اثر کینتی نری رشد خوشه نارس قطع شده گیاه مزرع در شرایط عادی و شوری

سیدعلی محمد میر محمدی میبادی

چکیده
دوره نمودادن زایی، در حال حاضر حساس و مهم در زنگی کیفیت و مطالعه پاتنی بلندکردن گیاه است. تحقیق به شوری طی این مرحله، برای به دست آوردن ممکن‌ترین پاسخهایی برای بررسی علائم مزرعه، به عنوان یک پلنگ جنگ از آمریکا وارد شده بود. در این مطالعه، بررسی کشت خوشه نارس قطع شده در شرایط عادی و بی‌شوری انجام گرفت. کشت خوشه نارس قطع شده در شرایط آزمایشگاهی با پهنای تری و اثربخشی فلزات مختلفی نمک روي باد شده خوشه‌ها، همکثیفاً چه چکیده، باروری و تشکیل بهدر خوشه قطع شده گیاه علی‌مرکب مزرع در شرایط آزمایشگاهی مورد بررسی قرار گرفت. محیط کشت مایع حاوی ۰-۵ مولار کینتین نمطاً بی‌شوری باعث گردید و در حالی که در ابزاری نمک به این محیط، محیط کشت حاوی و انودورنم از پیشتر مورد مطالعه و باعث تشکیل پذردها غیرطبیعی و خطی جنین شد، پذرده‌های غیرطبیعی دارای جنین کودک و یا فاقد جنین بودند. حجم کم انودورنم و کوچک انتظار بذر از دیگر مشخصات پذرده‌های غیرطبیعی بوده، با این حال تعداد کمی از خوشه‌های جنین در حال رشد در محیط‌های کشت حاوی غلظت‌های کم نمک (۲/۵ درصد) بذرهای طبیعی تولید نمودند. به پس از قرار گرفتن در شرایط مناسب جوانه زدند.

واژه‌های کلیدی - کشت خوشه، شوری، علت مزرع: نمطاً زایی

مقدمه
میلیون‌ها هکتار از زمین‌های کشاورزی در دنیا به دلیل مسائله شوری به حالت بایدر درآمده و هر ساله در نتیجه آب‌یابی بی‌رویه به وسعت بیش از دو میلیون هکتار مورد توجه قرار می‌گیرد. مشکلات استفاده از ارقام و گونه‌های مقاوم به شوری (۲) و اجرای عملیات همبستگی مشتمل بر مدیریت صحیح آب‌پذیری و زه‌کشی (۱۳)، در این نوع زمین‌ها توسعه شده است. با این حال، استادیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

83
به طور دقیق مطالعه و صدمات شهری را روزی نمو زایی‌ی خوش‌های نهال فریت در زیر خانواده کلریدیسی‌ها و ارگروسیدی‌ها، خاطر داشتنی بیشتر نمک بروی گلهای خود قادرون بخشی از نمک جذب شده توسط گیاه را دفع نمایند. (1) گیاه علفی مغز ۳ مانند سایر گیاهان زیر خانواده کلریدیسی‌ها از این قابلیت برخوردار می‌باشد. در حال حاضر واکنش مشخصی اندام زایی گیاه به طعم و بر تیاب کربن‌های به شوری کل گیاه در مقایسه با تحت اندامهای زایی، مطالعه نشده است. استفاده از تکنیکی کشت خوشه، مطالعه اثرات شهری روزی سیستم زایی گیاه را به صورت مستقل فراهم می‌سازد.

اگرچه در بیست سال گذشته، علائم مشخصی به کشت خوشه یا خوش‌های گیاهان علفی انگلیسی پایه‌ای است، ولی تمرکز مطالعات روی معنادوی غلات شمال گندم (۴۰٪) چو (۱۸٪) و اخیراً روی غلیظ گلی نف (۱۷٪) بوده است. کشت خوشه و پاتنت‌سی با کارگری آن در زمینه‌های مختلف زراعی، فیزیولوژی و اصلاحی توسط چهارم (۵) بروسی شد.

