لزوم توجه به مفروضات مدل زننیکی تجزیه دای آلل

عبدوالملجع رضائی و رضا امیری

چکیده

به مطورپروری صحت فرضیات تجزیه دای آلل از تالاقیهای ۶ زننیکی پولاف زراعی و وحشی استفاده گردید. صفات تعداد روز تا گردید افتانی، ارتقای گیاه درگذشته افتانی و رسیدگی و مهینی درصد پروتئین سالن و داله پرسی شده در تجزیه دای آلل به روش گزارشگی، میانگین مرحله‌های تعیین به کلیه صفات معیت دار بود. اما برخی از تجزیه واریانس‌های مهم، اثر یافته می‌باشد. برای همه صفات مانند دلال تادهای مهیج یک از صفات معیت دارد. ولی برای پرسی صحت مدل و سه فرض فناران آللری محدود پیوندی زن و اثرات متقابل بین آسیاب‌گردیده به روش بی‌یک نتیجه‌گیری کننده بود. می‌توان آن روش برای از تقویت و ارتقاء روی در روش تا گردید افتانی از امکانات ابزاری را نشان داد و لذا تجزیه واریانس باید با توجه به پارامترهای زننیکی انجام شد. برای ارتقاء گیاه درگذشته افتانی و درصد پروتئین سالن، شبیه‌تر روش‌های مدل تزریق و دلما تا افتخال معیت دار بود. صفات مدل ناز به حذف دلال بود و از جمع‌بندی پارامترهای زننیکی صرف نظر گردید. در مجموع روش زننیکی و روش زننیکی به تجزیه و انتخاب بیشتری چهت بررسی صحت مدل زننیکی بود. همچنین تابع تجزیه واریانس و در بدان صحت و عدم صحت فرضیات مدل زننیکی، تنها داده که پارامترهای زننیکی به شدت تحت تاثیر واریانس در داده‌های کلیه مدل زننیکی گزارش گردید و بی‌رو به ترتیب به نظر می‌رسید که مدل‌های اولیه برای پرسی صحت فرضیات مدل زننیکی بهبود و اطمینان از صحت نتایج از طریق روش‌های آرائه شده امکان ضروری است.

واژه‌های کلیدی - اثر زن، اجزا واریانس، پارامترهای زننیکی، تالاقی‌های مکوس، قابلیت ترکیب پذیری، قابلیت تورث، پولاف.

مقدمه

روش تجزیه دای آلل نیز که کاربردهای فازائی در زننیک کمی و اصلاح نیازهای دارد، از این قاعده مستثنی نیست، به طوری که تجزیه و حل منابع و ارائه نتایج عمیق مشترک بی‌رو بودن فرضیات آن مستر (۳ و ۱۳). در کلیه مطالعات زننیکی کنی برای این که پیوند روابط زننیکی موجود در جامعه را با فرمولهای ریاضی نشان داد و به ابزار و نیازهای مدل زننیکی استفاده می‌گردد. تمامی این مدل‌ها بر پایه فرضیات استوار است که صحت نتایج حاصل از هر روی، متطابق به صدای بودن کلیه مفروضات آن است.

* به ترتیب استاد و دانشجوی سابق کارشناسی ارشد، گروه زراعت، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

25
علم تکرایز و متاب‌سنجی/جلد دوم/شرحه اول/پایه 1377

1- ولرین دیپلوئید پاشند و یا از نواحی دیپلوئید پیروری ولونی، مهربانی توانایی رنگ‌بندی پایه‌ها مهربانی توانایی رنگ‌بندی پایه‌ها
2- ولرین دیپلوئید پاشند و یا از نواحی دیپلوئید پیروری
3- انتخاب جایی بین تلاقی‌های مکوس وجود داشته باشد، یا به صورت دیگر اثرات ناپایه مادی مشاهده شود. 4- آل‌هایی چندتایی و وجود نداشته باشد، یعنی مرکز ذهنی دایره در آیل بخش 5- پیوستگی ذهنی وجود داشته و زنگی به طور مستقل در والدین توزیع شده باشد و 6- بین مکانهای ذهنی اثرات مشابه (پیستازی) وجود نداشته باشد، 23، 21 و 23، 31 از دیدگاه فرضیات فوق، فرضیات اول و دوم قبل از انجام تجزیه و تحلیل ذهنی کلیه نرسی و کنترل می‌باشد. همچنین، فرض چهارم در صورت خالص بودن والدین (صحب فرض دوم) تا سنس F۷ خصوص مهم نیست، زیرا در سنس F۷ حاصل از تلاقی رنگ‌های معمولی، آل‌هایی چند تایی فقط در اثر موتاژیون به وجود می‌آید و فراوانی بستر معمولاً بسیار پایین است (۶). با این وجود، بررسی صاور موتاژیون به روی شهای ماهی‌سای نیاز دارد که در این بین معمولاً استفاده صحیح نمود در فرض آخر (پایه عدم وجود پیوستگی ذهنی) بیشتر است (۶).

