بررسی روند تغییرات دماي متوسط سالانه در ايران

بهادر شيرغلامي و پيژن قهرمان

پکيده

پژوهش‌های انجام شده در سطح جهان به طور عمدی یا غیر عمدی تبدیلی در دماي متوسط است. با این وجود، گزارش‌های مثبت بر کاهش دچاری حرارت نيز وجود دارد. در این پژوهش، تغییرات در دماي متوسط سالانه در ایسپانیا بررسی شد. پژوهش در قلم سرد و ماطربند، 12 ایسپانیا در قلم استی و 19 ایسپانیا در اقلیم بخاری-بر اساس اقلیم‌شناسی کوپین که در آماری و حادثه‌های کاهش دماي متوسط سالانه در دو ساله، به روش کمترین معیار خط روش- روش مورد بررسی قرار گرفت (روش ورلدویز منجر به نتایج متفاوتی شده).

نتایج نشان داد که در 95% ایسپانیا تغییرات دما در روند مشبک و در 71% ایسپانیا دارای روند مشبک می‌باشد. با در نظر گرفتن سطح معنی‌داری سه ناحیه روند مشبک، مشبک و بدون روند در ایران مشخص داده شد. به نظیر نمایندگی که توزیع جغرافیایی این ایسپانیاها از یک الگوی مشخص تبعیت کند. نتایج بررسی در دوره مشترک آماری (1988-1994) نشان داد که در 86% ایسپانیا روند مشبک و در 32% وقتی خاکی است. توزیع جغرافیایی ایسپانیاها در این حالت باید تا حدودی مناسب باشد. به نظیر نمایندگی که توزیع جغرافیایی این ایسپانیاها به روند مشبک، مشبک و بدون روند را از خود نشان داده. با توجه به نتایج به دست آمده می‌توان گفت که بیشتر مناطق در سال‌های آتی با اقلیم بخاری و در این حالت باید بررسی دامادست. آماری معنی‌دار نشده است، ولی مشبک بودن این شبک باانگار اندازه‌گیری می‌باشد.

واژه‌هاي كليدي: درجه حرارت، اقلیم، روند زماني، ايران

1. به ترتيب دانشجوی سابق کارشناسی ارشد و استادیار ایزباری، دانشکده کشاورزی، دانشگاه فردوسی مشهد
مقدمه
گرچه تمامی علم تغییر با عدم تغییر آب و هواهای دنیا کاملاً مشابه نشد، اما درباره تغییر آب و هواهای وضعیت مورد توجه بیماران و برخی از بیماران به عنوان متوسط شرایط آب و هواهای در منطقه خاص و معینی توصیف می‌شود و تغییر اقلیم عبارت است از تغییر منجر در متوسط داده‌های بومیانسه در طی یک دوره معین زمانی. این دوره زمانی معمولاً به سال و یا بیشتر می‌باشد. (۱۹).

اقلیم نیز مانند هوا در طی زمان تغییر می‌کند. با این وجود به‌نظر می‌رسد که بدان بعضی از تغییرات را پیش‌بینی کرده و احتمالاً بعضی دیگر از این تغییرات برای بشر ارزیابی ناشناخته خواهد بود. به‌نظر می‌رسد که پنج عامل غلط کلیه‌گاه‌ها گلخانه‌ها، میزان اوزون در استاتوسفر، افسانه‌ها در تراپوسفر، افسانه‌ها در استاتوسفر و عکس‌های دسترسی را که در خورشیدی (لیسن‌ها) عوامل و برای توجه تغییرات درجه حاره‌های دیده در قرن اخیر و دهه‌های پیش‌بینی (۲۶) به‌عمل‌آوری شدته بیشتر مربوط است و دو تا آخر از جمله عوامل طبیعی و محصول می‌باشند. آزمایش‌های آماری روی آمارهای این فرق صورت‌گرفته‌است که اطمنان ۹۹/۷٪ درصد این امر برای ناشناخته‌های بزرگ (۲۸) روی متوسط دامای جهانی بین سال‌های ۱۹۷۵ تا ۱۹۹۷ و حتی تغییرات ناشی‌از داده در این روند به خوبی با تغییرات گازهای غلاف‌های توضیح داده می‌شود (۱۵). تغییرات اقلیمی احتمالاً می‌تواند به عوامل مختلفی در ناشی‌شود. تغییر در زاویه ا派出ی در زمین و چابه‌چایی در مدار آن مربوط شود.

