نیاز آبی و ضریب گیاهی گندم در منطقه زروان استان فارس

جانب اول واردات 1. حمیدرضا فولادنیا، سید حمید احمدی و زاله وزیری

چکیده

این پژوهش در مزرعه تحقیقاتی مرکز تحقیقاتی کشاورزی فارس در منطقه زروان در سال‌های 1381 به منظور تعیین نیاز آبی و ضریب گیاهی گندم گزینید که این نیاز در شرایط پایدار به‌طور ثابت افزایش یافت. کشاورزان باید اطمینان حاصل کنند که در هر دوره از طرف دیگر سرمایه‌گذاری می‌کنند. این نیاز در شرایط پایدار به‌طور ثابت افزایش یافت. کشاورزان باید اطمینان حاصل کنند که در هر دوره از طرف دیگر سرمایه‌گذاری می‌کنند.

واژه‌های کلیدی: نیاز آبی، ضریب گیاهی، گندم

مقدمه

از کل مساحت اراضی زیر کشت، غلات کشاورزی در سال زراعی 1379-1378 استان فارس با برابر 7/85/1 درصد سطح زمین کشت در رتبه دوم و اول در رتبه اول قرار داشت (1). سطح زیر کشت گندم آبی در استان فارس 1361-1360 هکتار و عمکش می‌کند که آن (1) 1123911 می‌باشد. سطح زیر کشت گندم آبی در هفته‌های 9/1 و 9/2 هزار و هکتار و عمکش می‌کند که آن هفته‌های 9/3 و 9/4 هزار و هکتار و عمکش می‌کند. سطح زیر کشت گندم آبی در هفته‌های 9/5 و 9/6 هزار و هکتار و عمکش می‌کند که آن هفته‌های 9/7 و 9/8 هزار و هکتار و عمکش می‌کند.

کشور و سرمایه‌گذاری‌های انجام شده برای تأمین و انتقال آب، برنامه‌ریزی دقیق به منظور استفاده بهینه از منابع آب موجود که از عوامل مهم مدیریت آب دریافت است. ضرورتی برای رعایت هدف مهم، تعیین نیاز آب گیاهان در مناطق مختلف کشور لازم است. مقادیر تبخیر تعقیب به پارامترهای هواشناسی و شرایط جوی، فصل رشد، بافت هاگ و روش کشت گیاه مورد نظر بستگی دارد. برای تعیین نیاز آبی و ضریب گیاهی گندم پژوهش‌های با استفاده از پیوسته در مناطق مختلف جهان انجام شده است.
روش‌ها، ماهانه و کل فصل زراعی در گربه اصهال تغییر تهدید
ولی می‌توان به چنین کشت جنگ شد. میانگین تیتر
تغییر تهدید بالقوه گیاه مرجع از معادله‌های ارائه شده مانند پنمن
مانته استفاده نمود. بنابراین پیشنهاد فاصل در این پژوهش به
منظور پرورش تیتر بالقوه گیاه مرجع از کشت پنمن
مانته استفاده شد. (۵ و ۱۲) میلی‌متر.

از طرف دیگر با استفاده از داده‌های هوای‌سنجی طولانی
مدت به وسیله نرم‌افزار کاراگاه و مبنای روش پنمن مانته
برای محاسبه تیتر بالقوه گیاه مرجع. نیاز آبی کیانهای
زراعی به طور مشخص در نقاط مختلف کشور محاسبه شده
است (۲). طوری که نیاز آبی گندم در مورد شش (۱۰۰۰ کیلوگرم
شمال و این) در این پژوهش با استفاده از داده‌های اندازه‌گیری شده، پیشان
آب خاک در یکی از لاپیست‌های مرکز تحقیقات کشاورزی
فارس در منطقه زرآباد در دوره‌های زمانی ۱۰ روز، نیاز آبی
گندم در کیانهای آزادی به روش مشخص و همچنین با توجه به
آمار هوای وارمی سال‌های کیانهای به روش غیر مستقیم با استفاده
از نرم‌افزار کاراگاه محاسبه شد. در پایان با استفاده از روش
پنمن مانته برای محاسبه تیتر بالقوه گیاه مرجع. ضریب
گیاهی مراحل چهارگانه رشد گندم برای منطقه تغییر گردید.

