تجزیه علیت عملکرد دانه و صفات وابسته در بولاف زراعی

محمد مرادی، عبدالملکی رضائی و احمد ارزانی

چکیده

این پژوهش به منظور تجزیه و تحلیل همبستگی‌های بین عملکرد دانه، اجزای عملکرد، طول دوره رشد رویشی و طول دوره پرشنده دانه در 12 رقم بولاف در زمینه تحقیقاتی دانشگاه کشاورزی دانشگاه صنعتی اصفهان در قالب طرح بلوک‌های کامل تصادفی در 3 تکرار اجرا گردید. همبستگی عملکرد دانه در واحد سطح با تعداد بارور در مر کم (0.17) تعادل دانه در خششه (0.49) و کل دوره پر شدن دانه (0.49) بین صفات مورد بررسی، تعادل خششه در مر کم و تعادل دانه در خششه بیشترین اثر مستقیم را بر تعداد دانه در خششه و وزن هزار دانه داشت (به ترتیب 0.84 و 0.80) که از همبستگی‌های آن با تعادل دانه در خششه (0.42) و وزن هزار دانه (0.15) پیش نیست. می‌توان از این صفات به عنوان میزان تعداد اصلی از ترکیب‌های بولاف تولید ارزانی پر محصول استفاده نمود.

واژه‌های کلیدی: اثر غیرمستقیم، اثر مستقیم، همبستگی بولاف

درک بهتر محدودیت‌های عملکرد نیازمند تجزیه رخدادهای
فناوری‌پیکری می‌باشد. عملکرد دانه، فاقد بسیاری افزایش وزن خشک دانه در واحدهای سطح و در دانه و در طول دوره تشكل دانه
است(17). بیشگاه (5) گزارش داد که یک دوره طولانی در طول دوره

مقدمه

یکی از موضوعات مورد توجه منشأ اصلی نباتات در
غلات دانه ریز افزایش عملکرد دانه در واحد سطح است.
بنابراین به تعیین دلایل تغییر پذیر عملکرد دانه نیاز

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و دانشیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
روش در گذشته از این آزمایش عملکرد دائمی می‌شوید. ولی همچنین اشاره نموده که عملکرد دائمی به ترکیب مخزن که به طور عمدی یا غیر عمدی از خود طوره روشی تعیین می‌شود و ترکیب فتوستیم در طول دوره پریندیشن دامن منفی است. این، او و درالدی (10) کارشگی نمود که در گذشته سه ذخیره قبل از گردشانی عملکرد دائمی دانه شرایط بینه ۵ تا ۲۰ درصد و در ۲۰ درصد می‌باشد، ولی در مورد بیولا (Avena sativa L.) بیشترین مقدار ماه خشک در طول دوره پریندیشن دانه تولید می‌شود و ذخيره مواد ساقه نمی‌کشی در عملکرد تهیه می‌کند. این، تعمیر اجزای تشکیل دهنده آن می‌باشد. شناسایی این اجزا و رابطه آنها با عملکرد دائمی دانه تواده در گیونش ارقام به میزان مؤثر واقع شود. در غلستان، اجزای اصلی عملکرد را تعیین کننده پایدار، تعداد دانه در خوشه و وزن متوسط دانه تشکیل می‌دهند. گرچه در واقع کلیه صفات از جمله یوزه‌های متوازن با طول دوره رشد ماله طول دوره رشد ویژه و طول دوره پریندیشن دانه نیز مهم می‌رود که از تشکیل عملکرد دائمی دانه نتیجه گیری که امکان عملکرد دائمی دانه گسستگی می‌باشد. اسپیرت و همکاران (12) همکاری مثبتی را در طول دوره پریندیشن دانه گندم بهاره گارش کردند. جاییکه و همکاران (13) در گندم دوره گارش نمودن که عملکرد دائمی دانه با طول دوره پریندیشن دانه همکاری مثبتی در ویلی با طول دوره رویه بستگی ندارد. همچنین در این برنی هر جزء منفی دانه داست. ویلا نیز تعداد دانه در میزبانه و وزن دانه همکاری مثبت داشت، ولی تعداد سیب در مریج دارای همکاری منفی بود و ارتباط مشابهی بین طول دوره پریندیشن دانه و اجزای عملکرد دائمی باند. دایرده و کنترلی (14) همکاری مثبتی را بین طول دوره پریندیشن دانه و عملکرد دائمی دانه در جنگ هیدرید درت پایه‌دار. با این حال گارش نمودن که عملکرد دائمی همکاری مثبتی زودرس دانه تواده با سرعت زیاد تجربه ماه خشک دانه و پک دوره پریندیشن دائمی افزایش یافته است. نام و ریسی (15) نتیجه‌گیری کردند که ارقام گندم به سرعت بالای پریندیشن دانه و
تجزیه علیه عملکرد دانه و صفات وایه در پولاف زراعی