13- به طور کلی تجزیه دیب آل در ۱۴ گیاهان با دو روش هیمن و جینگز (۱۲، ۱۳) و گریفینگ (۱۵ و ۱۶) اندازه‌گیری می‌شود. روشهای گزارش‌های گیاهی (۱) هیمن (۱۲ و ۱۳) و متروچینکی (۱۷) مشابه روش گریفینگ هستند. در صورت خالص بودن والدین و یا وجود اثرات مادی نیز تجزیه اندازه‌گیری، در حالی که در روش هیمن و جینگز برقرار نمی‌گردد. کلیه فرضیات زمینه‌ای است. از طرف دیگر در روش گریفینگ امکان بررسی سه فرض آخر و مطالعه دقیق بررسی وجود ندارد. بر علیه، هنگامی که اجزای واریانس هزینکی محاسبه می‌شود و درجه غلبه و قابلیت نوار اثر معنی می‌گردد، ممکن است تابع حاصل از تجزیه، تحت تأثیر ناحیه فرضیات (پال‌لوا فرضیات پنجم و ششم) قرار گیرد. در حالت که در تجزیه هیمن و جینگز، امکان بررسی صحیح ان فرضیات وجود ندارد. هدف از این مطالعه بررسی روشهای ارزیابی فرضیات دای
جدول 1 - تجزیه واریانس دای آلله به‌روش هیمن (12)

<table>
<thead>
<tr>
<th>گریفگنگ (10)</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p(p-1)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p(p-3)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p-1)(p-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r-1)(p-1)</td>
</tr>
</tbody>
</table>

تقویت‌ها (1)

<table>
<thead>
<tr>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>b1</td>
</tr>
<tr>
<td></td>
<td>b2</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>خطأ (r)</td>
</tr>
</tbody>
</table>

در صورت ارتباط مدل و عدم صحت فرضیات، با حذف والدین و انجام مجدد محاسبات، صحت فرضیات کنترل گردد. سپس با محاسبه میانگین واریانس رضی‌ها (V_r) و میانگین کوریوانزاس ارائه‌ها (mll)، میانگین واریانس‌ها (Var)، و میانگین نتیجه (mo) برآورد شد. همچنین برای انتخاب پیش‌نهاد هیمن (14)، مبین برای این که برحوردهای دای آلله‌ها کوچک‌تر از میانگین واریانس هر رضی با والدین در مشترک (W_{r23}), میانگین کوریوانزاس ارائه‌ها (Var)، و میانگین نتیجه (mo) به‌روش واریانس (V_r) تجزیه واریانس استفاده شد. شیب گریفگنگ W_{r23} و V_r از دو V_r و W_{r23} میانگین داده‌های جدول دای آلله و براوردهای مشترک (ادغام شده) حاصل از 2 تکرار به دست آمد. با توجه به نتایج

\[E(F') = F - \frac{V_{F}}{p} \]
\[E(H') = H' + \frac{h'^2 - H'}{p} \]
\[E(H_{r'}) = H_{r'} + \left[(h'^2 + 2h'H'_{r} - 2hH'_{r})/p \right] + \frac{h^2}{p^2} \]

1 - Joint (pooled) estimate
جدول 2 - تجزیه واریانس دای آلی به روش 1 گریفینگ برای ارتقاء گیاه دردگی افشاوری و درصد پروتئین سازه در ۲۶ زنگوله (۶ واد و ۳۰ تلاقی) پُرولاف

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>متغیر تی</th>
<th>تکرار</th>
<th>زنگوله‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مربعات ارتفاع</td>
<td>مربعات درصد پروتئین</td>
<td>مربعات تلفات</td>
<td>مربعات افتادگی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶/۲۰</td>
<td>۹/۲۲</td>
<td>۲/۲۰</td>
<td>۴/۲۰</td>
<td>۱/۲۰</td>
<td>۲/۲۰</td>
</tr>
</tbody>
</table>

* تأثیر بین زنگوله‌ها برای یککه سابقه به سطح احتمال ۰/۱ درصد

در این روابط: $pH' = pH_H + h' - H_T$

در علائم نوارهای ازو و H_T تعداد بالای تعدادی از نوارهای ازو مربوط به نوارهای نوارهای مربوط به H_T می‌باشد.