از کاست که گیاه کامل در حال شور در محیط‌های کاست حاوی نمک می‌توان نتیجه اطلاعات کلی در مورد اثرات نمک فراهم آورد (۱). استفاده از اندام قطع شده گیاه و کاست آن در روی محیط کشت عبارت از نمک، امکان انتخاب راه‌اندازی تولید دی‌تری تغییرات ترمیمی انجام نشده در یک دوره خاص یا بی‌پاتن (۷). به عنوان مثال، محضق قادی است ضمن مطالعه توانایی بندوز در حال نمو در تحمیل صمامات ناشی از نش تشیوی، تغییرات ساختاری حاصل در نمو کیسه‌های تسلیم خود پسندی را به راه‌حل سیستمی‌های انرژی به‌کار بردن اثرات مستقیم نمک روزی قسمت روزی جدی‌تر، که از شناخت زیان‌ها و بر تیابی گیاه به قسمت رویی گیاه است. مطالعه فاکتورهای کنترل کننده نمک خوشه و بندوز در محیط علمی اکنون متکنل حکمرانی می‌باشد (۱۵٪). با استفاده از تکنیکی کشت خوش‌های نارس می‌توان اثرات شهری را به صورت مجزا و
شکل 1- مراحل مختلف نمو زاپشی خودش‌های قطع شده مرگ جهت تولید بذر دارای قوه نامه در شرایط آزمایشگاهی

لوله شیشه‌ای بپه ارتفاع 7/5 سانتی‌متر و قطر 1/5 سانتی‌متر تا 30 میلی‌لیتر مایع 1/2 سیترون و استکول (18) که در جمعی کاشت (جمع‌های قبل از کولکاوی تحت عنوان مجنون‌کاری 2 از شرکت سیگما) جا داده شده بود، کشت گردیدند (شکل 24). جمع‌هایی کشت داخل انفکش رشد در دمای ثابت 24 درجه سانتی‌گراد و طول روز 16 ساعت قرار گرفتند. بعد از باز شدن خوش‌چه‌ها و پیوستن آمدن کلاههای خوش‌چه‌ها، گردش اکسیژنی مصنوعی در شرایط عایر از میکروب انجام شد. بدنه‌های مورد نظر جهت گردش اکسیژنی مصنوعی از خوش‌چه‌ها باز شده تعدادی از خوش‌چه‌های مرحله نموی 2 (شکل 1) کشت شده در جمعی کاشت (شکل 24) یا در داخل ظرف پتری (شکل 25) تأمین گردید.

به منظور بررسی نمو زاپشی خودش‌های قطع شده کشت استریل، تعداد بیضی و پنجه خوش‌ها که در مراحل مختلف نمو زاپشی 1، 2 و 3 بودند (شکل 1) برطبق دستورالعمل شرکت

1- Wheat spikelet medium (WSM) 2- Magenta box 3- Sigma
تداوم رشد دنیو طبیعی خوشه‌های قطع شده در تیمارهای مختلف، قدرت باروری دانه گره، تشکیل یا عدم تشکیل بذر و قدرت جوانه زدن بذر اندوزه‌گیری شده، همچنین پارامترهای اثرات نمک طعام روی خروج خوشه و طول شدن ساقه در مراحل ابتدايی نمود، تعداد خروج‌های پاژ شده در خوشه‌های تحت تنش شوری، نمود دانه گره و کیسه چربی و خود ناسازگاری و تولید بذر در تیمار خوشه‌ها با تنش شوری مطالعه گردید.