پیامد پس از حذف اثر حساسیه بین دهی. برای تعیین طول دوره برشدن دانه از برای میزان لجستیک در نرمافزار آماری SAS بین زون دانه از 10 روز پس از گرده افشانی تا رسیدگی 10 مربوط نمونه برداری و هر مرتبه 24 ساعت و زمان استفاده داده این معادله به شرح زیر است.

\[W = \frac{W_t}{1 + \exp[-k(R - B)]} \]

\[T = \frac{RB + \sqrt{R^2 + 4RB}}{2R} \]

مواد و روش‌ها
آزمایش در سال‌های زراعی 1380-81 و 1381-82 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در 40 کیلومتری جنوب غربی اصفهان و در منطقه لرک، شهرستان نجف آباد با عرض جغرافیایی 32 درجه و 32 دقیقه شمالی و طول جغرافیایی 51 درجه و 33 دقیقه شرقی اجرا شد. افزایش مزرعه از سطح دریا حدود 1360 متر است و طبق طبیعت بندی کویی در اقلیم خشک سبب گرم و با نسبت‌های کرم و خشکسازی جای دارد (1). میانگین درصد بذر باندگی و دمای سالانه منطقه به ترتیب 140 میلی‌گرم و 145 درجه سنگین گراد است. در این پژوهش داروی رقم پولاف حال آلسکا، (Alaska)، Becom (Becon), Eagles (Eagle), Sikem (Sicem), Glen (Glen), Downland (Downland), Random (OAC Paisley), Ac Rigdon (Ac Rigdon) و آنالیس باوال (OAC Paisley) با مواد شرکتی و با ترکیبی 20 سنگین متر بود. کشت در زبان 20 آبان انجام شد. در دوره طرح رشته مراقبت زراعی لازم مانند آبیاری بر اساس نیاز گیاه و کنترل افرادیه مرز به طور کامل اعمال گردید. در هر واحد آزمایش تعداد روز تا خوشه‌دهی به اساس تعداد روز از کاشت تا مرحله‌های 50 درصد از خوشه‌های اصلی هر رقم به طور کامل از گلاف برگ خارج شدند. 140 شمارش. علاوه داده‌های مناسب با ترکیبی و دمای مناسبی از 140 دانه تصادفی از هر کرت بر حسب گرم به دست آمد. در نهایت عملکرد دانه بوته‌های یک متر طولی از دو رنگ
شکل 1. نمودار ضرایب مسیر جهت بررسی روابط بین عملکرد و صفات ویژه