در نوارهای ازو با مساحت H_H و H_T در مساحت و نوارهای ازو تعداد بالای تعدادی از نوارهای ازو مربوط به H_T می‌باشد.

و در نوارهای ازو مساحت و نوارهای ازو تعداد بالای تعدادی از نوارهای ازو مربوط به H_T می‌باشد.

در این مساحت: $pH' = pH_H + h' + H_T$

نتایج و جدول

در این مساحت: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$

در این نوارهای ازو: $pH' = pH_H + h' + H_T$

در این نوارهای ازو: $pH' = pH_H + h' - H_T$
جدول 3 - تجزیه و یاریس دای آلل بر میانای روش هایمین (پارشش متروچینکو) برای ارتفاع گیاه در گروه ارتفاعی در 36 ژنتیپ (6 والد و 30 نسل) پولاف

<table>
<thead>
<tr>
<th>مجموع مرتعات</th>
<th>درجات آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مرتعات</td>
<td>تکرار 1</td>
<td>تکرار 2</td>
</tr>
<tr>
<td>1228/83</td>
<td>1328/80</td>
<td>1228/83</td>
</tr>
<tr>
<td>6663/49</td>
<td>6663/49</td>
<td>6663/49</td>
</tr>
<tr>
<td>707/49</td>
<td>707/49</td>
<td>707/49</td>
</tr>
<tr>
<td>348/60</td>
<td>348/60</td>
<td>348/60</td>
</tr>
<tr>
<td>156/50</td>
<td>156/50</td>
<td>156/50</td>
</tr>
<tr>
<td>496/59</td>
<td>496/59</td>
<td>496/59</td>
</tr>
<tr>
<td>155/50</td>
<td>155/50</td>
<td>155/50</td>
</tr>
<tr>
<td>280/78</td>
<td>280/78</td>
<td>280/78</td>
</tr>
<tr>
<td>65/39</td>
<td>65/39</td>
<td>65/39</td>
</tr>
<tr>
<td>91/83</td>
<td>91/83</td>
<td>91/83</td>
</tr>
<tr>
<td>149/21</td>
<td>149/21</td>
<td>149/21</td>
</tr>
<tr>
<td>82/44</td>
<td>82/44</td>
<td>82/44</td>
</tr>
<tr>
<td>81/51</td>
<td>81/51</td>
<td>81/51</td>
</tr>
<tr>
<td>47/22</td>
<td>47/22</td>
<td>47/22</td>
</tr>
<tr>
<td>169/21</td>
<td>169/21</td>
<td>169/21</td>
</tr>
<tr>
<td>75/15</td>
<td>75/15</td>
<td>75/15</td>
</tr>
<tr>
<td>57/22</td>
<td>57/22</td>
<td>57/22</td>
</tr>
<tr>
<td>کل</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>

درصد معنی‌دار در سطح احتمال 1 درصد.

و سه میانگین مرتعات تلاقی‌های معکوس برای صفات ارتفاع گیاه در رسیدگی و تعداد روز تاگرد افغانی، به ترتیب برابر با 35/5/115/0 و 385/5/21 حاصل می‌گردد که در سطح احتمال یک
جدول 4- تجزیه و اریان دای آلترپنهای روش هیمین (با توجه مستقل به بررسی) برای درصد پروتئین سایه در گروه یونیک

<table>
<thead>
<tr>
<th>مجموع مربوطات در میانگین</th>
<th>مربوطات در راه چهار مربوطات</th>
<th>درصد آزادی منابع</th>
<th>درصد تکرار 1</th>
<th>درصد تکرار 2</th>
<th>درصد تکرار 3</th>
<th>درصد تکرار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>67/19</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>62/19</td>
<td>1/0/1</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>52/19</td>
<td>2/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>42/19</td>
<td>3/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>32/19</td>
<td>4/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>22/19</td>
<td>5/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>12/19</td>
<td>6/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>02/19</td>
<td>7/0/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
<td>1/0</td>
<td>0/1/0</td>
</tr>
</tbody>
</table>

注: + به جز ظرفیت‌های کا بتای خطای کل (rxl) از 0.05 هم‌ارزی، گرایش نشان خود با تکرار آزمون گرایش‌ناپذیر.

