جنین زایی بدنی از کالوس گیاه یونجه (Medicago sativa) با استفاده از اتیل استرداریول

چکیده

در پژوهش حاضر اثر اتیل استرداریول (کیکی از مشتقات استرولوزن) روی بازازی گیاه یونجه بررسی شد. نخست بدنه‌های یونجه در محیط در شرایط آزمایشگاهی کشت شدند. پس از آن قطعات جدایی کننده ساقه و هیپوکوتیل به محیط کشت این کالوس‌ها برده و کالوس‌های همبسته پدیده می‌گرفتند. برای بازازی گیاه کشت یونجه 14 محیط کشت با ترکیب هورمون‌های مختلف از اکسین، سیتوکینین و اتیل استرداریول ساخته شد و در 2 مرحله، یکی کالوس‌های 3 تا 4 هفته‌ای و در مرحله دیگر جدایی‌کردن هیپوکوتیل و ساقه یونجه به آنها متخلق گردید.

نتایج نشان داد کالوس‌های یونجه به محیط کشت‌های حاوی اکسین و اتیل استرداریول متخلق شده‌اند. بعد از چند ماهه ایجاد جنین سوماتیک، رنگ و ساختار نمودند. در قطعات جدایی‌کردن پس از 10 روز ظهور رشته دیده شد. بررسی نشان داد که ظهور رشته و ساختار و تشکیل جنین سوماتیک به راه اندازی اکسین و اتیل استرداریول کالوس‌ها است و حضور هریک از هورمون‌ها به تنهایی نمی‌تواند آثار درکرده شده را نشان دهد.

واژه‌های کلیدی: استرولوزن، اتیل استرداریول، بازازی یونجه

مقدمه

گیاه یونجه (Medicago sativa) در ایران دارای گونه‌های بسیار است و از نظر گیاهی، بسیار نیتروزون و از نظر دارویی بسیار حائز اهمیت است. این گیاه نسبت به شوری نسبتاً مقاوم بوده و بهبود رشد و نمو این گیاه از نظر

1. به ترتیب دانشیار و کارشناس ارشد زیست شناسی، دانشگاه علوم دانشگاه اصفهان
هرمون‌های BA و 2,4-D در جنبه‌های تولیدی و منابع طبیعی سوماتیک در گونه‌های بذری از این گونه‌ها به درجه‌بندی آنها در رده‌بندی زیستی استفاده می‌شود.

مواد و روش‌ها
سپاس به سازمان‌های وابسته‌های سیستم می‌گویند. به‌طور کلی، در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود.

نتیجه‌گیری به‌سمت ویژه‌ای است. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود.

در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود.

در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود.

در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود. در مکان‌های مختلف، کلمات و عبارات مربوط به سیستم در کلیه‌ها به‌طور کلی ثبت می‌شود.
جدول ۱. ترکیب هورمونی میکرهای کشت جنین زایی سوماتیک

<table>
<thead>
<tr>
<th>نام محیط کشت</th>
<th>ترکیب هورمونی که به محیط کشت پایه MS افزوده شده است</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (0.5 mg/L))</td>
</tr>
<tr>
<td>M2</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (1 mg/L))</td>
</tr>
<tr>
<td>M3</td>
<td>(NAA (0.5 mg/L) + TDZ (1 mg/L) + ethinyl estradiol (2 mg/L))</td>
</tr>
<tr>
<td>M4</td>
<td>NAA (0.5 mg/L) + ethinyl estradiol (0.5 mg/L)</td>
</tr>
<tr>
<td>M5</td>
<td>NAA (0.5 mg/L) + ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M6</td>
<td>NAA (0.5 mg/L) + ethinyl estradiol (2 mg/L)</td>
</tr>
<tr>
<td>M7</td>
<td>NAA (0.5 mg/L) + ethinyl estradiol (2 mg/L)</td>
</tr>
<tr>
<td>M8</td>
<td>NAA (0.5 mg/L)</td>
</tr>
<tr>
<td>M9</td>
<td>Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M10</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M11</td>
<td>IAA (0.1 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M12</td>
<td>IAA (0.1 mg/L) + ethinyl estradiol (1 mg/L)</td>
</tr>
<tr>
<td>M13</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L)</td>
</tr>
<tr>
<td>M14</td>
<td>NAA (0.5 mg/L) + BAP (1 mg/L) + Ethinyl estradiol (1 mg/L)</td>
</tr>
</tbody>
</table>

