بررسی و آزمون تطبیق هیدروگراف های واحد مصنوعی و طبیعی در حوضه آبخیز

سد زایندرود (زیر حوضه پلاسجان)

سید فرهاد موسوی، محمد نکویی مهر و محمد مهدی

چکیده

پاترول به اهمیت هیدروگراف واحد در پیش بینی سیلاب و رودخانه‌ها و به دلیل آن که استخراج هیدروگراف واحد در یک حوضه مستلزم داشتن هیدروگراف سیلاب و هیدروگراف ریزش پاران هزمان آن می‌باشد، متخصصین هیدرولوژی برای مناطقی که فاقد چنین داده‌ها

می‌باشند، استفاده از روش‌های هیدروگراف واحد مصنوعی را مقول دانسته‌اند. از آنرو تحقیقاتی در حوضه آبخیز سد زایندرود (زیر حوضه پلاسجان) انجام گرفته که تأثیر کارایی هیدروگراف‌های واحد مصنوعی (اشتادی)، SCS و متعلقی در ارژایش و SCS (زیر حوضه پلاسجان) انجام گرفته که تأثیر کارایی هیدروگراف‌های واحد مصنوعی (اشتادی)، SCS و متعلقی در ارژایش

مورد بررسی قرار گرفته‌اند. برای این منظور، هیدروگراف‌های واحد طبیعی و مصنوعی و نقش آنها در استفاده از مجموعه داده‌های مورفولوژیکی، باران سنجی و هیدرومتری حوضه و بررسی تغییرات در ارژایش و تحمل هیدرولوژیک تغییرات و سرشاخه هیدروگراف واحد مصنوعی را نسبت به هیدروگراف‌های واحد طبیعی (شماه‌ی،) حوضه مورد مقایسه و بررسی قرار گرفته‌اند.

نتایج به دست آمده نشان داد که روش‌های متعلقی و SCS تطبیق پیش‌تر نسبت به روش اشتدای در بافت شکل هیدروگراف واحد و

تعدیت از آنها تغییرات هیدروگراف واحد مصنوعی حوضه‌های دارند، لیک در اثر آسمان حداکثر دی سه لحظه‌ای را نسبت به مقدار مشاهده شده بیشتر نشان می‌دهند. لذا توصیه می‌شود در یک حوضه آب‌پذیر مقدار ثابت در فرمول پرآوردن حداکثر دی لحظه‌ای دراین روش را از شده بیشتر نشان می‌دهند. لذا توصیه می‌شود در یک حوضه آب‌پذیر مقدار ثابت در فرمول پرآوردن حداکثر دی لحظه‌ای دراین روش را از SCS و متعلقی از نویز پیش‌تر برخورد می‌پاشد. اما دارای دی اوج محاسبه شده نزدیکتر به مقدار مشاهده شده است. با طریقه پس از اصلاح فرمول پرآوردن حداکثر

دی لحظه‌ای در SCS و متعلقی، مترانگرت که برای ساخت هیدروگراف واحد مصنوعی در حوضه، روش‌های متعلقی و

اشتادی‌ها از اولویت اول تا سوم برخوردارند.

واژه‌های کلیدی - هیدروگراف واحد، هیدروگراف سیلاب، هیدروگراف مصنوعی، هیدروگراف بارندگی، هیدروگراف واحد مصنوعی، روش اشتدای، روش متعلقی، حوضه آبخیز سد زایندرود

مقدمه

هیدروگراف واحد 1 عبارت است از هیدروگراف روشنای متغییر توسط یک ناشی از یک واحد (یک سانتیمتر با یک انجی) بارندگی

به ترتیب داشته برای آیا آبشار داشته، کشندگی داشته، کشندگی داشته، کشندگی داشته، کشندگی داشته، کشندگی