و ** به ترتیب معنی‌دار در سطح‌های احتمال 0.01 و 0.001 نشان داده می‌شود.

توجه داشته باشید که در این تغییر آزمون، هر مقداری که به طور مستقل از آزمون شده‌اند، به عنوان تغییر به ارتباط آزمون گرایش‌ناپذیر.

گروه‌هایی که حتی در 0.05 هم‌ارزی، گرایش نشان خود با تکرار آزمون گرایش‌ناپذیر.

وضایه بسیار به طور مستقیم اثرات پایه مادره فارا آزمون نمود (جدول 2) از این ارتباط، اثرات پایه مادره برای هیچ یک از صفات معنی‌دار نبود. لذا برخی از تصورات اولیه برای پرورش...
جدول ۵ - تجزیه و تحلیل داده‌برداری روش هیمن (یا روش متروجینکی) برای ارتفاع گیاه در سبزگی در ۲۶ زنوتیپ (۹ وارد و ۳۰ تلاقی) پوپول

<table>
<thead>
<tr>
<th>مجموع مربعات</th>
<th>درجه تفتیش</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار ۱</td>
<td>۳۵</td>
<td></td>
</tr>
<tr>
<td>تکرار ۲</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>تکرار ۳</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>تکرار ۴</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>تکرار ۵</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>تکرار ۶</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>تکرار ۷</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>تکرار ۸</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>تکرار ۹</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>تکرار ۱۰</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>۱۴۳</td>
<td></td>
</tr>
</tbody>
</table>

** - به جزء زنوتیپ‌ها که با خطای کل آزمون شده‌اند، بقیه منابع تغییر با ارتباط مثبت با تکرار آزمون گردیده‌اند.

- به ترتیب معنادار در سطح احتمال ۰/۵ و ۷/۵ درصد

\(t \) - به ترتیب معنادار در سطح احتمال ۰/۵ و ۷/۵ درصد

\(t \times t \) - خطای کل

\(xa \) - کل

\(xb \) - کل

\(xc \) - کل

\(xd \) - کل

صفحه ۵۳ صفحه ۵۳
جدول 6 - تجزیه و تحلیل داده‌های آلل‌بر مینای روش هیمن (با روش متروجینکز) برای تعداد روز تاگرده افشانی در 36 ژنوتیپ (6 وارد و 20 تلای) یولاک

<table>
<thead>
<tr>
<th>مجموع مربعات</th>
<th>بازی جمع داده‌های 4 تکرار</th>
<th>تکرار 2</th>
<th>تکرار 3</th>
<th>تکرار 4</th>
<th>تکرار 1</th>
<th>تکرار 5</th>
<th>تکرار 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>مانگین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
<tr>
<td>277/2255</td>
<td>0/2158</td>
<td>1/175</td>
<td>7/197</td>
<td>1/217</td>
<td>1/159</td>
<td>5/135</td>
<td></td>
</tr>
</tbody>
</table>

درجه تغییر

<table>
<thead>
<tr>
<th>تکرار (1)</th>
<th>تکرار (2)</th>
<th>تکرار (3)</th>
<th>تکرار (4)</th>
<th>تکرار (5)</th>
<th>تکرار (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

بد جزئیتی یا یک با خطای کل آزمون شده‌اند، بقیه مانندی تغییر با هر اکثریت خود با تکرار آزمون کرده‌اند.

** - معنی دارد در سطح احتمال 1 درصد.

- - معنی دارد در هنگامی که این توافق میان دو مقدار معنی دارد هستند، ممکن است برآورده و رابرت‌ها بیش از حد واقعی خود باشد.

برای احترام از این امر توانایی بررسی و روز از ژنوتیپ که فقط یک یا دو والد مسئول وجود این اثرات باشند، آن‌ها را

له فن نمود. البته این روش در صورتی عملی است که تعداد والدین دیگر آللا به اندازه کافی (حداقل ۷ یا 8 عدد) باشد (۴۲). به
علاوه هر پیشنهاد باید بر حذف والدین با تصادفی بودن آنها و تعیین نتایج به جامعه ای برگرگ تضعیف دارد. یا یک وجود،

گزارش نموده‌هاگامی که ارزش‌ها به‌این مانند معنی‌دار است، هستند.