گرددید(شکل ۱). ۲۰ درصد از کالوس‌ها جنین تولید نمودند که میانگین تعداد آنها در هر قطعه کالوس ۲ عدد بود. در محیط M7 و M6 ۵۰ درصد و در محیط M5 و M3 ۲۰ درصد از کالوس‌ها تولید جنین سوماتیک نمودند. با وجود این که جنین‌های سوماتیک تولید شده از لحاظ مورفولوژی کاملاً قابل تشخیص بودند ولی برای اطمینان بیشتر مطالعات میکروسکوپی روي آنها انجام گرفت. نتایج به دست آمده در شکل ۲ نشان داده است. در این تصور میکروسکوپی سولهای مربوطی مانند ریشه و ساقه و بخش‌های میکروستی بالینی آنها کاملاً قابل رؤیت است. جنین‌های کشت M7 ناشی از جدید ۲ اثره شده است کالوس‌ها در سه محیط

<table>
<thead>
<tr>
<th>نتایج</th>
<th>توصیفی کشت جنین زایی سوماتیک در محیط‌های کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>کشت تهیه شده است کالوس‌ها در محیط M1</td>
</tr>
<tr>
<td>M2</td>
<td>کشت تهیه شده است کالوس‌ها در محیط M2</td>
</tr>
<tr>
<td>M3</td>
<td>کشت تهیه شده است کالوس‌ها در محیط M3</td>
</tr>
<tr>
<td>M4</td>
<td>کشت تهیه شده است کالوس‌ها در محیط M4</td>
</tr>
<tr>
<td>M5</td>
<td>کشت تهیه شده است کالوس‌ها در محیط M5</td>
</tr>
</tbody>
</table>

M5 ناشی از جدید ۲ اثره شده است کالوس‌ها در محیط M5
جدول 2. نتایج حاصل از بازآوری قطعات کالوس در محیط کشت‌های بازآوری M1-M14

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>تولید ساختار شبیه جنین سوماتیک بدون انداز زایی</th>
<th>تولید ساختار شبیه جنین سوماتیک بدون انداز زایی</th>
<th>تولید ساختار شبیه جنین سوماتیک بدون انداز زایی</th>
<th>رشد در کالوس‌ها کاملاً متوقف شد.</th>
<th>کالوس‌ها سبز شده و جنین سوماتیک همراه با ریشه و ساقه تولید کردن.</th>
<th>کالوس‌ها سبز شده و جنین سوماتیک همراه با ریشه و ساقه تولید کردن.</th>
<th>کالوس‌ها پس مدتی فهوهای شده و از بین رفتند.</th>
<th>کالوس‌ها پس مدتی فهوهای شده و از بین رفتند.</th>
<th>کالوس‌ها پس مدتی فهوهای شده و از بین رفتند.</th>
<th>کالوس‌ها پس مدتی فهوهای شده و از بین رفتند.</th>
<th>نوسافی و ریشه تولید کردن و لچ جنین سوماتیک مشاهده نشد.</th>
<th>کالوس‌ها بدن رشد ماندند.</th>
<th>کالوس‌ها بدن رشد ماندند.</th>
</tr>
</thead>
<tbody>
<tr>
<td>توصیف</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>40</td>
<td>50**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>محیط کشت</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
<td>M6</td>
<td>M7</td>
<td>M8</td>
<td>M9</td>
<td>M10</td>
<td>M11</td>
<td>M12</td>
<td>M13</td>
</tr>
</tbody>
</table>

**: بیانگر معنی‌دار بودن اختلاف داده‌ها (p<0.05) بر اساس آنالیز واریانس (ANOVA) می‌باشد.

شکل 1. ایجاد جنین سوماتیک در کالوس‌های بوته به در اکسین و اتانول استرادیول (محیط کشت M6) (پژوهش‌شناسی 1000)
جنین زایی سوماتیک از کالوس گیاه پونجه (Medicago sativa) با استفاده...
شکل ۳ ایجاد نوسانه در کالوسهای بونجه در محیط کشت M12