جدول 1. ضرایب همبستگی بین صفات در 12 رقم پولاف

| صفت | عملکرد | وزن هزار | تعداد دانه | طول دوره | تعداد خوشه بارور
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - تعداد روز تا خوشه دهی</td>
<td>127</td>
<td>0/24</td>
<td>0/27</td>
<td>0/44</td>
<td>0/32</td>
</tr>
<tr>
<td>2 - تعداد پنجه بارور در متر مربع</td>
<td>0/77</td>
<td>0/31</td>
<td>0/41</td>
<td>0/67</td>
<td>0/60</td>
</tr>
<tr>
<td>3 - طول دوره پرشند دانه</td>
<td>0/66</td>
<td>0/35</td>
<td>0/45</td>
<td>0/70</td>
<td>0/55</td>
</tr>
<tr>
<td>4 - تعداد دانه در خوشه</td>
<td>0/51</td>
<td>0/25</td>
<td>0/35</td>
<td>0/60</td>
<td>0/33</td>
</tr>
<tr>
<td>5 - وزن هزاردانه</td>
<td>0/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی‌دار در سطح احتمال 5% و 1% درصد

میت و معنی‌داری داشت، ولی همبستگی تعداد روز تا خوشه‌دهی با طول دوره پرشند دانه معنی‌دار گردید. در مرحله اول تجربی علت رابطه عملکرد دانه در واحد سطح با تعداد پنجه بارور در واحد سطح، تعداد دانه در خوشه و وزن هزار دانه بررسی شد. این صفات در مجموع 86 درصد از تغییرات عملکرد را توجیه نمودند. آثار مستقیم و غیرمستقیم تعداد پنجه بارور در واحد سطح، تعداد دانه در خوشه و وزن هزار دانه بر عملکرد دانه در جدول 2 آمده‌اند. با توجه به نتایج پرشن دانه با عملکرد دانه میت و در سطح احتمال 5% معنی‌دار گردید. راسمونس و کالن (19) و گارسیا دل مورال و همکاران (11) نیز همبستگی بین عملکرد دانه و تعداد دانه را در گند میت گزارش نمودند. بر اساس تابع حاصل وزن دانه با عملکرد دانه همبستگی منفی ناچیزی داشت و تعداد روز تا خوشه‌دهی همبستگی منفی با عملکرد دانه است. همبستگی طول دوره پرشند دانه با تعداد دانه در خوشه و وزن دانه میت و 10 درصد
جدول ۲، آثار مستقیم و غیرمستقیم تعادل پنجه بارور، تعادل زن و وزن هزار دانه بر عملکرد دانه

<table>
<thead>
<tr>
<th>تعداد پنجه بارور</th>
<th>تعداد دانه در خوشه</th>
<th>وزن هزار دانه</th>
<th>تعداد پنجه بارور</th>
<th>تعداد دانه در خوشه</th>
<th>وزن هزار دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۲۳</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
<td>۰/۰۱۰</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
</tr>
<tr>
<td>۰/۰۱۰</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
<td>۰/۰۱۰</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
</tr>
<tr>
<td>۰/۰۱۰</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
<td>۰/۰۱۰</td>
<td>۰/۰۱۰</td>
<td>۰/۰۴۸</td>
</tr>
</tbody>
</table>

به دست آمده، اثر مستقیم تعادل پنجه بارور بر عملکرد دانه مثبت و بالا بود (۶/۰۴٪). همچنین اثر مستقیم تعادل دانه در خوشه بر عملکرد دانه مثبت بود (۰/۳۰٪). ولی اثر مستقیم تعادل پنجه بارور و وزن هزار دانه بر عملکرد دانه مثبت و ناچیز بود (۰/۰۳٪). آثار غیرمستقیم تعادل پنجه بارور به وحده سطح تعادل دانه در خوشه و وزن هزار دانه از طریق سایر صفات بر عملکرد دانه کوچک و یا ناچیز بود. چنین بر نظر می‌رسد که با افزایش تعادل پنجه بارور، سطح برگ باعث تغییراتی در رنگ و تراکم مخزن یا محیط خاص مورد گیاه افزایش می‌یابدکه به نهایت افزایش عملکرد دانه می‌گردد. این خصوصیات در مجموع درصد از تغییرات وزن دانه را تعیین کرده‌اند.