52
تجمیع و نظر به مفروضات مدل ویژگی‌های تجزیه دای آل
جدول ٧ - تجزیه واریانس و درصد

** - معنی‌دار در سطح احتمال ٠.٠٠٠

جدول ٨ - برآورد ضریب رگرسیون

** - معنی‌دار در سطح احتمال ٠.٠٠٠
جدول ۹ - تجزیه واریانس برای صفت ارتفاع گیاه در گونه‌های مختلف و درصد W_{r+V_r} و W_r+V_r
پروپتین سافته در تلاقی‌های دی ۲۱ آلل

<table>
<thead>
<tr>
<th>میانگین مورد عدالت</th>
<th>درجه آزادی</th>
<th>مقدار تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار **</td>
<td>۳</td>
<td>۳۳۲۶/۸۳</td>
</tr>
<tr>
<td>۱/۹۰ **</td>
<td>۴</td>
<td>۲۳۵۱۲/۲۳</td>
</tr>
<tr>
<td>۲/۷۴</td>
<td>۱۲</td>
<td>۲۳۳۳۳/۶۳</td>
</tr>
<tr>
<td>تکرار **</td>
<td>۳</td>
<td>۱۰۷۶/۶۷</td>
</tr>
<tr>
<td>۱/۸۰</td>
<td>۴</td>
<td>۵۵۵۲/۱۷</td>
</tr>
<tr>
<td>۱/۹۳</td>
<td>۱۲</td>
<td>۲۰۷۶/۸۷</td>
</tr>
</tbody>
</table>

جدول ۱۰ - پرآورد ضریب رگرسیون V_r روی W_r برای صفت ارتفاع گیاه در گونه‌های مختلف و درصد
پروپتین سافته در تلاقی‌های دی ۲۱ آلل

<table>
<thead>
<tr>
<th>درصد پروپتین سافته</th>
<th>ارتفاع گیاه در گونه‌های مختلف</th>
<th>پارامتر $eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>برآورد از میانگین ۴ تکرار</td>
<td>برآورد مشترک ۴ تکرار</td>
<td>برای آزمون $\alpha = 0.05$</td>
</tr>
<tr>
<td>۳/۸۸ **</td>
<td>۱/۹۲ **</td>
<td>۱/۸۷ **</td>
</tr>
<tr>
<td>۷/۶۸ **</td>
<td>۳/۶۷ **</td>
<td>۳/۶۷ **</td>
</tr>
<tr>
<td>۱/۵۰ **</td>
<td>۱/۵۰ **</td>
<td>۱/۵۰ **</td>
</tr>
</tbody>
</table>

شکل ۱ - معنی دار در سطح احتمال ۱ درصد

برای ارتفاع گیاه در گونه‌های مختلف، میانگین گیری یکتکانی از آن‌جایی که برای هر دو صفت ارتفاع گیاه در گونه‌های مختلف و درصد پروپتین سافته، ضریب رگرسیون کوچکتر از یک بوده است. این نتایج به حذف یک والد با W_r و V_r مبتنی است.

پایه و V_r مبتنی است. تفاوت تجزیه بروری و الال و الال انجام شد (جدول ۹ و ۱۰). نتایج تجزیه بروری و الال
علامت‌کاروری و منابع طبیعی/جلد دوم / شماره اول / بهار ۱۳۷۷

در صفحه احتمال یک درصد بود (جدول ۱۰). ضرایب
رگرسیون یک ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ پرای تکرارهای یک تا چهارم به ترتیب
پرای هر روزه مشترک ضریب رگرسیون دو ۱/۳۲ افتال از معنی
در یک گروه (۱/۲۴) تنی‌ریز یک درصد غیر معنی دارد و ضرایب
رگرسیون تنی ارزیحی کننداشتن (جدول ۱۰). این حالت
معنی دار برای ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ در صفحه احتمال ۵ درصد) با معنی
در بود ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ در جدول ۴ مطالعه
در این حالت به ترتیب در یک و ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ مدعی
ور این که در تجزیه بروری ۵ والد افزایش یافته است.
بررسی اثر عدم صحت فرضیات بر روز تیپ جزئیه هیچ
و جنگلی محاسبات مربوط به دو صفت ارتقا گیاه در
افشانی و درصد پرورش پاسته به صورت مجزا بروری ۵ والد
(جدول ۹) اثر درصد پرورش دختر نیز ضرایب
گردید (جدول ۱۰). برای درصد پرورش دختر نیز ضرایب
روی ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ از یک انحراف مثبت و با توجه به این
که جهت صحت مدل، نیاز به حداقل ۳ و ۵ درصد برود به