مواد و روش‌ها
این آزمایش در مرزه تحقیقات کشاورزی نمایش در منطقه
زارآباد (ارتفاع ۱۳۵۱ متر از سطح دریا) عرض جغرافیایی
۲۹ درجه و ۴۶ دقیقه شمالی و طول جغرافیایی ۵۲ درجه و
۴۳ دقیقه شرقی) در سه فصل زراعی ۱۳۷۸-۱۳۸۰ و ۱۳۸۱-
۱۳۸۲ انجام شد. روش کیانهای آزادی که از ارتفاع غالب
مورد کاشت منطقه می‌باشد درون یک لاپیست‌مر به ابعاد ۲ در
۲ و عمق ۱۶ متر و مساحت ۲۰ در ۲ متر روی اطراف
لاپیست‌مر، برای طبقات یکسان در اول آبان ماه سال کشت
شد. نتایج خاک درون لاپیست‌مر و اطراف آن نمای کشت‌سنجی
با حد طبقات زراعی و نقطه زمینی دامدن ۲/۰ و ۱۰/۵ درصد
در تحقیقات در کرج، درون یک لاپیست‌مر و اطراف آن (در سطح
۲۰ در ۲ متر) تغییر در طول فصل زراعی گام ۱۰۵/۰ میلی‌متر به دست آمد
(۲). در منطقه نیمه خشک لاهیجان
۵۰۴ هکتاری آزمایشی، مقدر تیتر بالقوه گندم به
۱۳۵۱/۵ میلی‌متر گزارش کردند. در پژوهش‌های مدل منطقه
حذافکی تیتر بالقوه گندم به ۵/۴ میلی‌متر در روز به
دست آمد (۷). در منطقه نیمه خشک کاراگاه هند با
پارندگی ۸۰۰/۵ میلی‌متر در بالقوه کاراگاه، تیتر بالقوه
گندم در فصل زراعی ۱۹۹۲-۱۹۹۳ در بالقوه گندم
۱۴۹۲-۱۹۹۳ به استفاده ۱۵۰ روز برای
۲۲۳/۵۴ میلی‌متر
استفاده می‌شود و ضریب کیانهای مراحل مختلف رشد نیز به
ترتبه برای ۰/۵۷، ۰/۸۲ و ۰/۶۴ تعیین گردید. در یک
منطقه نیمه خشک در شمال چین با استفاده از لاپیست‌مر
میانگین تیتر بالقوه کشت به برای ۲۳۳/۵ فصل
۲۴/۵۴ میلی‌متر و اندازه‌گیری
میانگین. حداکثر و حداقل ضریب کیانهای فصلی گندم برای
۱/۳۳ و ۲/۲۴ در پرورش گندم (۸). در تحقیقات دیگر در
یک منطقه نیمه خشک در شمال چین با استفاده از لاپیست‌مر
تقیق تیتر بالقوه سالانه گندم به در سال ۱۹۸۸ کشت به
۱۳۸۳/۵ میلی‌متر به دست آمد و ضریب کیانهای مراحل مختلف رشد نیز
به ترتیب برای ۱/۵۵، ۱/۳۳، ۰/۱۹، ۰/۱۹ و ۰/۶۴ میلی‌متر
به منظور به دست آوردن مقدار دقیق ضریب کیانهای
می‌توان همراه با یک گیاه اصلی اقدام به کشت چمن (به
عنوان گیاه مرجع) در لاپیست‌مر دیگری مورد رحم‌زادگان
(۱۱) با کشت چمن در دو لاپیست‌مر و چمن در دو
لاپیست‌مر، ضریب گیاهی چندس نفری را برای فاصله زمانی ۱۰
نتایج و بحث
بر اساس نتایج بیان آب خاک به دست آمده در دوره‌های 10 روز مختلف، مقادیر تبخیرتعرق سالانه (نیاز آبی) کندم در سال‌های زراعی 1379-1380 و 1381-1382 برای طول دوره رشد 240 روز در هر سال به ترتیب برای 872 و 787 میلی متر. هزاران میلی‌متر به دست آمدند. نتایج نشان می‌دهد که با روش غیر مستقیم، نیاز آبی بیشتر بر اورود می‌شود. همچنین نتایج گرفته که نیاز آبی سالانه کندم در منطقه زرقاء بنا به بررسی رشد 240 ژول حداکثر 70 میلی متر می‌باشد.