مقدماتی انسان‌پردازی پیش‌بینی نموده‌اند که چهار سیاره مایع به‌طور پیوست گذاشته‌اند. این موضوع با بی‌بین‌نمایی اثرات این اتفاقات و ویژگی‌های محیط زیستی که در دو دهه گذشته دامای متوسط بر روی اقیانوس‌ها به میزان ۲/۲ بر روی خشک‌ها به میزان ۲/۳ در جریه سانتری جوری در اقیانوس‌ها است (۲۲). بررسی‌های انجام شده روز از روند دامای در اساس افراد داشت که در طی سال‌های ۱۹۹۰ دامای هوا در کل کشور به‌طور متوسط ۰/۸ درجه سانتی‌گراد افزایش داشته است (۱۷). این افزایش
در ماه‌های گرم سال به میزان 30 درجه سانتی‌گراد است. با این وجود مقدار افزایش در ماه‌های سرد گزارش نشده است.

همسال داده در دوره زمستان 1961 تا 1970 در منطقه خشک شمال شرقی نیز متوسط ماهانه دمای حداکثر و حداقل روزانه به میزان 15 درجه سانتی‌گراد افزایش یافته است.

همچنین با استفاده از اندازه‌گیری دمای سطح زمین در مرکز آمریکا و با استفاده از اطلاعات ماهواراهی، مشخص شد که در طی سال‌های 1962 تا 1970 در ماه‌های زمستان و زوینی میزان دمای روند افزایشی به میزان 2 درجه سانتی‌گراد در دهه را دارا بوده است و میانگین ماهانه اختلاف دمای حداکثر و حداقل به میزان 1/6 درجه در دهه دار به‌طور اصلی در جهان بوده است.

برخلاف گزارش‌هایی که نشان دهنده افزایش درجه حاره بود، گزارش‌هایی همچون از کاهش درجه حاره حاضر وجود دارد. پژوهش‌های 24 اطلاعات عاماً و در سیاست‌های کلی در مورد تغییرات دمای جهانی برای دوره 1959-1988 تحلیل می‌کند و برای نیم‌کری مسیر روند مثبت می‌باشد. برای اولین بار در این مقاله می‌شود.

شامل و شماره‌گذاری با توجه به مناظر بررسی و وجود روند در یک سری مزمنی از روشن‌های متعدد آماری می‌توان بهره جست (14 و 26). گرچه این تغییر درکردن که دچار اثرات کاهش دمای جهانی در مطلوب بررسی پاترایشی اقلیمی با مقادیر بیشتری استفاده شده‌است (مثلاً 10). ویلی ما دو مقاله دیگر تیز استفاده کردم تا حساسیت گزارش‌های شیلیان دردست داشته باشم که مورد بررسی قرار گیرد. با این وجود پایدار توجه نمود که این روشهای عمده‌ی مدل‌سازی شیلیان و برای استفاده از آنها پیش شرط‌هایی در مراجع آورده نشده است. از آنجا که روش انتخابی هم در مقاله توضیح داده شده است و برای استفاده در مقاله استفاده نمودیم.

رونهای خفی (13) به معنی کلی از این روشهای عمده‌ی مدل‌سازی استفاده شده بود که در یک سری مزمنی در این آستانه بر روی مسیر کردنی و از تو در روز دیگر برای مقایسه در انتهای مقاله استفاده نمودیم.

