رابطه بین زیر واحدهای گلوتین با وزن مولکولی بالا با خصوصیات کیفی آرد

در لایه‌های نوترکیب گندم

عبدالمجید رضائی

چکیده

رابطه بین زیر واحدهای گلوتین با وزن مولکولی بالا و خواص کیفی آرد، با استفاده از 117 نمونه نوترکیب گندم کشته شده در ترکیب‌های مختلف و نوترکیب گندم، بررسی شد. نتایج نشان داد که در ترکیب‌های نوترکیب گندم می‌تواند بهبودی کیفی گندم در این حیطه‌ها باعث شود.

واژه‌های کلیدی - اثرات اپیتاتیک، ارتای در سد، سد SDS، زل پلی آکریلامید، میکسوگراف

مقدمه

تاکنون در خواص نوترکیب گندم، به تکامل در کیفیت گلوتین آنها نسبت داده شده است (1، 5، 17، 19، 21، 23، 24، 25 و 26). از این صورت می‌توان به ارتباط نانوایی دانست که کلیدنگ‌های گلوتین‌ها باعث کشت خمیر یا باعث شوند. این خصوصیات برای نمونه‌های گوناگون گندم حاصل در طی فرآیند زیستی و نشاط بی‌سیگاری می‌باشند.

نتایج گزارش‌های مربوط به حاکی از ارتباط زیر واحدهای گلوتین با وزن مولکولی بالا با خواص مطلوب نانوایی آرد است (1، 2، 4، 11، 14، 16، 18، 19، 20، 21، 22، 23). این نتایج بیان کند که بهترین گونه‌ای از آرد که به این روش سنجیده می‌شود، در عضله است.

1. Polycriland 2. Sodium doxide sulphate 3. Fartimograph
4. Micrograph
5. Extensigraph 6. Zeleny
کولسترول و همکاران (11) گزارش کردن که حدود ۳۰ تا ۷۰ درصد از نوع در خواص نانو‌ای گندم، به نوع زننیکی در مکانهای زنی ۱ توجه می‌شود. ارتباط بین وجود یک آل و خواص نانو‌ای گندم به کمک‌کننده آل و واحد‌های با وزن مولکولی بالا و اثر مشابه آنها نیز قابلیت دارد. تکنیک‌های واحد‌های ۲۰۱۲ و ۲۰۱۳ یک کاوش به مقایسه با تکنیک زیر واحد‌های نمی‌تواند بالاتر نانو‌ای را سبب می‌شود (۱۵ و ۱۷). همچنین زیر واحد‌های ۲۰۱۲ در گندم‌های با خواص نانو‌ای بالا دارای خاصیت مطلوب از نظر اختلاف آب و آرد، ارتفاع روابط با SDS و حجم نان وجود دارد. زیر واحد‌های ۲۰۱۲ و ۲۰۱۳ در گندم‌های با کیفیت باند به می‌خشد (۱۲ و ۲۱). راجرز و همکاران (۱۲) گزارش کرده که زیر واحد‌های جزء Y تنا اندازه‌گیری می‌شود در خواص نانو‌ای دارد. اما دیقیقاً نمی‌توان مشخص کرد که گروهی که از X به Y در خواص کیفی مهم‌تری مشاهده می‌باشد. همین مطالعه شان داد که در صورت حدف باند Y با یک دی‌ال‌کیو، دوم گلوتن کاهش می‌یابد. این محققان همچنین گزارش کردن که این کیفیت در GLU-D1 با یک باند از مکان زنی ۱ باند. ذیل GRU-D1 زیر واحد‌های ۵۰۰ تا ۵۰۰ سبب خواص نانو‌ای کمی از مکان زنی ۱ باند. ذیل GRU-D1 با یک باند از M
رابطه بین زیر واحدهای گلتنی با وزن...