از طرف دیگر با استفاده از نتایج به دست آمده تبخیرتعرق بالقوه گیاه مرغی به وسیله آب‌نفتار کارکردها و با توجه به تبخیرتعرق کندم به دست آمده از روش مستقیم، ضریب گیاهی دهه‌های مختلف محاسبه گردید. منحنی تغییرات دهه‌ای تبخیرتعرق کندم و تبخیرتعرق گیاه مرغی در سال‌های آزمایش در شکل 1 آن‌ها شده است. همچنین تغییرات دهه‌ای ضریب گیاهی سال آزمایش در شکل 2 آن‌ها شده است. همان‌طور که از شکل دیده می‌شود رشد گندم رقیق کرس آزادی در منطقه زرقاء به مراحل ۳۰، ۶۰ و ۲۰ روز تقسیم می‌شود و حداکثر تبخیرتعرق گندم در انتهای مرحله سوم (حدود ۱۹۰ پس از کاشت) به نقطه پیوسته‌است. میانگین ضریب گیاهی چهار مرحله رشد در سال آزمایش در حدود 0.۲۳ بوده است. میانگین ضریب گیاهی چهار مرحله رشد در سال آزمایش به ترتیب برای 0.۲۷، 0.۸۶/۶ و 0.۱۲/۵ به دست آمدند. انل و همکاران (1) نیز بیان کردند که رشد گندم در مناطق ممکن متر مکعب را به چهار مرحله ۰.۳، ۰.۵ و ۰.۴ از روز تقسیم

وزنی و چگالی ظاهری ۱/۵۸ گرم برسانتی متر مکعب می‌باشد.

بعضی از رویگله‌های فیروزی مشابه چهار محل آزمایش در جدول 1 از آن‌ها است. با شروع فصل رشد در فاصله‌های زمانی ۲ تا ۳ روز با برداشتن نمونه وزنی از خاک درون لایی، مقادیر آب آبیاری به طوری تعیین می‌شود که نشان‌دهنده گیاهی وارد شود. ولی معاوضه بیان آب خاک درون لایی، با استفاده از رابطه زیر در دوره‌های زمانی ۲۰ روزه اعمال شد:

\[
E_{T_i} = I_1 + P - D_i + W_{i-1} - W_i
\]

که در آن: \(E_{T_i}\) : تبخیرتعرق بالقوه گیاه (کندم)، \(I_i\) : مقادیر آب آبیاری، \(P\) : مقادیر باران‌ها، \(D_i\) : مقادیر ذخیره، \(W_{i-1}\) : مقادیر رطوبت خاک در زمان اول اندازه‌گیری و \(W_i\) : مقادیر رطوبت خاک در زمان دوم اندازه‌گیری می‌باشد. واحدهای گیاهی به کار رفته در معادله 1 حسب میلی‌متر می‌باشند. بنابراین، با استفاده از معادله 1 برای ۲۰ روز مقادیر تبخیرتعرق کندم (برای نیاز آبی گیاه) در دوره رشد ۲۰۰ روز در برای هر سال آزمایش به دست آمده. همچنین با استفاده از آمار هوشاسی اینگاچه موجود در محل آزمایش، نیاز آبی کندم از روش غیر مستقیم و به وسیله تبخیرتعرق کارکردهای در دوره‌های ۲۰ روزه تعیین شد. میانگین داده‌های هوشاسی ماهنی برای سال‌های مختلف آزمایش در جدول 2 از آن‌ها است. سپس با استفاده از تبخیرتعرق گیاه مرغی به دست آمده از نرم‌افزار کارکردهای (برای روش شبه متانات) از معادله زیر ضریب گیاهی در دوره‌های زمانی ۱۰ روزه تعیین گردید:

\[
K_e = \frac{E_{T_i}}{E_{T_0}}
\]

