاموش کریست سنتری کلیستوسیوم ها کاوشته شد و یک میکروسکوپی روی این خلل‌های جواب کره قرار داده شد. اکسپرسیون رهایی شده در سطح آنها جمع آوری شوند. سپس پایه و دریوش تنشکت چری یا بر روی هم قرار داده شدند و اطراف هر تنشکت چری با کمک پاراپت مسود در دیده و میزان رهایی اکسپرسیون باز از متابال نمایش در قالب طرح کاملی توضعی می‌باشد (تاریخ اندازه‌گیری) و 30 تکرار (کلیستوسیوم) انجام شد.

5. اندام‌گیری پاتنر آب سیلوسیوم آکسپرسیون‌ها

اندماگیری تورم سولیول آکسپرسیون‌ها در محلول‌های نامکی براساس روش پی‌پید (4) انجام شد. براساس این روش تغییرات ابعاد آکسپرسیون‌ها برای یک آکسپرسیون از هر آکسکارب که در تعداد 30 آکسکارب اندماگیری شد. نخست نقطه شروع پلاسمازیون آکسپرسیون‌ها در آب مقطع و سری محلول های 1، 2، 3، 4 و 5 و مؤثر کلید ساده در زمان جمع آوری کلیستوسیوم‌ها اندماگیری گردید و در فواصل زمانی هر همک یک پاز تغییرات ابعاد سولیول آکسپرسیون‌ها با اندماگیری ابعاد 30 آکسپرسیس در محلول کلرد سدیم صفر.

در فواصل زمانی دو هفته یک بار بر اساس روش گادنی و پیرسون (13) از مهم‌ترین 1381 تا اواخر خرداد 1382 عکس کلیستوسیوم روی دیسک های کاغذی با قطر 2 میلی‌متر گذاشته شدند و سپس با آب مقطع خور شدند. کلیستوسیوم‌های موجود نیز همانند روش پیرسون و گادنی(25) این‌ها شدند. برای مشاهده راه‌های آکسپرسیون‌ها دوباره آکسکارب‌ها با یک کمک اکسکالیل نیز به آرامی شکسته شدند و این دیسک‌ها در دایره 5 عدد تنشکت بر روی این دیسک‌ها از میکروسکوپی در پایه نشکت بری قرار داده شد. نشکت بری‌ها
بررسی نش کلیستوسیم در زمان گذشته

اساس اندازه‌گیری شده که به طور معنی‌داری (P<0.01) بزرگ‌تر غلظت ماده نه‌گردان آسکوسپوره در روی لم میکروسکوپ تحت تأثیر قرار می‌گرفت. این گونه یافته‌های زمان از مهرماه تا آذرماه بیشتر در پس از انحلال کمی (20/5) در تغییر حجم آسکوسپوره در آب مطلوع و محلول 5/0 و یک مولار کلرید سدیم اندامگی شد (شکل 5). حجم آسکوسپوره در محلول یک مولار کلرید سدیم به طور معنی‌داری بین دی ماه و بهمن ماه کاهش یافته و کاهش معنی‌داری (20/5>0) در حجم آسکوسپوره در آب مطلوع و محلول 5/0 تا آخر دماه دیده شد (شکل 5).

بر اساس نتایج به دست آمده از اندازه‌گیری تراکم آسکوسپوره در فضای با غلظت اسید ال‌سیروپ ال‌یکس و آسکوسپوره در تاریخ 17/08/128ک شکاف شدند و از این تاریخ به بعد این عمل به طور مستمر ادامه داشت. تراکم آسکوسپوره هوازاد U. necator با گذشت زمان یافته تقریباً یک‌جمله یاد (جدول 1) و شکل (3) بیشترین میزان کاهش مقاومت دیواره آسکوسپوره‌ها در پایان جوانی بهم‌مانده در دمای 22 درجه سانتی‌گراد بعد از 24 ساعت، در مهرماه 1381 حدود 25 درصد اندازه‌گیری شد. این میزان به تدریج در طی ماه‌های آبان و آذر با کاهش یافته و در مهرماه 1381 حدود 31 درصد از این زمان به بعد و در فروردین ماه 1382 به تدریج افزایش یافت و در خانه‌های آزمایش به حدود 36 درصد رسید (شکل 3).