شکل ۴ مرحله مختلف باززاپی گیاه پیونجه از طریق ایجاد چنین سوماتکیک

۱. تهیه قطعات جداکشته از هیپوکتیل و ساقه
۲. تولید کالوس از قطعات جداکشته و انتقال آنها به محیط باززاپی
۳. باززاپی و تولید چنین سوماتکیک
۴. انتقال گیاهان به گلدان و کاهش تدریجی رطوبت
۵. ایجاد گیاه کامل
جنین زایی سوماتیک از کالوس گیاه پونجه (Medicago sativa) با استفاده...

براساس جمع بندی تایید به دست آمده بی نظر می‌رسد بهترین ترکیب هورمونی برای افزایش اندازه و تولید جنین سوماتیک در گیاه پونجه ترکیب کتک اکسین و اتانیل استرادیول (M12) و M6 می‌باشد. با توجه به معیارهای مجموع تولید ریشه و جنین سوماتیک از مهم‌ترین مشخصات حضور اکسین در محیط‌های کشت در شرایط آزمایشگاهی می‌باشد (11). علاوه بر این با گزارش همکاران (16) بر اساس استفاده عمکرده شیب به اکسین دارند. بنابراین به نظر می‌رسد در ترکیب اکسین و اتانیل استرادیول اختلاف ترکیب استرادیول با اثر متقابل خود با اکسین و یا عملکرد سیلوسیزیم (Synergism) و یا باعث یافته‌های نمایان ریشه و جنین سوماتیک مؤثر بوده است، ولی خود ساختار شیمیایی آن سرطان‌های استرادیول مشابه با استرادیول‌های مصنوعی در گیاهان با ماکائری‌می‌شود بر اساس استفاده‌ها عمل می‌کند.

کالوس‌هایی متقابل شده به محیط کشت M11 تا M8 بدون اینکه رشد کند، تحلیل رفت و فته‌های شده به نظر می‌رسد واکنش متغیر BAP و اتانیل استرادیول واکنش مفیدی نبود.

این انطباق نیز مجدداً گویایی این است که ممکن است اتانیل استرادیول نقش اکسین داشته و BAP می‌تواند اثر آن را خنثی کند. به‌هرحال با توجه به اینکه نقش دقیق هورمون‌های استروئیدی بر سلول‌های گیاهی کاملاً مشخص نشده است، این مزایی باید بررسی دقت‌تر علمی دارد.

با توجه به گزارش (10) قطعات ساقه و هیپوکول، به‌دست فعالیت برای بیابانی‌ها مستند، بنابراین برای انجام بیابانی‌ها مسئولیت و سیاستهای افدازه استفاده گردید. قطعات هیپوکولی و ساقه به اندام به‌طور تقریبی 15 سانتی‌متر به محیط‌های کشت مانند M14 مشابه مقداری گردید. نتایج نشان می‌دهد که قطعات جدایکانس و هیپوکولی هر به محیط کشت M7 متقابل شده و از یک هفته تولید ریشه نمودند. تعادل ریشه‌های تکاملی شده به‌طور مشابه 2 ریشه در هر قطعه جداییکانس بود. این نتایج نشان داد اتانیل استرادیول در القای ریشه بسیار مؤثر است.

منابع مورد استفاده

1. احسانیورع. و ف. امینی. 1379. کشت سلولی و بیابان‌کریمی انتشارات جهاد دانشگاهی اصفهان.
2. خرم‌نیا، ا. و م. روشی‌نیا. 1374. تحلیل آماری داده‌های طرح هم‌کیفی‌سازی اختلالات روانی اصفهان. مجله پزشکی دانشگاه اصفهان. 80، 206-212.
3. کریمی، ح. ا. 1375. گیاهان زراعی انتشارات دانشگاه تهران.
4. صریحیان، ر. 1381. آثار استروئیدین بر لیپوپروتئین‌های سرم را. پایان نامه کارشناسی ارشد علوم جانوری دانشگاه.