که در آن: \(K_e\) : ضریب گیاهی و \(E_{T_0}\) : تبخیرتعرق بالقوه گیاه مرغی بر حسب میلی‌متر است. با دیپانگی با رسم منحنی ضریب گیاهی در فصل رشد، طول مراحل چهارگانه رشد گندم در منطقه زرقاء تعیین گردید و با میانگین گیری از اعداد ضریب گیاهی مرحله، میانگین ضریب گیاهی مراحل چهارگانه رشد به دست آمد.

\[
\text{کنکاران (5)}
\]

3
جدول 1. بعض از خصوصیات فیزیکی شیمیایی خاک محل آمیابی در سال‌های مختلف

<table>
<thead>
<tr>
<th>K (ppm)</th>
<th>P (ppm)</th>
<th>N (%)</th>
<th>pH</th>
<th>EC (dS/m)</th>
<th>دیده‌ای مواد آلی</th>
<th>عمق خاک (سانتی‌متر)</th>
<th>سال زراعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>8/5</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>8/5</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8/5</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>8/4</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>7/6</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6/6</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>7/6</td>
<td>376</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>1374-1376</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. میانگین آمار هوشمند آمیابی محل آمیابی در سال‌های زراعی 1379-1380 و 1381-1382 (به ترتیب میانگین حداقل دما، حداقل دما، درصد رطوبت نسبی، متوسط سیل، ساعات آفتابی، تبخیر از تخت و مجموع پرندگان ماهیانه)

<table>
<thead>
<tr>
<th>Rain (mm)</th>
<th>Ep (mm)</th>
<th>N (hr)</th>
<th>U (m/s)</th>
<th>RH ave (%)</th>
<th>T max (°C)</th>
<th>T min (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/5</td>
<td>1/3</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>3/3</td>
<td>1/1</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>9/6</td>
<td>1/6</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>4/3</td>
<td>1/3</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>3/9</td>
<td>1/9</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>3/9</td>
<td>1/9</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>3/9</td>
<td>1/9</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>3/9</td>
<td>1/9</td>
<td>4/5</td>
<td>3/9</td>
<td>3/9</td>
<td>2/4</td>
<td>2/4</td>
</tr>
</tbody>
</table>
شکل 1. تغییرات تبخیر تعرق به روزهای گندم (ET₀) و تبخیر تعرق گیاه مرجع (ETc) در دوره رشد برای سال متوالی آزمایش

شکل 2. منحنی تغییرات دههای ضریب گیاهی در سال آزمایش
که در آن $Y = ETc$ بر حسب میلی متر در روز و Z میانگین تبخیر از نشان کلاس A می‌باشد. نمادینی افزایش Y به دست آمده و میانگین تبخیر تعرق گندم در دهه‌های مختلف هر ماه بر حسب میلی متر خواهد بود. جدول‌های از مدادهای 3 دیده می‌شود مقدار R^2 به دست آمده زیاد نبود. بنابراین به منظور دست‌یابی به نتایج بهتر تحقیق دهه‌ای این تبخیر از نشان کلاس A و تبخیر تعرق بالقوه گیاه مرجع به صورت زیر به دست آمد:

$$X = \frac{0.08}{\tanh Z} + 0.157 - 0.218Z(R^2 = 0.43, n = 48, SE = 1.27, p < 0.0001)$$

که در آن $X = ETc$ بر حسب میلی متر در روز است. سپس با توجه به میانگین تبخیر تعرق بالقوه گیاه مرجع به دست آمده از مدادهای 4 در دهه‌های مختلف هر ماه، می‌توان میانگین تبخیر تعرق گندم در هر ماه سال را از مدادهای زیر برآورد کرد:

$ETc = Kc \cdot ET0$

مقادیر ضریب گیاهی به دهه مختلف فصل رسید و در جدول 4 ارائه شده است.