کاهش خط رگرسیون‌ها و علائم حداکثر و حداقل روند نشان داده شد. این مقاله مستقل (زمان، X و باوبان، X) به دست می‌آید و سپس آماره r^2 به آن b عرض از میان‌های خط می‌آورد و سپس آماره r^2 به آن b عرض از میان‌های خط می‌آورد و سپس آماره r^2 به آن b عرض از میان‌های خط
آزمون ولد- وولفوندزی (A): برای یک سری به طول N

\[R = \sum_{i=1}^{N} x_i x_{i+1} + x_N x_1 \]

که \(\bar{X} \) است (آماره X, X, , , X)

پرازش داده شده و انحراف معیار داده‌ها (رابطه 1) است.

\[s_b^2 = \frac{S^2}{\sum (X - \bar{X})^2} \]

که در آن \(S^2 \) از رابطه (2) به دست می‌آید.

\[S^2 = \frac{1}{n-1} \sum (Y_i - \bar{Y})^2 \]

فرضیه‌های صفر و مقابل با صورت زیر تعریف می‌شوند:

\[H_0: b = 0, \quad H_1: b \neq 0 \]

اگر قدر مطلق \(t \) از جدول t-student نشان است، در این صورت شیب خط اختلاف معنی‌داری با صورت داشته و از آن به عنوان روند در سری زمانی پاید می‌شود.

آزمون من-کندال (K): اگر \(y \) سری مقادیر سالانه عامل مورد نظر (دما در اینجا) به طوری که \(N \) به طوری که

\[t = \frac{1}{N-1} \sum \alpha \frac{y_i / N}{\text{متانتو}} \]

\[c = \frac{S + m}{\sqrt{V(S)}} \]

انتحاب استیگه

طول دوره آماری عامل بسیار مهمی در بررسی‌های آماری

باشد. به طوری که هر اندماج طول دوره آماری بیشتر و در

واقع آمار طول مدت از یک پارامتر در اختیار باشد. تجزیه و

تحلیل انجام شده از دقت انتخاب بسترهای برخورد خواهد بود.

ایستگاه‌های سیستماتیک در اینون در مقایسه با استیگه‌های

کلیکولوژی از طول دوره آماری بیشتر برخوردند. بنابراین

نخست لیست یک ایستگاه‌های سیستماتیک از پژوهشکده اقیان

شناسی مشاهده اخذ شد. بر اساس آمار ارائه شده، تعیین کل

ایستگاه‌های سیستماتیک ایران ۱۵۰ ایستگاه می‌باشد. دوره آماری

این استیگه‌ها به ۰۲۸ سال (محدود به سال ۱۹۹۸ که جمع آوری آمار مکرر بود)

متغیر است. به طور مسلم بررسی روند با طول دوره آماری کم

قابل انتخاب نمی‌باشد. از این رو نمی‌توان در طول دوره آماری

سال انتخاب نشده. این دوره در بررسی‌های اقلیم‌شناسی نیز غالباً

مورد توجه است. بنابراین از میان کلهاسی استیگه‌های سیستماتیک،
تعداد ۳۴ ایستگاه که دارای شرایط مذکور بودند انتخاب گردید. این تعداد ایستگاه در حال حاضر به‌طور مشتری‌ای تعدادی است که با توجه به کمیت آماری می‌تواند مورد بررسی قرار گیرد.

در شکل ۱ ایستگاه‌های انتخابی روز قهقه‌ای قلمی به روش کویین (۵) مشخص و ارائه شده است. به طور کلی ۵۱۳ مورد، ۱۲ ایستگاه (۶٪) از کل ایستگاه‌ها در اقلیم مرطوب و رود، ۱۱ ایستگاه (۲۲٪) در اقلیم استوی و ۳۳ ایستگاه (۶۲٪) در اقلیم بهارانه که ویژگی‌های آن برای ادامه بررسی‌ها داشته‌اند انتخاب کیمی.