۱ - Unit hydrograph ۲ - Excess rainfall
روش اشنایدر حاصل تحقيقات انجام بيانته در مورد چندين
حوضه آبخيز در ارتفاعات آيالچين آمريكا ميباشد. سطح
حوضه‌هاي مورد بررسی 25 تا 750 کيلومتر مربع بوده
است. اين اشتباه در این تحقيق سپركره آبخيز مي‌گري
رارايت نموده که عبارتند از: زمان تاخير تا نقطه حداکثر دي،
حداکثر (لحاظي) و زمان پايه (SCS).
تحقيق جدالگانه توسيع اداره حفاظت خاک آمريكا
در تعادل بسيار زيادي از حوضه شاه آبخيز داري امضا و
اطلاعات لازم انجام گرفته است. حاصل اين تحقيق پيدايش
روش هيدرورگراف واحد بودر بعد روشن است.
(21). اين روش سپركره آبخيز مي‌گري در مي‌بشد
- اوج هيدرورگراف
- پارامتر بدن بعد حاشي تقسم زمان درد لحظه به زمان تا
- حداکثر لحظه‌های هيدرورگراف
- پارامتر مجموع حجم سيالات که پيا براي عمک واحدها
- حوضه آبخيز مي‌باشد
- در عمليات حفاظت آب و خاک، برای محاسبهدبي اوج آب
روش ساده هيدرورگراف واحد مثلي استفاده مي‌شود.
(9). در تحقيق حاضر، همه‌زانها با ساخت و بهره‌گيري از
هيدرورگراف واحد طبيعي با ژئودنيهاي مختلف در حوضها
آبخيز سپركره رود (دير حوضه پلاسجان)، روشن
- هيدرورگراف واحد مصروني مورد آزمون و مقياس قرارگرفت. تا
- در كارنامه آنها مورد ارزياي قرار گرفت و بهترین روش
- هيدرورگراف واحد مصروني، كه سيستيرن تطابق را با
- هيدرورگراف واحد طبيعي داشته باشد پيشنهادگردين.
- موان و روشهای آبخيز، سپركره روستا با مساحتی حدود
- 3000

1 - Basin linearity 2 - Lumped system 3 - Synthetic unit hydrograph
جدول 1 - مشخصات نیپرورگانیک حوضه آبیاری پلاسجان

<table>
<thead>
<tr>
<th>پایامتر</th>
<th>مقدار</th>
<th>پایامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>مساحت (کیلومتر مربع)</td>
<td>1578</td>
<td>ارتفاع میانه (متر)</td>
<td>2532</td>
</tr>
<tr>
<td>میویت (کیلومتر)</td>
<td>3890</td>
<td>ارتفاع ذاکتر (متر)</td>
<td>1240</td>
</tr>
<tr>
<td>ضریب گریزهات</td>
<td>1/22</td>
<td>عرض مستطیل معادل (کیلومتر)</td>
<td>45/6</td>
</tr>
<tr>
<td>موشک گلیایی</td>
<td>61/6</td>
<td>طول مستطیل معادل (کیلومتر)</td>
<td>13/2</td>
</tr>
<tr>
<td>تعداد یونتی گیاهی</td>
<td>26/6</td>
<td>شاخص شیب حوضه (درصد)</td>
<td>60/5</td>
</tr>
<tr>
<td>نسبت برشنجکی</td>
<td>46/9</td>
<td>اندازه شیب کلی حوضه (درصد)</td>
<td>25/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>متوسط شیب حوضه (درصد)</td>
<td>2/8</td>
</tr>
</tbody>
</table>

است. از کوه‌هایی که در حال حاضر قسمت تغییرهای مورد را می‌گذارد. شاخص
دیگر، از کوه‌هایی که در قسمت غرب حوضه سرجاسته
می‌گردد و در قسمت غربی حوضه جنوبی می‌باشد. در شیب
افزایشی که در قسمت جنوب حوضه به چندیگر پیوسته و
روش‌ها پلاسجان را تشکیل می‌دهند که در استانها
یکی از اصلی‌ترین روشهای روزنامه‌نگاری از
می‌شود. روشنایی پلاسجان سرانجام به دریاچه سد زاین‌درود
منتسب می‌گردد. اقلیم منطقه بر اساس روش دومارترن از تئیه
شده‌است. در جدول 1 عضوی از تصاویر فیزیوگرافی
حظی شیب‌های رودخانه پلاسجان در بالای استان‌های استانی

از آن‌ها šتشکل

به منظور این‌که در سال‌های طبیعی حوضه
یکی از اولین سال‌های مورد نیاز تغییر شکل استخراج
شده از کاغذ‌های به استان‌های استان‌های استانی
و کاغذ‌های به باران در استان‌های استانی
روش‌هایی که به سه روش گوناگون است
هم‌خوانی‌ها و به سه روش گوناگون

به منظور این‌که در سال‌های طبیعی حوضه
یکی از اولین سال‌های مورد نیاز تغییر شکل استخراج
شده از کاغذ‌های به استان‌های استانی
و کاغذ‌های به باران در استان‌های استانی
روش‌هایی که به سه روش گوناگون است
هم‌خوانی‌ها و به سه روش گوناگون