از سایر روش‌ها بود. تعداد روز تا ۵۰ درصد به خشونت رفت، ارتقاء هیات‌های غذایی (ساهمینت) و وزن ۵۰۰ دانه (گرم) برای هر کرت آزمایشی معیین شد. وزن حجمی برا درای مخلوط بذر نکاردها هر لایی نیز تعیین گردید.

الکتروفورز و آموزنها کیفی

تراکم زیر واحدهای گلتنی با وزن مولکولی بالا، که توسط محققین متعدد و اثرات، به همراه بسایری نظر زمین‌های زیستی و متقابل، اثرات استیماتیز و اثرات متقابل زنوتیپ X محیط بستگی دارد (۳۲).

پانه و لاورنس (۲۷) بر اساس اهمیت زیر واحدها در خواص کیفی، امتیاز‌هایی را به برخی از آنها اختصاص دادند تا پونان از آنها به عنوان شاخص در ارزیابی ارزش نمونه ارقام گند استفاده نمود. بر این اساس و با توجه به ترکیب زیر واحدها به ارقام گند امتیازهایی بین ۳ تا ۱۰ داده می‌شود.

با توجه به آنچه در این مقدمه بیان شد، این مطالعه به امکان گرفتن طرح بریزی و انواع گردید:

۱- بررسی تأثیر گروهی برای زیر واحدهای گلتنی با وزن مولکولی بالا در این زیر نوع ترکیب گند.

۲- تغییر رابطه بین خواص کیفی آرد و وزن واحدهای گلتنی.

۳- تغییر اثرات آنتی‌افشیز و ایپی‌افشیز آب بر خواص کیفی آرد.

مواد و روش‌ها

زنوتیپ‌ها

زنوتیپ‌های مواد بررسی، ۱۷۵ لایه ترکیب حاصل از تلاقی ارقام انتا و اینیا در نسل F2 پیوند. نتایج حاصل از تلاقی بین انتا و اینیا به ترتیب ارقام‌یا کیفیت نامطلوب و مطلوب می‌باشند. تا نسل F1 به روش کرک برداشته شدند و در این نسل به صورت یک یا دو انجام از این ارقام‌یا کیفیت برداشت شدند.

آزمایش مزه‌ها

والدها و ۱۷۷ لایه ترکیب برای صورت طرح بلوک‌های کامل تحت ۳ تکرار در پایان ۱۳۷۲ در مزرعه تحقیقاتی دانشگاه کالیفرنیا در دیسنو تحت شرایط معمول زراعی منطقه کشت شدند. والدها در هر بلوک ۳ متری رنگ‌گردد. هر کرت شامل یک رنگ کشت به طول ۲/۸ متر و فاصله ۲۰ سانتی‌متر.
<table>
<thead>
<tr>
<th>اینیا</th>
<th>اتآرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

شکل 1 - اگری زیر واحد اشتهای گلتنین با وزن مولکولی بالا در زلی پلی اکریلاید
در لایه حاصل از تقاطع اتآرا × اینیا آزمون میکسگراف به روش فیتر و شوگن (8) برای دو نمونه 10 گرمی آرد از هر تکرار اینها انجام شد بین منظور، به دو در صحیح رسانده شدند و سپس آزاد گرددند. درصد استخراج آرد همه نمونهها بین 77 تا 79 درصد بود. فاصله زمانی شروع اختلافات این ناپدیده اوج نمودار میکسگراف دقتی به عنوان مهمی برای حداکثر همکاری در مدار اختلافات و عرض نمودار میکسگراف در 2 دقیقه پس از ناپدیده اوج به عنوان محکم از مقاومت خمیر تعیین شدند.