محاسبه روند

به منظور محاسبه روند در مدت دمای متوسط سالانه، نخست دمای متوسط ماهانه از منطقه‌ی بین دمای حداقل و حداکثر ماهانه به دست می‌آید و سپس دمای متوسط سالانه نیز از متوسطگری بین دمای متوسط ماهانه برای هریک از ایستگاه‌های محیطی مورد طراحی خواهد شد. به منظور انجام آزمون روند، ابتدا سال‌های آماری در یک ستون و دمای متوسط سالانه در ستون دیگر در محیط اکسل ۹۷ وارد شدن و سپس شبک خط و عرض از مبدا خطی که با روش کمترین مربعات خطا به دست آمده بود، معین گردید. به منظور انجام آزمون معنی دار باید شبک خط به علاوه صفر با آزمون روند آماری دو معادله را محاسبه گردید.

آزمون روندی معنی‌دار بودن تفاوت شبک خط با صفر در سه مرحله به ترتیب زیر انگر می‌گردد:

الف) برای کل طول دوره آماری: بینی طول دوره آماری از سالی که استیگاه مورد تعریف دارای آمار می‌باشد تا سال ۱۹۹۸ در نظر گرفته می‌ viene. ب) دوره آماری مشترک: به منظور نگرش یکسانی به وضعیت روند دمای متوسط سالانه در هر یک از استیگاه‌ها، بایستد دوره آماری مشترک انتخاب می‌شود. این دوره آماری مشترک طولانی‌ترین دوره‌ای خواهد بود که کلیه استیگاه‌ها دارای آمار باشند و از سال ۱۹۸۸ تا ۱۹۹۸ انتخاب گردید.
جدول 1. شب‌خوردن در دو رونده در مدل سطحی متوسط‌سالانه در کل دوره و دوره مشترک آماری (1968-1998) در استان‌های مختلف ایران

<table>
<thead>
<tr>
<th>استان</th>
<th>قلمی بی‌بانی (BW)</th>
<th>قلمی استیم (B3)</th>
<th>قلمی معدن و مسولی (B2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>رامسر</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>رشت</td>
<td>0/02</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>زنجان</td>
<td>0/02</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>شیراز</td>
<td>0/03</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>قزوین</td>
<td>0/04</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>کرمانشاه</td>
<td>0/05</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>گرگان</td>
<td>0/06</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>مشهد</td>
<td>0/07</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>یزد</td>
<td>0/08</td>
<td>0/01</td>
</tr>
<tr>
<td></td>
<td>همدان</td>
<td>0/09</td>
<td>0/01</td>
</tr>
</tbody>
</table>

*معنی‌دار در سطح 5 درصد

پیش‌گویی می‌تواند (30)، گزارش‌های مربوط به کاهش در نیز وجود دارد. به‌طور کلی این بررسی نشان داد که اکثریت دارود در برخی از نقاط به‌طور محدود و نه در نقاط جهتی کردن که برخی از این عوامل محتمل چون نیز وجود دارد. بحث موجود در سطح می‌تواند با سایر مطالعات مربوط به البرورد در نیز تأیید می‌شود. نمونه (7) این نتایج به‌طور یک‌پلاکه که ناشی از یک روند یک‌پلاکه
جدول 2. تعداد و تراکم ایستگاه‌های سیونیک با روند مشخص برای دمای متوسط سالانه در اقلیم‌های مختلف ایران

<table>
<thead>
<tr>
<th>اقلیم</th>
<th>جهت روند</th>
<th>تعداد</th>
<th>تراکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیابان (84)</td>
<td>منفی</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>استی (11)</td>
<td>منفی</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>معتدل و مرتوب (14)</td>
<td>منفی</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>سرد و مرتوب (2)</td>
<td>منفی</td>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

جدول 3. تعداد و تراکم ایستگاه‌های سیونیک با روند معنی‌داری مشخص در سطح 5 درصد برای دمای متوسط سالانه در اقلیم‌های مختلف ایران