از طرف دیگر رابطه بین تبخیر تعرق گندم و تبخیر تعرق بالقوه گیاه مرجع در دوره‌های زمانی 10 روزه در سال‌های مختلف آزمایش به صورت مدادهای زیر به دست آمد:

$$ETc = \frac{0.08}{\tanh Z} - 0.157 + 0.218Z(R^2 = 0.43, n = 48, SE = 1.27, p < 0.0001)$$

همانطور که در مدادهای 4 به دیده می‌شود، میانگین ضریب گیاهی فصل گندم برای 371 به دست آمده که با میانگین ضرایب گیاهی مراحال چهارگانه متوسط 371 (برای میانگین مدرن و همکاران مرجوع مرکز تحقیقات کشاورزی فارس انجام شده است، بنابراین بسیار وسیله از همکاران سیمیمانه می‌باشد و همکاران مرجوع مرکز تحقیقات کشاورزی، همکاران

جدول 3 میانگین ضریب گیاهی مراحال چهارگانه رشد در سال‌های مختلف

<table>
<thead>
<tr>
<th>سال زراعی</th>
<th>مرحله رشد</th>
<th>1387-88</th>
<th>1378-79</th>
</tr>
</thead>
<tbody>
<tr>
<td>اول</td>
<td>0.39</td>
<td>0.36</td>
<td>0.32</td>
</tr>
<tr>
<td>دوم</td>
<td>0.68</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td>سوم</td>
<td>0.91</td>
<td>0.87</td>
<td>0.83</td>
</tr>
<tr>
<td>چهارم</td>
<td>0.51</td>
<td>0.48</td>
<td>0.45</td>
</tr>
</tbody>
</table>

جدول 4 ضریب گیاهی گندم در دهه‌های مختلف فصل رسید

<table>
<thead>
<tr>
<th>دهه</th>
<th>ضریب گیاهی</th>
<th>گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دهه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>3</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>6</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>7</td>
<td>0.37</td>
<td>0.34</td>
</tr>
</tbody>
</table>

کردهنگی و ضریب گیاهی مراحال اول، سوم و چهارم رشد را به ترتیب برای 0.35 و 0.25 پیشنهاد می‌نماید. مقایسه نتایج به دست آمده از آزمایش‌ها با مقایسه پیشنهاد شده توسط آن و همکاران (5) نشان دهنده هم‌خوانی ضرایب مراحال اول و سوم می‌باشد. ویلینگت گیاهی به دست آمده رشته چهارم به علت نیمه خشک بودن منطقه، تقریباً در برای ضریب پیشنهاد شده توسط آن و همکاران (5) است.

همچنین به منظور برناهای آبیاری گندم در سال‌های آینده و عدم استرس کشاورزان منطقه به کلیه آمار هوشمندی، رابطه بین میانگین تبخیر تعرق روزه گندم و میانگین روزه‌ها تبخیر از نشان کلاس A به صورت زیر تعبیه شد:

$$Y = -0.171 - 0.0001Z + 0.000001Z^2(R^2 = 0.43, n = 12, SE = 0.001, p < 0.0001)$$

میساغزیار

مطالعه فوق برگرفته از طرح تحقیقات "تبعین نتایج آموزشی کنسرمی به روست میلی "مبنا" که در مرکز تحقیقات کشاورزی فارس انجام شده است، بنابراین به این سیمیمانه می‌باشد و همکاران مرجوع مرکز تحقیقات کشاورزی، همکاران

$$X = \frac{0.08}{\tanh Z} + 0.157 - 0.218Z(R^2 = 0.43, n = 48, SE = 1.27, p < 0.0001)$$
ببخش تحقیقات خاک و آب، تکنیک‌های بخش خاک و آب و همچنین از کارشناسان استغلال تحقیقات هواشناسی زرگران

متن همراه استفاده

1. آمارنامه کشاورزی سال زراعی 1379-1378-1377-1376. وزارت جهاد کشاورزی. معاونت برنامه‌ریزی و اقتصادی. دفتر آمار و فن آوری اطلاعات. تهران.

3. فرشی، ع. ا. 1378. تعبیه تیار آبی گندم (تخییر و تعرق بالقوه) با استفاده از جمهوری کشت (لاپیسمتر) و تعبیه برنامه آبیاری برای کسب حداکثر محصول در کرج. چکیده مقالات ششمین کنگره علوم خاک ایران، صفحه 630 تا 630. دانشگاه فردوسی مشهد.

4. بردبانیخ، م. و. ز. جمشیدی. 1380. آمارنامه استان فارس. سازمان مدیریت و برنامه‌ریزی استان فارس. معاونت آمار و انفورماتیک، شیراز.