محاسبه پرامترهای زنتیکی صرف نشان داد.
پرامترهای زنتیکی و شاخصهای آماری برای ارتقا گیاه در
رپتنگی و تعادل روز تازه‌گرید افشانی، در جدول ۱۱ نشان داده
شده. مقادیر غلیبت از یک انحراف مثبت و با توجه به این
روی ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ از یک انحراف مثبت و با توجه به این
که جهت صحت مدل، نیاز به حداقل ۳ و ۵ درصد برود به

محاسبه پرامترهای زنتیکی صرف نشان داد.
پرامترهای زنتیکی و شاخصهای آماری برای ارتقا گیاه در
رپتنگی و تعادل روز تازه‌گرید افشانی، در جدول ۱۱ نشان داده
شده. مقادیر غلیبت از یک انحراف مثبت و با توجه به این
روی ۰.۳۸۸/۵۹۱۰۶/۷۷۸/۹۴۹/۰۰۰ از یک انحراف مثبت و با توجه به این
که جهت صحت مدل، نیاز به حداقل ۳ و ۵ درصد برود به

1- Repulsion 2- Pseudo overdominance
جدول 11 - برآورد پارامترهای زننیک و شاخصهای آماری در روش هیمن و جینکز برای ارتقاء گیاه در رشته‌ها و داده‌های ویژه‌گونه‌ها اضطراب

در 36 زننپی (6 والد و 30 تقلیلی بولاف

<table>
<thead>
<tr>
<th>مقدار برآورد شده</th>
<th>پارامترهای زننیک و شاخصهای آماری</th>
<th>تعداد روز تخریب زننیک</th>
<th>ارتقاء گیاه در رشته‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/10 18 1</td>
<td>0/10 22 7</td>
<td>0/10 1 22 5</td>
<td>H₁</td>
</tr>
<tr>
<td>0/10 34 2</td>
<td>0/10 1 10 8</td>
<td>0/10 1 8 1</td>
<td>H₂</td>
</tr>
<tr>
<td>0/10 34 2</td>
<td>0/10 1 10 8</td>
<td>0/10 1 8 1</td>
<td>F</td>
</tr>
<tr>
<td>0/10 1 8 1</td>
<td>0/10 1 8 1</td>
<td>0/10 1 8 1</td>
<td>h⁺</td>
</tr>
<tr>
<td>0/10 2 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>H₁</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>H₂</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>F</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>H₁ - H₂</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>H₁/ H₂</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>√H/V</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>Y₁ + V₁</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>h⁺ / H₂</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>قابلیت دوایر خصوصی</td>
</tr>
<tr>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>0/10 1 7 8</td>
<td>قابلیت دوایر عمومی</td>
</tr>
</tbody>
</table>
جدول 12 - پراورد پارامترهای زنیتیک و شاخصهای آماری در روش هیمن و چینکر برای ارتفاع گیاه در گروه فاقدان و درصد پروتئین ساخته در حالت تجهیز بر روی 6 و 5 والد (هش فیک والد)

<table>
<thead>
<tr>
<th>پارامتر های زنیتیک و شاخصهای آماری</th>
<th>درصد پروتئین ساخته</th>
<th>ارتفاع گیاه در گروه فاقدان</th>
<th>6 والد</th>
<th>5 والد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/48</td>
<td>392/22</td>
<td>333/0</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>3/19</td>
<td>277/22</td>
<td>287/5</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td>3/56</td>
<td>452/15</td>
<td>285/2</td>
<td>H2</td>
</tr>
<tr>
<td></td>
<td>1/29</td>
<td>124/21</td>
<td>70/95</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>1/55</td>
<td>147/3</td>
<td>35/98</td>
<td>h1</td>
</tr>
<tr>
<td></td>
<td>1/42</td>
<td>336/72</td>
<td>325/43</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td>1/59</td>
<td>430/93</td>
<td>340/5</td>
<td>H2</td>
</tr>
<tr>
<td></td>
<td>1/22</td>
<td>166/22</td>
<td>118/17</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>2/78</td>
<td>63/81</td>
<td>29/83</td>
<td>H1∩H2</td>
</tr>
<tr>
<td></td>
<td>1/14</td>
<td>1/12</td>
<td>1/87</td>
<td>√H1/D</td>
</tr>
<tr>
<td></td>
<td>1/54</td>
<td>65/05</td>
<td>77/3</td>
<td>√D(H1 + F)</td>
</tr>
<tr>
<td></td>
<td>1/09</td>
<td>82/02</td>
<td>1/86</td>
<td>√D(H1 - F)</td>
</tr>
<tr>
<td></td>
<td>1/09</td>
<td>0/16</td>
<td>0/79</td>
<td>Yr</td>
</tr>
<tr>
<td></td>
<td>1/09</td>
<td>0/16</td>
<td>0/79</td>
<td>h1∩H2</td>
</tr>
<tr>
<td></td>
<td>1/09</td>
<td>0/115</td>
<td>0/63</td>
<td>قابلیت توارث عمومی</td>
</tr>
<tr>
<td></td>
<td>1/09</td>
<td>0/115</td>
<td>0/63</td>
<td>قابلیت توارث خصوصی</td>
</tr>
</tbody>
</table>