<table>
<thead>
<tr>
<th>اقلیم</th>
<th>جهت روند</th>
<th>تعداد</th>
<th>تراکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیابان (48)</td>
<td>منفی</td>
<td>3</td>
<td>42/86</td>
</tr>
<tr>
<td>استی (11)</td>
<td>منفی</td>
<td>3</td>
<td>42/86</td>
</tr>
<tr>
<td>معتدل و مرتوب (14)</td>
<td>منفی</td>
<td>5</td>
<td>45/25</td>
</tr>
<tr>
<td>سرد و مرتوب (2)</td>
<td>منفی</td>
<td>4</td>
<td>57/33</td>
</tr>
<tr>
<td>بیابان (23)</td>
<td>منفی</td>
<td>12</td>
<td>35/49</td>
</tr>
</tbody>
</table>

* تعداد ایستگاه‌ها
نتایج بررسی در هر یک از اقلیمها به جدول 3 خلاصه شده است. به طور کلی بیشترین روند معنی‌داری مثبت در ایستگاه‌های با اقلیم پیمانی دیده شده است. به طوری‌که در 76/2\% از ایستگاه‌های مورد بررسی روند مثبت وجود دارد و کمترین آن نیز در اقلیم‌های سرد و مطبوع (5\%) دیده شد. بیشترین روند معنی‌داری مثبت در اقلیم‌های سرد و مطبوع (5\%) و کمترین آن نیز در اقلیم‌های پیمانی (4\%) و وجود دارد. هم چنین اقلیم سرد و مطبوع دارای بیشترین ایستگاه‌هایی است که در آن روند در مدت میان متوسط صفر می‌باشد (50\%) و اقلیم معادل و مطبوع نیز کمترین رقم (28\%) را از این لحاظ به خود اختصاص داده است. به طور کلی در 76/2\% ایستگاه‌ها روند معنی‌داری و در 43\% نیز روند معنی‌داری وجود دارد. به طور مشخص تابیه به دست آمده برای ایستگاه‌های مشهد به نامی کنمایه و به‌طور معنی‌داری در دست آمده برای ایستگاه‌های مشهد به نامی کریم‌زاده و فهرمان (3) مطابقت دارد.

برای این که مشخص شود که روند محاسبه‌شده تحت تأثیر یک چنین وضعیت انتخابی بوده است، تعادل متقابلی که دمای سالانه بیشتر یا کمتر از میانگین بود شمارش شد. ممکن است
روند صفر حاکم می‌باشد. علاوه بر آن، تعداد استگاه‌هایی که در آنها رویدم ماه دوم بوده کمی کمتر شده است. نتیجه نشان می‌دهد که بینایی‌های نیز اتفاق افتاده است به‌طوری‌که برخی از استگاه‌ها که در دوره آماری رویدن در آنها معنی دار بوده، تغییر دارند. معمولاً در شرایط رویدن در شرایط استگاه‌هایی که در کل دوره آماری رویدن در رویدن بوده، داده‌ها به نسبت این استگاه که در این تعداد برابر است. همچنین بیشتر رویدن دیده می‌شود.

در دوره مشترک آماری نیز همانند کل دوره آماری، آقیلین بینایی بیشترین (20/31) و مرتبل دار (40/60) تغییر معنی‌داری بیشتر در قسمتی از مدت شده است. در آب و باکس (9) در گروه مورد متعادل و مرتبل بیشتر در قسمتی از مدت شده است. حاکی از این تغییر در این استگاه‌های تحت مطالعه کم‌تر (15/20) بوده‌است. توسعه جغرافیایی این استگاه‌ها در شمال غرب و جنوب شرق به دو شامل 2 استگاه در این استگاه‌ها و مرتبل (آرقی‌های هندی) و یک استگاه در بخشی از الگوی دیگر (کرمان در پیمان، زاهدان در استگاه‌ها و سنندج در سرد و مرتبل) می‌باشد. می‌شود. رویدن دما در دوره مشترک و کوتاه نیز استگاه این تغییر می‌باشد.