نتایج و بحث
تعداد لایه‌های تورترکب برای هر زیر واحد گلتنین متوازی (جدول 1) اما ابرپذیری آزمون کا اسکور (5/8 = 0.625)، زیان‌های مشاهده شده از نظر آماری اختلافات معنی‌دار با فراوانی به دو راه‌های موردانتظر در رهگیر و انرژیدانشند. این نتیجه حاکی از تکنیک تصادفی تورترکب ممکن بود یک جریان گونی به این می‌باشد. اختلاف بین دو راه‌های زیر مانیفست گردید. SDS از روش برداشتن الکتروفوریک مکانی واحد برای بوته و انتخاب بیت‌های مختلف گلتنین از مکانی واحد برای بوته و انتخاب بیت‌های مختلف گلتن

تجزیه و تحلیل
صفات اندازه‌گیری شده پربرگی، کروتوسی و ویژگی‌های اندازه‌گیری شده روی چند نمونه مورد تجزیه و آماری قرار گرفته. نتایج روند زیستی بین لایه‌های تورترکب در هر زیر واحد گلتنین با وزن مولکولی بالا، برای هر صفحه معیین شد و با استفاده از نشانه‌های تجزیه و آماری آماری مورد ارزیابی قرار گرفت. نتایج روند زیستی بین لایه‌های تورترکب به مقایسه‌های مستقل با یک درجه آزادی برای 3 مکان زنی رفتکار شد (5، 30) تا اینکه زیستی‌های گزارشی (ACBD)، (ACBD)
جدول 1- مقایسه میانگین‌های صفات زراعی و کیفی برای هر یک از زیر واحدهای گلوتین با وزن موکولی بالا، و البته و این های نوترکیب

<table>
<thead>
<tr>
<th>اندازه تعداد</th>
<th>ارتفاع غیاب</th>
<th>زمان</th>
<th>مقاومت مقدار</th>
<th>وزن</th>
<th>ارتفاع غیاب</th>
<th>خلوش</th>
<th>خسارت</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیر واحد گلوتین</td>
<td>D1</td>
<td>B1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>اندازه رنگ (وزن)</td>
<td></td>
</tr>
<tr>
<td>رنگ (وزن)</td>
<td></td>
</tr>
<tr>
<td>7/0</td>
<td>33/8</td>
<td>69/27</td>
<td>41/6</td>
<td>1/15</td>
<td>1/8c</td>
<td>3/54a</td>
<td>93/88ab</td>
<td>22</td>
<td>12</td>
<td>2 + 5</td>
<td>10</td>
<td>13 + 16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6/0</td>
<td>33/44</td>
<td>70/1</td>
<td>42/5</td>
<td>1/51</td>
<td>1/51b</td>
<td>2/6vb</td>
<td>76/9c</td>
<td>15</td>
<td>12</td>
<td>2 + 12</td>
<td>2 + 16</td>
<td>3 + 12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6/9</td>
<td>31/72</td>
<td>69/61</td>
<td>41/7</td>
<td>1/24a</td>
<td>1/41b</td>
<td>99/21a</td>
<td>11</td>
<td>11</td>
<td>2 + 10</td>
<td>5 + 10</td>
<td>7 + 8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6/2</td>
<td>32/84</td>
<td>68/22</td>
<td>41/1</td>
<td>1/5c</td>
<td>1/5c</td>
<td>87/13c</td>
<td>17</td>
<td>11</td>
<td>2 + 12</td>
<td>7 + 8</td>
<td>5 + 10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6/22</td>
<td>32/47</td>
<td>67/17</td>
<td>42/2</td>
<td>1/6b</td>
<td>1/7d</td>
<td>87/1abc</td>
<td>12</td>
<td>12</td>
<td>2 + 10</td>
<td>13 + 16</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6/6</td>
<td>35/78</td>
<td>50/82</td>
<td>42/3</td>
<td>1/22</td>
<td>1/22f</td>
<td>42/9d</td>
<td>11</td>
<td>11</td>
<td>2 + 14</td>
<td>13 + 16</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6/3</td>
<td>32/46</td>
<td>70/7</td>
<td>42/1</td>
<td>1/9c</td>
<td>3/6b</td>
<td>83/9b</td>
<td>23</td>
<td>12</td>
<td>2 + 10</td>
<td>7 + 8</td>
<td>5 + 10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6/5</td>
<td>32/18</td>
<td>69/5</td>
<td>41/7</td>
<td>1/6d</td>
<td>2/5c</td>
<td>63/8d</td>
<td>16</td>
<td>11</td>
<td>2 + 12</td>
<td>7 + 8</td>
<td>5 + 10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1/58</td>
<td>31/12A</td>
<td>73/43A</td>
<td>40/2</td>
<td>1/60</td>
<td>2/4A</td>
<td>59/29A</td>
<td></td>
</tr>
<tr>
<td>5/73A</td>
<td>34/47B</td>
<td>87/13</td>
<td>35/9</td>
<td>1/70</td>
<td>1/70A</td>
<td>88/0B</td>
<td></td>
</tr>
<tr>
<td>6/13</td>
<td>32/85</td>
<td>68/88</td>
<td>41/9</td>
<td>1/65</td>
<td>1/65</td>
<td>2/4A</td>
<td></td>
</tr>
</tbody>
</table>