95
شکل 1 - حوزه آبخیز رودخانه پلاسجان در استگاه اسکندری
جدول 2 - مشخصات سیلابهای انتخاب شده

<table>
<thead>
<tr>
<th>رنگرفش</th>
<th>دبی حداکثر</th>
<th>زمان رسیدن</th>
<th>زمان پایه</th>
<th>بارش</th>
<th>متوسط وارد</th>
<th>لحظه‌ای</th>
<th>سیلاب</th>
<th>میکمکب (ساعت)</th>
<th>بارش (میلیمتر)</th>
<th>(ساعت)</th>
<th>در ناحیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>48</td>
<td>16</td>
<td>25/0</td>
<td>71/2/6</td>
<td>1</td>
<td>22/7</td>
<td>71/11/17</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2/3</td>
<td>58</td>
<td>24</td>
<td>22/7</td>
<td>71/2/6</td>
<td>3</td>
<td>8</td>
<td>72/2/15</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2/5</td>
<td>26/9</td>
<td>48</td>
<td>8</td>
<td>135/0</td>
<td>72/2/6</td>
<td>5</td>
<td>26</td>
<td>72/2/15</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>8/3</td>
<td>76</td>
<td>6</td>
<td>41/8</td>
<td>73/2/6</td>
<td>6</td>
<td>12</td>
<td>73/2/6</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>52/3</td>
<td>56</td>
<td>12</td>
<td>73/2/6</td>
<td>73/2/6</td>
<td>7</td>
<td>9</td>
<td>73/2/6</td>
<td>7</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>18/6</td>
<td>43</td>
<td>9</td>
<td>32/2</td>
<td>73/2/6</td>
<td>8</td>
<td>16</td>
<td>73/2/6</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>25/2</td>
<td>52</td>
<td>16</td>
<td>42/0</td>
<td>73/2/6</td>
<td>0/5</td>
<td>22</td>
<td>73/2/6</td>
<td>0/5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

همدروگراف‌های کامل و نمونه‌هایی از انتخاب شده. در انتخاب سیلاب‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌طور دقیق و مناسب استفاده شده می‌باشد. حوزه‌های بارش و بارش‌های مربوط به بارش‌هایی که به دست آمده از اسناد و مشخصات سیلاب‌هایی که در ساعت‌های 16 به‌ط
تغییرات شرایط به قرار زیر می‌باشد:

\[t_p = t_{IR} + \frac{t_{IR}}{\tau} = \frac{5}{9} Q_{PR} \] \[Q_{PR} = \frac{t_I Q_{PR}}{t_{IR}} \] \[W_{cs} = 2/14 q_c^{-1/8} \] \[W_{vo} = 1/22 q_c^{-1/8} \]

که:

زمان تأخیر (ساعت) \[t_I = \frac{t_p}{t_{IR}} \]
ضریب ثابت مربوط به حوضه \[C_i \]
طول پرگذرنمای می‌باشد \[L \]
نقطه حوضه (کیلو متر) \[L_c \]
طول آبراهه از نقطه خروجی حوضه تا نقطه‌ای در مقابل مرکز نقل حوضه (کیلو متر) \[t_I = \frac{t_p}{t_{IR}} \]
مدت بارندگی (ساعت) \[t_{IR} \]
زمان تأخیر اصلی شده (ساعت) \[t_{IR} \]
مدت بارندگی برای ساختن هیدرولیک واحد (ساعت) \[Q_p \]
دبی اوج (متکمکب بر ثانیه) \[C_p \]
ضریب ثابت مربوط به حوضه \[Q_p \]
مساحت حوضه (کیلو متر مربع) \[A \]
زمان پایه هیدرولیک واحد (ساعت) \[t_b \]
زمان پایه هیدرولیک واحد (ساعت) \[t_b \]
زمان ریسیدن به اوج (ساعت) \[t_b \]

\[\Delta D = \frac{\tau}{2} + \Delta D = \frac{1}{2} t_p \]

\[t_b = 0.5 t_p \] (در هیدرولیک واحد بدون بند)
\[t_b = 2/7 t_p \] (در هیدرولیک واحد مثلثی)

\[t_c = \frac{L}{1/2D} \left(\frac{A^2}{S} \right)^{1/4} \]

که:

زمان تمرکز (ساعت) \[t_c \]