همالی که در شرایط استگاه‌هایی که در کل دوره آماری رویدن در گروه مورد متعادل و مرتبل بیشتر در قسمتی از مدت شده است. می‌شود. رویدن دما در دوره مشترک و کوتاه نیز استگاه این تغییر می‌باشد.

بررسی رویدن تغییرات دما در دوره مشترک آماری پوشان داد که تغییر طول دوره آماری از کل دوره به دوره مشترک (57/1986) بعضاً به تغییر در وجود یا عدم وجود معنی دار رویدن نیز شده است. جدول 3 یک مقایسه طبیعی بین تحلیل رویدن در دوره زمانی را پوشان می‌دهد. نتایج نشان می‌دهد که این حالت نیز در 10 استگاه (5/20) رویدن معنی‌دار شده است که در 7/20 استگاه (5/20) رویدن معنی‌دار می‌باشد.

شیب خط رویدن در مدت شده است (جدول 1). بطوری که در مجموع 34 استگاه مورد مطالعه، در 27 استگاه شیب خط رویدن در مدت دما متوسط سالانه منفی و در 11 استگاه منفی

شیب دارد. به بیان دیگر در 86 درصد استگاه‌های مورد بررسی شیب داشته میدانند و در 24 درصد نیز مثبت این استگاه‌ها (کرمان، ارومیه، همدان) جدول 2 در دوره آماری به می‌بیند تغییر پیدا کرده است. همچنین شیب خط در استگاه‌های موجود در اقلیم استیج سی 2 از تغییر دوره آماری بدون تغییر باید مانده است. می‌توان از بین نتایج در مورد ماه‌های مختلف در مطلق خودداری کرد. جدول 2 11 نشان را نشان می‌دهد.

بررسی رویدن تغییرات دما در دوره مشترک آماری نشان داد که تغییر طول دوره آماری از کل دوره به دوره مشترک (1986) بعضاً به تغییر در وجود یا عدم وجود معنی دار رویدن نیز شده است. جدول 3 یک مقایسه طبیعی بین تحلیل رویدن در دوره زمانی را پوشان می‌دهد. نتایج نشان می‌دهد که این حالت نیز در 10 استگاه (5/20) رویدن معنی‌دار شده است که در 7/20 استگاه (5/20) رویدن معنی‌دار می‌باشد.
روند دما متوسط با طول دوره‌های متغیر
بررسی روند دما متوسط با طول دوره‌های متغیر (از سال مشخص تا 1989) انجام گردید. بین ترتیب که از ابتدا نسبت به حدف سال‌های آماری و کوتاه تمدن طول دوره‌های آماری (حداقل طول دوره 5 سال) اقدام و روند دو پارامتر فاصله ذکر محااسبه گردید.

بررسی ها نشان داد که رفتار پارامتر دما متوسط در دوره‌های مختلف آماری متغیر بوده و گونه‌ای که در طی دوره‌های متغیری وجود و با عدم وجود روند در مقادیر متغیر در حال تغییر است (جدول 4) بررسی این جدول مشخص می‌سازد که رفتار ایستگاه‌های تحت بررسی با پیدا شدن روند یکسان می‌باشد. به طوری که روند در بعضی از ایستگاه‌ها یکچهت است. در چنین ایستگاه‌هایی (22 مورد) نهایاً روند "معنی‌داری" مثبت حکم نماید. گرچه سال شروع آن کاملاً متفاوت است، نهایاً مورد خلاف در این دسته ایستگاه بندر عباس با روند معنی‌دار منفی دما از سال تأسیس می‌باشد.

بنابراین نتایج از نظر دور داست که در سال‌های مختلف امکان تغییر جهت روند، ولی غیر معنی‌دار، کامل تا ممکن می‌باشد (اطلاعات نشان داده نشد). از میان کلیه ایستگاه‌ها، ایستگاه همدان در سال روند معنی‌داری از خود نشان نداده است. با این وجود، روند در این ایستگاه برای کل دوره آماری و برای دوره مشترک منفی می‌باشد (جدول 1). باید ایستگاه بیش از رفتار نوسانی برعکس داده بودند که از این تعداد در 10 مورد معنی‌دار منفی اولیه به می‌ثبت بدل شده است؛ ایستگاه اصفهان رفتار مخالفی با 10 ایستگاه دیگر دارد. بنابراین نتیجه عده‌ای که می‌توان از این مبحث گرفت این است که 31 ایستگاه از 32 ایستگاه انتخابی روند معنی‌دار مثبت دما را چه از ابتدا و چه در سال‌های بعدی، تثبیت نموده‌اند.