نتایج
مزیت روش معفی شده در این مطالعه نا کنن روشن‌های مختلفی برای کشت خوشه‌های مانند روش دیوان و لی (5) و سیر و جنر (16) معفی شده است. روش معفی شده در این آزمایش از نظر طراحی و کاربرد بسیار ساده تر بوده و کشت خوشه‌های در محیط آزمایشگاه به آسانی امکان‌پذیر می‌باشد. از دیگر امتیازات این روش ناهم نمودین تهیه (تبدیل گازی لازم بین محیط داخل جعبه کاشت و بیرون)
جدول 1- بررسی خوش‌های کاشته شده گیاه مرغ به چک برخی از خصوصیات نمو‌زاپیشی، در محیط‌های مختلف کشت در شرایط آزمایش‌گاهی

<table>
<thead>
<tr>
<th>مرحله نمو</th>
<th>محیط کشت مايع</th>
<th>آب آشامیدنی</th>
<th>بافت‌زایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مولکول‌کوننده</td>
<td>مولکول‌کوننده</td>
<td>مولکول‌کوننده</td>
<td>مولکول‌کوننده</td>
</tr>
</tbody>
</table>

نمونه 2 تقریباً شبیه مراحل نموی خوش‌های دست نخورده روز گیاهی اصلی در گلخانه بود. عدم وجود دانه گرده سازگار در محیط کشت و درصد بسیار بالای از آزمایش‌گاهی برای کشت و در ظروف آزمایش‌گاهی از دست گرفته شد. منجر به تشکیل تکه‌های 50 درصد بود. در نتیجه خوش‌های گردید. بنابراین برای گیاهان در شرایط گلخانه و خوش‌های پشتوانه شده با پاکت 2 درصد بود. از گردیدن‌نشانی خوش‌هایی کشت شده در محیط آزمایشگاهی با دانه گرده درصد‌های مختلف نمک طعام نبات‌زدایی به‌صورت طبیعی، مرحله طولی شدن ساقه را طی نمایند و از غلاف‌بند پرچم خارج شوند.

ب- خوش‌هایی کشت شده بسیار گروه‌های شد. بیش از 50 درصد ضرورت نداشتند از خوش‌هایی کشت شده با پاکت 6 روز باشند. گرچه حدود نیمی از خوش‌هایی که با پاکت 4 روز شدند. مرحله نموی خوش‌هایی کشت شده در محیط آزمایشگاهی با دانه گرده.
جدول 1 - اطلاعات مربوط به درصد تولید بذر گیاه علف مرگ در شرایط مختلف گلخانه‌ای و آزمایشگاهی

<table>
<thead>
<tr>
<th>شرایط نشانه‌گذاری</th>
<th>درصد جوانه زدن</th>
<th>میزان تولید بذر از طریق زمان دردسته‌برداری</th>
<th>پرک پرچم (روز)</th>
<th>(μ ± σ)</th>
<th>(μ ± σ)</th>
<th>(μ ± σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان لغو</td>
<td></td>
<td>میزان تولید بذر از طریق طول گسسته و محیط خشونت</td>
<td>بذر</td>
<td>2/6/35/53</td>
<td>2/7/36/53</td>
<td>2/6/35/53</td>
</tr>
<tr>
<td>(n = 35)</td>
<td></td>
<td>(n = 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>محیط 1</td>
<td></td>
<td>میزان کشت مایع جانبی 16-7</td>
<td>بذر</td>
<td>3/2/58/63</td>
<td>3/7/62/53</td>
<td>3/5/58/63</td>
</tr>
<tr>
<td>(n = 35)</td>
<td></td>
<td>(n = 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>محیط کشت مایع جانبی بدون 16-7</td>
<td>بذر</td>
<td>3/0/58/63</td>
<td>3/0/58/63</td>
<td>3/0/58/63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 35)</td>
<td></td>
<td>(n = 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاخه آب آبی</td>
<td></td>
<td>میزان کشت مایع جانبی 16-7</td>
<td>بذر</td>
<td>3/0/58/63</td>
<td>3/0/58/63</td>
<td>3/0/58/63</td>
</tr>
<tr>
<td>(n = 35)</td>
<td></td>
<td>(n = 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ن: تعداد تلاقی‌های مورد بررسی، μ: میانگین، σ: اشباع میزان

شکل 2: اثر ظرف‌تهب‌های مختلف هورمون کیتین روی ادامه نمو زایش خورشیدی قطع شده علف مرگ. هورمون کیتین در ظرف‌تهب‌های بیکار رفت به اثر انحراف رشد زایش و تشکیل ساختار جدید در کارگردهای موجود در سطح گل شده است. هورمون کیتین + محیط کشت خشونت = 5-10 مولار کیتین + محیط کشت خشونت = محیط کشت خشونت = 5-10 مولار کیتین + محیط کشت خشونت = محیط کشت خشونت

علی‌رغم هورمون S - خورشید نارس محسوس در غلاف و S - ساختار تولید شده از کار خشونت.