نتایج به دست آمده از بررسی تغییرات میزان مقاومت دیواره کلیستوسیم در پایان شکستگی نشان داد که مقاومت دیواره آسکوسپوره با گذشت زمان به تدریج کاهش می‌یافت (جدول 1) و شکل (3) بیشترین میزان کاهش مقاومت دیواره آسکوسپوره‌ها در پایان شکستگی در اوایل بهم‌مانده اندامگی شد و در فاصله‌ی بین بهم‌مانده در مقاومت دیواره آسکوسپوره‌ها اندامگی‌گری که (شکل 3).

در همین ارتباط نتایج به دست آمده نشان داد که پتانسیل آب سیتوپلاسم آسکوسپوره‌ها نیز گذشته زمان کاهش می‌یابد. آسکوسپوره‌های مربوط به کلیستوسیم‌هایی که در هفته‌های تشکیل آنها می‌گذشته در محلول 2 مولار کلرید سدیم پلاسلوسیم می‌شوند (شکل 2) و آسکوسپوره‌های مربوط به کلیستوسیم‌هایی که در محلول یک مولار کلرید سدیم پلاسلوسیم سنگین. بدین دلیل غلظت محلول کلرید سدیم که باعث پلاسلوسیم 5 درصد آسکوسپوره‌ها شد در آبان ماه 0/2، آذرماه 0/4، بهم‌مانده در فروردین ماه یک مولار بود.

برای اندازه‌گیری تغییرات حجم آسکوسپوره‌ها این استوربورا به شکل یک استوانه در نظر گرفته شدند و حجم آنها به این ترتیب با مشخصات ذیل استوربورا می‌باشد:

نتایج آزمون بیماری‌زای آسکوسپوره‌ها نشان داده‌هایی از تغییرات حجم آسکوسپوره‌ها این استوربورا می‌باشد.
شکل 1. تغییرات میزان رها سازی آسکوسپورهای U. necator از مه 1381 تا اردیبهشت ماه 1382

شکل 2. تغییرات جوانه زنی آسکوسپورهای U. necator از مه 1381 تا اردیبهشت ماه 1382

بحث
در این پژوهش مشخص شد که کلیستوسپورهای U. necator

مواد و روش‌ها
عامل بیماری در روی سه برگ بریده به ترتیب 7.3 و 2 کلی شکل داد که بیماری زایی آسکوسپرها و تحقیق U. necator تاکید می‌کند.

استان خراسان در زمستان زندگی می‌مانند و آسکوسپورهای آنها طی ماه‌های استفاده‌ای گزارش آزاد شده و می‌توانند درختان انگور را آلوده کنند و بعضاً می‌توان منبع اولیه عمل کنند. اگرچه زمستان گزارش‌های این تحقیق بیشتر می‌شود در جوانه‌های آلوده و در حال خواب انگور در نواحی مختلف دنیا ایجاد شده است (6.5 و 3) ولی در زمینه‌ای این شکل

جدول 1. وزن لازم برای شکستن دیواره کلیسیتومهای U. necator (گرم)

<table>
<thead>
<tr>
<th>تاریخ</th>
<th>وزن (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81/7/15</td>
<td>4/323</td>
</tr>
<tr>
<td>81/8/18</td>
<td>4/324</td>
</tr>
<tr>
<td>81/9/17</td>
<td>4/251</td>
</tr>
<tr>
<td>81/10/29</td>
<td>3/286*</td>
</tr>
<tr>
<td>81/12/18</td>
<td>2/641*</td>
</tr>
<tr>
<td>82/1/18</td>
<td>2/642</td>
</tr>
</tbody>
</table>

* کاهش معنی‌دار در وزن مورد نیاز برای شکستن دیواره آسکومکارب را نشان می‌دهد.