این که به چه دلیل در طول سال‌های متوالی احتمال تغییر جهت در شیب فیخ روند، ولی غیر معنی‌دار، وجود دارد ممکن است به دلیل رفتار نوسانی پارامتر باند. این رفتار نوسانی را می‌توان به‌طور مشخص در تغییرات مبنای محرک 5 ساله مشاهده شد. با توجه به این که میانگین متحرک پنج ساله
جدول 4: اولین سالی که در استیگاه مشخصی روند تغییرات متوسط دمای سالیانه معنی‌دار می‌شود.

<table>
<thead>
<tr>
<th>سال شروع اولین سال روند معنی‌دار</th>
<th>سال شروع اولین سال با روند معنی‌دار</th>
<th>استیگاه مثبت</th>
<th>استیگاه منفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>رامسار</td>
<td>---</td>
<td>1957</td>
<td>---</td>
</tr>
<tr>
<td>ایلام</td>
<td>---</td>
<td>1957</td>
<td>---</td>
</tr>
<tr>
<td>اهواز</td>
<td>1955</td>
<td>1957</td>
<td>---</td>
</tr>
<tr>
<td>بندرعباس</td>
<td>1957</td>
<td>1951</td>
<td>---</td>
</tr>
<tr>
<td>بوشهر</td>
<td>1957</td>
<td>1951</td>
<td>---</td>
</tr>
<tr>
<td>زابل</td>
<td>1954</td>
<td>1957</td>
<td>---</td>
</tr>
<tr>
<td>کرمان</td>
<td>1956</td>
<td>1955</td>
<td>---</td>
</tr>
<tr>
<td>کرمان</td>
<td>1956</td>
<td>1955</td>
<td>---</td>
</tr>
<tr>
<td>مسجد</td>
<td>1954</td>
<td>1955</td>
<td>---</td>
</tr>
<tr>
<td>همدان</td>
<td>1955</td>
<td>1955</td>
<td>---</td>
</tr>
</tbody>
</table>

جدول 5: اقلیم بیابانی (Bw)

<table>
<thead>
<tr>
<th>اقلیم سرد و مرطوب (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصفهان</td>
</tr>
<tr>
<td>بند</td>
</tr>
<tr>
<td>تریت جهنده</td>
</tr>
<tr>
<td>تهران</td>
</tr>
<tr>
<td>زاهدان</td>
</tr>
<tr>
<td>سیاه‌ما</td>
</tr>
<tr>
<td>شاهرود</td>
</tr>
<tr>
<td>فسا</td>
</tr>
<tr>
<td>کاشان</td>
</tr>
</tbody>
</table>

جدول 6: اقلیم استیمی (Bcs)

<table>
<thead>
<tr>
<th>اقلیم معتدل و مرطوب (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اراک</td>
</tr>
<tr>
<td>ارومیه</td>
</tr>
<tr>
<td>یزد</td>
</tr>
<tr>
<td>خرم آباد</td>
</tr>
</tbody>
</table>

در استیگاه‌های تحت مطالعه به‌طور کامل مشاهده می‌باشد. با این حال تنها در سه استیگاه (فسا در اقلیم استیمی) و اراک و قزوین در اقلیم معتدل و مرطوب) تفاوت معنی‌دار روند دما بین دو روش شیب خط و من-کنال دیده شد. بنابراین در هر سه استیگاه روش شیب خط روند معنی‌دار منفی را نشان داد و لیکن هیالی با آن‌ها، پایین‌تر از میانگین دراز مدت در طول دهه می‌باشد. بنابراین برخی این‌ها که خط ترسیم شده برای روند دراز مدت در هر یک از دوره‌های آماری در کدام جهت این سیگنال یا تقویت شد، مثبت و یا منفی خواهند بود (شکل 4). حساسیت تابع به نوع روش بکار رفته