معکوس کار 5 درصد بذر تولید گردید (جدول 2). هورمون کیتین سبب تداوم مراحل نموی خوشه‌ای بارا خوشه‌های نارس مراحل نموی 1 و صفر گردید. اگرچه در قسمت انتهایی
کاشت خوش‌خیمه‌های مراحل نمو ۱ – و صفر حاصل گردد. در تریک‌گان خوش‌خیم‌های یکی گونه‌زایی نمی‌کند. نمایندگان این نکته را از داده‌های بررسی‌ها در صفر اشاره می‌کنند.

از خوش‌خیم‌های قابل توجه در حرکت می‌توان به سه دسته تقسیم کرد: دسته اولیه، دسته دومی و دسته سومی.

۱- دسته اولیه: در این دسته شامل کاشت‌هایی می‌باشند که ابتدا در مراحل نمو ۱ – و صفر حاصل گردد.

۲- دسته دومی: در این دسته شامل کاشت‌هایی می‌باشند که ابتدا در مراحل نمو ۲ – و صفر حاصل گردد.

۳- دسته سومی: در این دسته شامل کاشت‌هایی می‌باشند که ابتدا در مراحل نمو ۱ – و صفر حاصل گردد.

نحوه‌ای مبهمی که در جدول ۲. دانه‌های گز دو لایه، مطلوبیت خوش‌خیمه‌های مرحله دومی، با توجه به طبیعت زمان و حال کاشت خوش‌خیمه‌های گز دو لایه می‌باشد. در این مطالعه، از دسته‌هایی برخوردار بودند که با توجه به experiencia، ممکن است به شکل‌های مختلفی از خوش‌خیمه‌های گز دو لایه، با توجه به طبیعت زمان و حال کاشت خوش‌خیمه‌های گز دو لایه می‌باشد.
کیتیین بذر حاصل گردید، در محیط‌های کشت متنوع حاوی نمک
تای میزان 1 درصد باروتی کسی‌گونه مشاهده شد. طبیعی بودن
توک‌دادن گردیده استماعاً می‌توان یا به علت عدم انتقال صرعی نمک
در روزهای اول کاشت خوش‌خیمه باد. با این حال بیشترین اثرات
شوری در توک‌دادن بذر محیط‌های دیده شد. توک‌دادن بذری
طبیعی می‌توانند نتیجه عواملی باشد که برای تنظیم
فناور اسیردی درون سیستم‌های خصوره‌های نور بزرگی می‌کند.
ابن امر اخو از
انتقال آل کافی به فسماهی بالای خصوره جلوگیری می‌کند.
تفاوت حساسیت مراحل مختلف نمای خصوره به تنش‌کسی
آب، با تابع مطالعات گلخانه‌ای مطالعات دارد (۴).

سیاست‌گزارتی
از آقایان دکتر محضری خواجه‌پور، دکتر عبدالصمد
رضایی و دکتر خورشید زمجرد به ترتیب دانش‌پژوه، استاد و
brahim شاه رضا و اصلاح‌نوازی دانشگاه، صنعتی اسفندیار
و آقای دکتر مستوفی و لیا زاده استاد دانشگاه تبریز که متن مقاله
را با وقت مورد بازخوانی قرار داده و نظرات اصلاحی آنها در
متن مذکور اعمال گردید و از شناسنامه‌نامه که تابی مقاله را
به انجام رسالدنده صمیمانه سیاست‌گزارتی و تشکر می‌گردد.

منابع مورد استفاده

Lieth and A. Al-Masoom (Eds.). Towards the rational use of high salinity tolerant plants. Vol. I, PP.

1- Ryegrass