به این که در سه‌لایه ف و پ از حاصل از تلاقی کره‌های هموزیگوت، احتمال وجود آن‌ها در نتیجه تاریکی در این و ارث متقابل بین مکانهای زنی در بسیاری از مطالعات تشکل می‌شود از دو فاقدان که هم‌کنین با یکدیگر خاص و پاسخ برای نسبت یک والد و احراز صحت فرضیات غلبه به حاکم پاسخ، نیازمند به اعمال گروهی این تغییرات متقابل بین مکانهای زنی در بسیاری از مطالعات تشکل می‌شود.
ازاپیات یافت. در مجموع، درجه غالبیت در روش گرفتگی در هردو حالت ۶ و ۵ والدی کمتر از روش هیمن و جینکز بود. از آن جا که در روش ۱ گرفتگی برای محاسبه مجموع مربعات از اطلاعات مرتب به والدین نیز استفاده می‌شود، بنابراین ممکن است واریانس SCA روندی (هردو حالت ۶ و ۳) گرفتگی (ارتباط بی‌خانگی از ابتدای اول روز ۲ گرفتگی) تحت تأثیر این امر قرار نمی‌گیرد (۱۷). اما از این نظر گرفتگی (جدول ۱۳) در مقایسه با روش هیمن و جینکز SCA (جدول ۱۲) در حالت ۶ و ۵ والدی، برآورد ارتباط در روش ۱ گرفتگی می‌باشد. بندین ترتیب، در صورتی که توجه می‌گردد به جدول ۲۳ و ۱۷ به جای ۸ (معدل مربعات روش ۳ گرفتگی) استفاده شود، مقدار Q برای ارتفاع گیاه SCA در هردو حالت این روش در صورت پذیرش روابط وارد شده به ترتیب برای رابطه ۹۲/۶ و ۱۰۹/۶ به دست می‌آید. به همین ترتیب گزارش G در روش ۲ گرفتگی استفاده شد (جدول ۱۸) که مشاهده شد. این نتیجه می‌گوید که رابطه گیاه در این روش در صورت پذیرش وارد شده به ترتیب برای رابطه ۹۹/۳ و ۲۴/۳ می‌شود. محاسبات اختلاف بین روش گرفتگی هیمن و جینکز را کمتر می‌نماید، به‌خصوص زمانی که در حالت ۶ و ۵ والد استفاده شده و فرضیات و诚信 مناسب باشد. اما در مقایسه با رابطه ۱۲ و ۱۳ مشاهده طبقه همیشه به روش هیمن و جینکز بهترین بیشتر از روش گرفتگی تحت تأثیر قدرت مدل دلتایی قرارگرفته است، به‌طوری که در حالت ۶ و ۵ والدی برای هردو صفحه از ارتفاع گیاه در حالت اول و در هردو حالت، برای سرعت پیامدهای دیگر (جدول ۱۳) و همچنین بر تفاوت نوع کرونگ‌ریز از یک بند (جدول ۱۳). به علاوه پس از حرف یک والد، ممکن است برای دیگر این روش هیمن و جینکز همچنین بیشتر از روش گرفتگی است. هیمن (۱۳) اظهار می‌کند که توزیع آن در حالت اول نیز و نیز در حالت دوم و جینکز به کار می‌رود و می‌تواند غیر از این را باشد. پس از حرف یک والد، ممکن است برای دیگر این روش هیمن و جینکز توزیع غیر یکنواخت آلایه غالباً و مغلوب در والدین این مطالعه باشد. یکنواخت آلایه غالباً و مغلوب در والدین این مطالعه باشد.
جدول 12 - پراورش پارامترها و اجزای واریانس زننیکی با استفاده از روش گریفینگ (روش 1) مدل ثابت برای ارتفاع گیاه در گروه‌های مختلف درصد پروتئین ساچه در دو حالت: اول - تجزیه بر روی 6 والد (جدول 2) ب - تجزیه بر روی 5 والد.