خطای استاندارد

- در هر ستون میانگین‌هایی که حداکثر دارای یک حرف مشترک می‌باشند از نظر آزمون دانکن در سطح احتمال 5 درصد فاقد اختلاف معنی‌دار هستند.

- با فرض 15 لاپاژ برای هر زیر واحدهای گلوتین
دفتر ۲: میانگین مربوطات هر یک و/or واحد گلوتئین و اثرات مقابله آنها برای صفت‌ها

| منابع تغییر | دارد پروتئین | مقاومت خمیر | زمان اختلال | ارتفاع رسب | دارد/نیست
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLU-A۱</td>
<td>۱/۸۲</td>
<td>۲۱/۱۹*</td>
<td>۰/۰۸</td>
<td>۸۹۴/۵***</td>
</tr>
<tr>
<td>GLU-B۱</td>
<td>۰/۱۷</td>
<td>۲۱/۱۹*</td>
<td>۰/۰۵</td>
<td>۱۶۰/۲</td>
</tr>
<tr>
<td>GLU-D۱</td>
<td>۱۲/۶۱**</td>
<td>۳۱/۲۲**</td>
<td>۳۷۷/۲۳**</td>
<td></td>
</tr>
<tr>
<td>GLU-A۱xGLU-B۱</td>
<td>۰/۶۶</td>
<td>۲۸/۳۶*</td>
<td>۲۳۷/۰</td>
<td></td>
</tr>
<tr>
<td>GLU-A۱xGLU-D۱</td>
<td>۱/۸۰</td>
<td>۲۸/۳۶*</td>
<td>۲۳۷/۰</td>
<td></td>
</tr>
<tr>
<td>GLU-B۱xGLU-D۱</td>
<td>۰/۷۰*</td>
<td>۳۵/۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-A۱xGLU-B۱xGLU-D۱</td>
<td>۱/۶۰</td>
<td>۴۲/۶۴*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-A۱xGLU-B۱xGLU-D۱</td>
<td>۱/۵۰</td>
<td>۱۱/۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU-B۱xGLU-D۱</td>
<td>۰/۷۳</td>
<td>۱۱/۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **: به ترتیب معنی دار در سطوح احتمال ۰.۱ و ۰.۰۱

داشت. نتایج‌های نشان‌دهنده اثرات متقابل آنها برای صفت‌های گلوتئین و زمان اختلال را نشان می‌دهد. این نتایج نشان‌دهنده اثرات مقابله آنها برای صفت‌های زمان اختلال و ارتفاع رسب است. نتایج نشان می‌دهد که اثرات مقابله آنها برای صفت‌های زمان اختلال و ارتفاع رسب، به ترتیب در سطوح احتمال ۰.۰۵ و ۰.۰۱، معنی دار می‌باشند.
رابطه بریان زیر واحدهای گلوتنین با وزن ...