پیش‌بینی‌های هیدرولیک واحد و مدل‌های یک‌پایه هیدرولیک واحد

در روش‌های مصنوعی کافی است که زمان ریسیدن به اوج انتظار محاسبه شود. مختصات نقطه هیدرولیک واحد بر این اساس مشاهده شده است به دست می‌آید (۹ و ۱۰). روابط موجود در هیدرولیک واحد بدون بند، که می‌توانند برای پایه‌های آن‌گونه امر به صورت متفاوت تغییر می‌کنند، بافت صورت متفاوت تغییر می‌کند.
بررسی و آزمون تطابق هیدروگراف‌های واحد مصنوعی و طبیعی در...

$$C_p = \frac{\phi}{85} \quad \text{و} \quad C_q = \frac{\phi}{85}$$

نظره این که پاژه‌های آبیاری ۱۸ هستند (به ترتیب ۱۵۷۸۸ کیلومتر مربع/۵۶۰ کیلومتر مربع و ۲۵۷۸۸ کیلومتر مربع، لذا با استفاده از معادلات (۷) الی (۹) می‌توان مشخصات هیدروگراف واحده استاندارد را استخراج نمود. در سه‌گانه ۷ و ۸ نمونه از هیدروگراف هر دو تغییر شده از روش اشتایر به همراه هیدروگراف واحده طبیعی آورده شده است.

با قراردادن مقدار معول در معادلات (۱۶) و (۱۸) زمان تمرکز از روش براینز- ولیامز برای ۱۶۹۹۸ ساعت و روش SCS به‌طور متوسط به‌طور صحیح هیدروگراف‌های شده نشان می‌دهد که زمان تمرکز حوضه را می‌توان معادل ۸۸ ساعت در نظر گرفت و نشان‌گذارند ملاحظه می‌گردد که برای دست آمده اختلاف میان‌دانتی تدریجی در جدول ۳ مشخصات تغییر شده برای هیدروگراف واحد مصنوعی و روشهای SCS و مشابه با توجه به کیفیت برای آورده شده است. در شکل‌های ۷ و ۸ نمونه از هیدروگراف واحد تغییر شده از روشهای SCS و مشابه نشان داده شده است. برای آزمون و بررسی تطابق بهینه هیدروگراف‌های واحد مصنوعی (اشتایر، SCS و مشابه) با هیدروگراف واحد عرف طبیعی (حوزه آبیا آغوزر) از نظر شرایط جمع‌آوری مرجع‌های مختلف خطا‌های بد در عمل اختلاف دی‌ب دیداکتر لحاظ‌های محاسبه شده با مشاهده شده و درصد اختلاف زمان تازه (p) محاسبه شده با مشاهده شده استفاده گردید. اصولاً در برنامه‌ریزی خطیب، نتایج هدف تغییر هیدروگراف واحد به نهایت عبارت است از به‌دست‌کردن مقیاس مجموع‌های مطلق و به‌دست‌کردن مقیاس نسبی. به‌طور مثال، در این تحقیق مجموع‌های خطا‌های هیدروگراف‌های واحد مصنوعی ۲ ساعت به روشهای استاندارد SCS و مشابه نسبت به هیدروگراف واحد طبیعی به‌طور متوسط با روش‌های اشتایر، SCS، و مدل مشابه استفاده ۱۵۷۸۸ و ۲۰۱۶/۰ و ۲۰۱۶/۰ و ۲۰۱۶/۰. درصد اختلاف دی‌ب‌های حداکثر لحظه‌ای

$$t_1 = \frac{L \cdot \phi \cdot (S + 1) \cdot 1}{1900 \cdot y \cdot 7/5}$$

$$t_c = \frac{1}{1/2y}$$

$$S = \frac{1000 \cdot y}{CN}$$

که :

زمان تأخیر (ساعت) تا زمان تأخیر (ساعت) تا زمان تأخیر (ساعت)

طول ورودیان اصلی (فوت) (ضریب تغییرات)

ضریب تغییرات

شماره منحنی

نتایج و بحث

برای حل معادلات (۹) ۴ به ترتیب نمونه‌های از هیدروگراف سیلاب، هیدروگراف بارش نظیر و هیدروگراف واحد استخر از آن نتیجه‌گیری داده است. همچنین نمونه‌های از هیدروگراف واحد معرف ۴ و ۶ ساعته حوزه‌های پلاسماجن در شکل‌های ۵ و ۶ آمده است.