در پایین نشان داده شده که تغییرات میزان مقاومت دیواره کلیسیتومهای U. necator در برابر شکستگی از U. necator مهر ماه 1381 تا فروردین ماه 1382

شکل 3. تغییرات حجم آسکومسپورهای U. necator در محلول‌های کلرید سدیم در هنگام پس از تشکل.
شکل ۵ تغییرات حجم آسکوسبورهای U. necator در مخلوط‌های کلربید سدید در طی زمستان گذشته سال ۱۳۸۲ - ۱۳۸۱

شکل ۶ تغییرات تعداد آسکوسبورهای U. necator شکار شده با دستگاه اسپورگر وپارنگی از فروردین ماه ۱۳۸۴ تا خرداد ماه ۱۳۸۴

۲۳۲
لغزمان گذشته فرآیند مزبور در ایران بررسی صورت نگرفته است. علائم این بیماری به شکل آلوگنی گیاه سر شاخه‌های (Flag Shoot) در بررسی‌های مولد لازم بوده و نشان دهنده این بیماری تا قبل از مرحله گل‌گذاری شکار نشده و اولین کننده‌ها در تاریخ 1387/2/3 شکار شدند. نتایج تحقیق و نمودار کلیستنسپرم‌های روی پرده‌ها، خوشه‌ها و ساقه‌ها ممکن است این دلیل برای عدم انتقال آنها در بیماری زایی روی درختان انگور باشد (39 و 40 مگر این که در ماه آذر بیماری زایی از علت تهیه انگور با استفاده از دیسک‌های برگ انگور که حلال کلیستنسپرم‌های U. necator بودند، مثلاً زبان زمان داده‌کننده کلیستنسپرم‌ها به سادگی از روی یافته‌ها اینگور باران‌کش حذف می‌شود (12 و 28) و امکان دارد که اسکوکارب‌های بالی بیشتر از آنها باران‌کش از روی برگ‌ها و ساقه‌ها جدا و در محیط مخصوص شوند (15). پراکندگی شدن آسکوکارب‌های U. necator از علت برای نخستین بار توسط بوسفوریچ (39) گزارش شد و بعداً برای آسکوکارب‌های Pleochaeta polychaeta (39) گزارش شد (10) که بین پراکنه‌های شدید آسکوکارب‌های U. necator و([

در تحقیقات قبلی بر از کلیستنسپرم‌های موجود در سطح برگ‌های آلوده که در یا زمان‌های سریع کرده بودند برای انتقال بیماری زایی آنها استفاده شده است (39 و 28) و چنین نمودار (39 و 40) حاوی تحقیقات در این حادثه بیماری توسط آسکوکارب‌های (16 و 40) احتمالاً به علت فساد تدبیری آسکوکارب‌های موجود در سطح برگ‌ها در طی

درصد زندگی ماندن

![Data Chart]

تاریخ اندوزه‌گیری

شکل 1. تغییرات زنده ماندن کلیستنسپرم‌های U. necator از همراهی 1387/2/15 تا فروردین 1387
رهاشی‌زی شده از کلیپوتسموییا در اولی پاییز قادر به جوانه‌زنی در رطوب‌های معتاد بودن با کاهش پانسیل آب سیلوالاسم آسکوپورا در طی زمستان گذاری با به تدریج جوانه‌زنی آسکوپورا در طی زمستان کاهش یافته و هم زمان با افزایش در حرارت و جذب رطوب‌های توسط آسکوپورا مجدد جوانه‌زنی آسکوپورا طی ماه‌های فوروردین و ارتباط افزایش یافته.

در بررسی انجام شده متوسط طیف درجه حرارت روزانه در دریچه‌های رهاشی‌زی آسکوپورا به میزان ۶/۵ درجه حرارت سانتی‌گراد که درجه حرارت بهاری رهاشی‌زی آسکوپورا تحت U. necator ۱۸ (۱۹) درجه حرارت بهاری رهاشی‌زی آسکوپورا ۲۵ درجه سانتی‌گراد (۱۵) و ۳۷ درجه سانتی‌گراد (۱۸) گزارش شده است. درجره حرارت‌های کمتر از ۸ درجه سانتی‌گراد رهاشی‌زی آسکوپورا کاهش می‌یابد (۱۳ و ۱۸). در همین درجه حرارت‌ها ساوانه درون رهاشی‌زی آسکوپورا در مورد Sphaerotherca humilis Erysiphe cichoracearum نشان داده می‌باشند.