نتایج تجزیه برای وزن دانه (متوسط ناامن) به تعداد دانه در خوشه، تعادل پنجه بارور و طول دوره پر شدن دانه که در جدول ۳ آورده شده است. نتایج نشان داد که اثر مستقیم تعادل دانه در خوشه بر وزن هزار دانه مثبت و قابل توجه (۰/۰۳۴) و اثر غیرمستقیم آن بر وزن هزار دانه از طریق تعادل پنجه بارور مثبت (۰/۰۴)، از طریق طول دوره پر شدن دانه مثبت (۰/۰۵) است و به سبب کاهش هم‌سطحی آن با وزن هزار دانه می‌شود. اثر مستقیم تعادل پنجه بارور بر وزن هزار دانه منفی (۰/۰۱) و اثر غیرمستقیم طول دوره پر شدن دانه بر وزن هزار دانه مثبت (۰/۰۴) و اثر غیرمستقیم تعادل پنجه بارور از طریق طول دوره پر شدن دانه بر وزن هزار دانه منفی (۰/۰۴) و اثر غیرمستقیم طول دوره بارور بر وزن هزار دانه از طریق تعادل دانه در خوشه منفی و قابل توجه بود (۰/۰۳). گچمه طول دوره پر شدن دانه اثر مستقیم زیادی بر وزن هزار دانه تجزیه عملکرد دانه و صفات وابسته در پولاف زراعی

177
جدول ۳. آثار مستقیم(روی قطع) و غیرمستقیم تعداد پنته بارور و دوره پر شدن دانه بر روی هزار دانه

<table>
<thead>
<tr>
<th>اثر بالینی‌ها</th>
<th>ضریب همبستگی</th>
<th>تعداد پنته بارور</th>
<th>دوره پر شدن دانه</th>
<th>تعداد دانه در خوشش</th>
</tr>
</thead>
<tbody>
<tr>
<td>با اینچ دانه</td>
<td>0.55</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>با اینچ دانه</td>
<td>0.36</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>با اینچ دانه</td>
<td>0.60</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>تعداد دانه در خوشش</td>
<td>0.17</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>تعداد پنته بارور</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>دوره پر شدن دانه</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

جدول ۳. آثار مستقیم(روی قطع) و غیرمستقیم تعداد پنته بارور و دوره پر شدن دانه بر روی هزار دانه

<table>
<thead>
<tr>
<th>اثر بالینی‌ها</th>
<th>ضریب همبستگی</th>
<th>تعداد پنته بارور</th>
<th>دوره پر شدن دانه</th>
<th>تعداد دانه در خوشش</th>
</tr>
</thead>
<tbody>
<tr>
<td>با اینچ دانه</td>
<td>0.55</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>با اینچ دانه</td>
<td>0.36</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>با اینچ دانه</td>
<td>0.60</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>تعداد دانه در خوشش</td>
<td>0.17</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>تعداد پنته بارور</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>دوره پر شدن دانه</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

منفی گردید. نتایج تجربه علیه برای طول دوره پر شدن دانه و صفات مؤثر بر آن (تعداد پنته بارور و تعداد روی تا خوشش دهی) در جدول ۵ نشان داده شده است. این صفات در مجموع ٢٢ درصد از تغییرات طول دوره پر شدن دانه را نشان کردند که اثر مستقیم تعداد پنته بارور بر طول دوره پر شدن دانه مثبت و قابل توجه (٠/٢) و اثر غیرمستقیم این صفت از طریق تعداد روز تا خوشش دهی مثبت و ناچیز بود. همچنین اثر مستقیم تعداد روز تا خوشش دهی بر طول دوره پر شدن دانه معنی‌دار (٠/٠/٩٩٩) و اثر غیرمستقیم آن نیز از طریق تعداد پنته بارور بر طول دوره پر شدن دانه معنی‌دار (٠/٢٧).

با توجه به نتایج به دست آمده، تعداد پنته بارور در مجموع و تعداد دانه در خوشش بیشترین اثر را در ایجاد تغییرات عملکرد دانه داشته. تعداد پنته بارور معیار مهمی جهت

۱۷۸