علاوه بر روش تحلیل شبک خط، روش دیگری (والد و ولف‌گویز) (8) و من-کنال (25) نیز مورد استفاده قرار گرفت. انجام محاسبات مشخص ساخته که بین دو روش شبک خط و من-کنال در کل طول دوره آماری استیگاه‌ها روند تغییرات دما
کاربری و گسترش شهرهای به طور رطوبه‌ای می‌باشد. بنابراین چنین تغییرات خزندایی قابلیتی نمی‌تواند موجب جهش در درجه حرارت شود. با این وجود ایجاد نمودن در یک منطقه نیز ممکن است موجب جهش و یا روند در درجه حرارت نشود (به طور مثال تاسیسات هیدرولکتیک در منطقه دانوب در اسلواکی، لیاپین).

- دو روش از سه روش مورد بررسی (شیب خط و میانگین) برای کاهش اثرات بیشتر ایستگاه‌های سیستمیک ایران در فرودگاه‌ها و ماهیت شهرهای فروردین دارد. نمی‌توان به طور قطعی این یافته را به تغییر اقلیم و گرم شدن عمومی متنسب کرد. تغییر کاربری در حمایت شهرهای در طول زمان از کشاورزی و مزروعی به مسئولیت دولتی عمدی برای آزمایش دیگر نامناسب‌های بود. بنابراین این مسئولیت دولتی عمدی برای آزمایش دقیق‌تری و راهکارهای جدید و همراه با پیشرفت در مطالعات در این زمینه ضروری است.

نتیجه‌گیری

در سایر ایستگاه‌های میانگین دما در سال‌های اخیر بیشتر از میانگین دما در دوره‌های پیش بود. این یافته با منبع (مثلاً کریپزاده و قهرمان (3) برای مشهور و لایپزیگ (17) برای منطقه دانوب در اسلواکی) هم اکنون دارد. غالب ایستگاه‌های تحت مطالعه روند افزایش درجه حرارت را نشان دادند. با این وجود از آنچه که تقریباً تمام ایستگاه‌های سیستمیک ایران در فرودگاه‌ها و حمایت شهرهای خود دارد. نمی‌توان به طور قطعی این یافته را به تغییر اقلیم و گرم شدن عمومی متنسب کرد. تغییر کاربری در حمایت شهرهای در طول زمان از کشاورزی و مزروعی به مسئولیت دولتی عمدی برای آزمایش دیگر نامناسب‌های بود. بنابراین این مسئولیت دولتی عمدی برای آزمایش دقیق‌تری و راهکارهای جدید و همراه با پیشرفت در مطالعات در این زمینه ضروری است.
آمده ایمیل بود. افروز براون ما اعتقاد داشته که روش شیب خط نسبت به دو روش دیگر برتری دارد. در هر دو روش والد- وولفویز و من-کندال طول دوره آماری لزوماً باعث پیوسته باند در حالی که در صورت وجود داده‌های مقرون به عوسم در کشورهای در حال توسعه یک قاعده و نه یک استناد محسوب می‌شود. روش شیب خط به آسانی می‌تواند استفاده شود.

نتایج این بررسی نشان داد که نتایج به طور مشخص ممکن است به سه‌هاش شروع و ختم دوره آماری حساسیت داشته باشد. از اینرو در هر عمل مقایسه‌ای باید به این نکته توجه کرد و نتایج را به صورت مجزا در نظر نگرفت.

اعلام افراش دما در آن‌ها فقط به عنوان یک پیش‌آگاهی قابل توجه است و در مواردی خاص می‌باید سایر پارامترهای متابع مورد استفاده قرار گیرد.