۸ (۱۸) گزارش شده است. در این بررسی رهاشی‌زی آسکوپورا به میزان ۲ درجه حرارت که مردان درنگ تجمع می‌کند تا ۲۳ میلی‌متر مغزی و پودر بین پیرامون به نظر می‌رسد. به دست آمده توسط کادری و پیرسون (۱۴) مطالعات در دارد حجم آسکوپورا در محلول نیم مولار کلرید سدیم بین دی ماه تا اسفناج که می‌باید (شکل ۵) که نشان دهنده افزایش پانسیل آب سیلوالاسم آسکوپورا در این دوره می‌باشد. کاهش در حجم آسکوپورا در محلول نیم مولار کلرید سدیم بین دی ماه و اسفناج ماه تنها چنین نشان دهنده تغییرات در دیواره سابقاً آسکوپورا می‌باشد که ابزار افزایش دیواره آسکوپورا را توسط افزایش فشار پانسیل آب محدود می‌کند. زمستان بوده است (۷۳) نشان می‌دهد که در این دوره می‌باشد.

دراین مطالعه سه جوانه از مدل انگور (۱۸) و (۳۲) می‌باشد که برای تهیه بلوغ نیاز دارد و یا نشان دهنده در بلوغ مصرف‌هایی و عدم بلوغ فیزیولوژی اینجا باشد. و Friedman که برگه‌های حامل آسکوپورا بی‌بال در زیر حاکم می‌گردد و شناده شده که آسکوپورا به دست از دست داده (۱۵) در این بررسی نیز به آسکوپورا زنده در بهار از حاکم به دست نامید. گادو و پیرسون (۱۵) که نشان می‌دهد که آسکوپورا به روش‌های تغییر می‌کند. این تحقیق نیز مؤثر نه نکته می‌باشد. هم‌اکنون دو درون رهاشی‌زی آسکوپورا به شعور سفید U. necator در تاکستان در آمریکا (۲۵) استرالیا (۳۳) این‌طور.

۸ (۲۱ و ۲۳) گزارش شده است. تحت U. necator در نواحی آسکوپورا به قبیل درون‌های باردارگی همراه به که مردان باردارگی تجمع بین ۲ تا ۲۳ میلی‌متر مغزی و پودر بین پیرامون به نظر می‌رسد. به دست آمده توسط کادری و پیرسون (۱۴) مطالعات در دارد حجم آسکوپورا در محلول نیم مولار کلرید سدیم بین دی ماه تا اسفناج که می‌باید (شکل ۵) که نشان دهنده افزایش پانسیل آب سیلوالاسم آسکوپورا در این دوره می‌باشد. کاهش در حجم آسکوپورا در محلول نیم مولار کلرید سدیم بین دی ماه و اسفناج ماه تنها چنین نشان دهنده تغییرات در دیواره سابقاً آسکوپورا می‌باشد که ابزار افزایش دیواره آسکوپورا را توسط افزایش فشار پانسیل آب محدود می‌کند. زمستان بوده است (۷۳) نشان می‌دهد که در این دوره می‌باشد.
Uncinula necator (Schw.) Burr.

Kahesh Mafamot Diboar Aceokarab Bin Bajir O Aval Barah Mekin
Asth Drasax Be Hermo Amal Binyi Kahesh Panasil Ap O
Tegbarat Merofuloxizik Diboar Aceokarab Ilagam. Panasil Ap
Anzoi Mour Diboar Ave Diboar Aceokarab Apa O Rehasi
Aceokarabaha Ra Trimin Mekin. Mibanilin Fash Panasil Sibopalam
Aceokarabaha. Bar Mualilil Panasil Shembaii Moholuni Astd Khe
Mojib Plassomiz 5/5. Aceokarabaha Mi Shod (4). Bari Plan Fshar
Panasilil Diboar Aceokarab Hia Merop Pshde. 670 Kilo Paskal
Aceokarabaha. Astd Agsokarab Hia Desi Hada Astd Khe Panasilil Ap
Sibopalam Sisul Hia Prakam. Diboar Aceokarab Ap Epi
Plassom Akasa Tegbarat Mashaaliy Ha Tshol Kand W Bari Plan D Asareh

Mtaa Mour Astdade

Bimarii Gai. 31 (2): 102.