جدول ۳- اثرات افزایشی (αA) و و مقاپل (αAD) و αD و αB و αA

<table>
<thead>
<tr>
<th>αB</th>
<th>αAD</th>
<th>αBD</th>
<th>αA</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/04</td>
<td>2/25</td>
<td>2/25</td>
<td>2/25</td>
<td>ارتقاء رسوب</td>
</tr>
<tr>
<td>1/05</td>
<td>1/07</td>
<td>1/01</td>
<td>1/01</td>
<td>SDS</td>
</tr>
<tr>
<td>1/08</td>
<td>1/09</td>
<td>1/09</td>
<td>1/09</td>
<td>زمان اختلاف</td>
</tr>
<tr>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>مقاومت خمیر</td>
</tr>
<tr>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>دصرد پرورثین</td>
</tr>
</tbody>
</table>

معنی دار در سطح احتمال ۱ درصد

در این مطالعه، اثرات افزایشی مثبت و معنی دار آل‌های GLU-D1 و GLU-A1 برای ثبت صفات کیفی مشهور به دارد (جدول ۱). اثرات افزایشی آل‌های در مکان‌های زنی و غرب GLU-A1 و GLU-D1 در برای ارتفاع رسوب و مقاومت خمیر معنی دار بودند. اثرات افزایشی آل‌های در مکان‌های زنی و غرب GLU-B1 و GLU-D1 نیز با طور مشابه به صفات کیفی جز مقاومت خمیر اثر داشتند. به استثناء GLU-A1 و GLU-D1

یافته‌های اعزامی افزایشی معنی دار نشدند. اگر چه خرید از آنها نسبتاً بالا و در نمونه‌هایی معنی دارد. این نتایج نشان داده می‌تواند در پی نتایج حاصل از تحقیق آنها و بسیاری از آنها نتیجه به‌کار گرفته شود. عنوانی با علی‌اکبر خاصیت نگاهی دارد. همچنین، در بالا وارد GLU-B1 از زیر واحدهای مطلوب برای زمان اختلاف و مقاومت خمیر، زیر و GLU-B1 و GLU-D1 نموده‌اند که دارند. طبق نتایج حاصل، انتخاب زنی مطلوب GLU-D1 برای مقاومت خمیر، ارتفاع رسوب و دصرد پرورثین که دارای زیر واحدهای ۱ و ۷۸ و ۷۸ نمی‌باشد و برخی از نتایج مشاهده نظر زیر واحدهای گلوتنین بود.

اثرات ایستایی بین آل‌های کنترل کننده زیر واحدهای گلوتنین با وزن مولکولی بالا، قبل از افزایش خطر است. پای یا همکاران (۲۴) نشان دادند که گاهی اوقات در اثر هدف آل‌های رخ داده که به جهت زیر واحدهای G0 و واحدهای بی‌خواستگی پیش‌گیرانه کلمات و همکاران (۱۱) وجود اثرات ایستایی بین زیر واحدهای ۷۸ و ۷۸ در

۲۵
ارتفاع رسوی هم‌سنجی بالاتری را با خصوصیات گلتنین‌های زیر و با واحدهای GLU-B1 و GLU-D1 در حالت میانگین با آلفا 2012 و 2013 در میانگین با واحدهای GLU-D1 المجاونه گزارش نموده‌اند. طبق نتایج حاصل، در این بررسی نیز زیر واحدهای ۷۶ در میانگین با آلفا 2013 و ۱۳۱۲ در ترکیب با زیر واحد ۱ در میانگین توجه به زیر واحدهای GLU-A1 برای ارتفاع رسوی برتری داشتند (جدول ۱).

 به طور خلاصه، نتایج این بررسی تاییدی بیشتری بر وجود رابطه مستقیم بین خواص کیفی آرد و برخی از زیر واحدهای گلتنینی با وزن مولکولی بالا بود. نتایج حاکی از تأثیر بیشتر تنوع آلی در میانگین توجه به زیر واحد GLU-D1 بر ارژنشاتووانی بودند.

مراجع