<table>
<thead>
<tr>
<th>درصد پروتئین ساچه</th>
<th>ارتفاع گیاه در گروه‌های مختلف</th>
<th>پارامترها و اجزای واریانس زننیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 والد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/355</td>
<td>122/470</td>
<td>σ^2_{gca}</td>
</tr>
<tr>
<td>1/181</td>
<td>55/257</td>
<td>σ^2_{c}</td>
</tr>
<tr>
<td>1/521</td>
<td>22/959</td>
<td>$E=\sigma^2_{c}/r$</td>
</tr>
<tr>
<td>1/510</td>
<td>242/895</td>
<td>σ^2_A</td>
</tr>
<tr>
<td>1/181</td>
<td>65/057</td>
<td>σ^2_D</td>
</tr>
<tr>
<td>1/38</td>
<td>1/87</td>
<td></td>
</tr>
<tr>
<td>1/84</td>
<td>1/95</td>
<td></td>
</tr>
<tr>
<td>1/88</td>
<td>1/80</td>
<td></td>
</tr>
</tbody>
</table>

- تجزیه واریانس دای آلی به روش گریفینگ بر روی 5 والد. گزارش نشده است.

دریافتی \bar{d} و \bar{V}_r و \bar{W}_r + V_r و W_r + V_r باشند در این خصوص پراورش مشترک ضریب گریفینگ روز گیاههای زننیکی والدین را بهتر از پراورش حاصل از میانگین داده‌های آلی آلی نشان می‌دهد. این موضوع از آن جا ناشی می‌شود که میکان است سه اثرات کلید گریفینگ به میانگین داده‌های آلی متغیرها متفاوت در این زمینه، توجه به شبیه گریفینگ روز گیاههای زننیکی والدین را بهتر از پراورش مشترک و پراورش حاصل از میانگین داده‌ها به تفاوت از طرف دیگر، شباهت پراورشی قابلیت توارث عضوی و خصوصی در دو روش اخیر بیشتر از پراورشی دوج معیی بود (جدول 12 و 13). اما برای موارد صفر پراورشی دوج می‌تواند به روش SCA گریفینگ یکپارچه بود. در این مورد نیز در صورت استفاده از روش 2 گریفینگ، اختلاف پراورش قابلیت توارث در دو روش کمتر خواهد شد.

نتیجه‌گیری

نتایج این مطالعه نشان داد که تجزیه واریانس هیمن (12) شبیه‌کامل تجزیه دای آلی به روش گریفینگ (10) می‌باشد که اطلاعات بهتری با رابطه با ماهیت متغیر دست داده و امکان آزمون اثرات پایه مادری را فراهم می‌سازد. از طرف دیگر ضرایب گریفینگ و V_r به صورت پراورش مشترک W_r تکرار و پراورش حاصل از میانگین داده‌های مقدار به دست
ازوم توجه به مفروضات مدل دیگری تجزیه دای آلل

صحیح کمک شیلاتی خواهد نمود. نتایج تجزیه هیمن و جینکر
در حالی صحت و عدم صحبت فرضیات مدل دینیکی، نشان
داد که، هیمن و جینکر به دست آمده تأثیر ارتباط مدل
دینیکی گرفته و تأثیر یک ذهنی متغیر بی- دست می‌دهد. از
بین پارامترهای دینیکی، مقادیر واریانس نشانی منفی، غلیبت و
محبوبیت می‌باشد. این است تأثیر پذیری روشن و گریفینگی
نیز از شیلاتی بوده که این موضوع نیاز به مطالعه بیشتری دارد. در
نهایت، به نحوی می‌رسد زمانی که فرضیات مدل دینیکی دای آلل
صداق حسنکیف، نتایج حاصل از دو روشن و گریفینگی و هیمن
و جینکر قابل مقایسه خواهد بود.

متابع مورد استفاده
1- رضایی ع.م. 1369. برسی دینیکی خصوصیات ریشه در گندم پایه، مجله علوم کشاورزی ایران، جلد 41، شماره های 1 و 2، ص فاصله 39-47.
2- رضایی ع.م. 1370. نرمکی کریاسیراوری. 1370. برسی کنترل شاخص برداشت و مهارکرد بیولوژیک 8 واریتی گندم پایه به
روش تجزیه و تحلیل تحلیل که اول یا آلل. مجله علوم کشاورزی ایران، جلد 44، شماره 1، ص 17-27.
Analysis Rev. 9:9-36.
of Guelph, Ontario, Canada. 134 p.
10:31-50.
10- Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems.