برای حل معادلات (۹) ۴ به ترتیب نمونه‌های از هیدروگراف سیلاب، هیدروگراف بارش نظیر و هیدروگراف واحد استخر از آن نتیجه‌گیری داده است. همچنین نمونه‌های از هیدروگراف واحد معرف ۴ و ۶ ساعته حوزه‌های پلاسماجن در شکل‌های ۵ و ۶ آمده است.

1 - Sum of absolute deviations 2 - Largest absolute deviation
شکل 2- هیدروگراف سیلاب مشاهده شده در تاریخ‌های ۶ از ۸ اردیبهشت ۱۳۷۲ در ایستگاه اسکندری

شکل 3- هیدروگراف پارندگی در ایستگاه بولیس (مورخ ۶ اردیبهشت ۱۳۷۲)
بترسی و آزمون تطبیق الکتروگرافی واحد محض و طبیعی در...

شکل ۴- الکتروگراف واحد ۲/۵ ساعت مستخرج از الکتروگراف سیلاب شکل ۲

شکل ۵- الکتروگراف واحد معرف ۱ ساعت زیر حوضه پلاک، از حوضه آبخیز سد زاینده‌رود

بررسی نتایج به دست آمده از استخراج الکتروگراف‌های واحد معرف حوضه پلاک، از و آزمون الکتروگراف‌های واحد مصنوعی در تطبیق با الکتروگراف‌های واحد مشاهده شده، محاسبه شده با مشاهده شده و درصد اختلاف زمان تا اوج محاسبه شده و مشاهده شده به ترتیب در جداول ۵ و ۶ نشان داده شد است.
جدول 3 - محاسبه ضرایب C_p و C_t

<table>
<thead>
<tr>
<th>تاریخ و فاصله سیلاب</th>
<th>t_r</th>
<th>t_i</th>
<th>t_p</th>
<th>Q_p</th>
<th>t_{LR}</th>
<th>C_t</th>
<th>C_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21 و 6/9</td>
<td>15/5</td>
<td>24/5</td>
<td>23/3</td>
<td>15/6</td>
<td>8/7</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>6/21 و 12/17 و 6/18</td>
<td>15/5</td>
<td>24/5</td>
<td>23/3</td>
<td>15/6</td>
<td>8/7</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>6/21 و 6/18 و 6/15</td>
<td>15/5</td>
<td>24/5</td>
<td>23/3</td>
<td>15/6</td>
<td>8/7</td>
<td>0/59</td>
<td></td>
</tr>
<tr>
<td>6/17 و 6/15 و 6/12</td>
<td>15/5</td>
<td>24/5</td>
<td>23/3</td>
<td>15/6</td>
<td>8/7</td>
<td>0/59</td>
<td></td>
</tr>
</tbody>
</table>

نکات زیر را روشن می‌سازد:

1- بیشترین دامنه نوسان اختلاف در حداکثر لحظه‌ای نسبت به دیپ لحظه‌ای مشاهده شده در روش اشنایدر 218/21 تا 217/86 در صورت در روش‌های SCS و مثلثی 211/19 تا 210/86 در صورت در صورت بیشتر است، لذا برای اصلاح آن می‌تواند می‌شود مقدار عدد ثابت فرمول [10] از 2/36 به 1/74 کاهش یابد. در تحقیقات که در 9 حوزه آبیاری استان‌های گیلان، منطقه‌ای و تهران توسط رضاپایی (3) انجام گرفته روش SCS تطابق خوبی را نشان می‌دهد.

2- میانگین مطلق دمای اختلاف حداکثر شبکه در روش اشنایدر نسبت به مشاهده شبکه 1/22 در صورت در صورت SCS و مثلثی 1/14 در صورت می‌باشد. بنابراین روش اشنایدر دارای دمای محبوب شده نزدیک‌تر به
بررسی و آزمون تطابق هیدروگراف‌های واحد مصنوعی و طبیعی در...

شکل 6- هیدروگراف واحد مصرف 6 ساعت حوضه پلاسیجان

شکل 7- هیدروگراف‌های واحد مصنوعی 2 ساعت (اشتاپیر و مثلثی) در مقایسه با هیدروگراف واحد مصرف 6 ساعت SCS (مشاهده‌ای) حوضه پلاسیجان

شکل 8- هیدروگراف‌های واحد مصنوعی 6 ساعت (اشتاپیر و مثلثی) در مقایسه با هیدروگراف SCS واحد مصرف 6 ساعت (مشاهده‌ای) حوضه پلاسیجان

مقدار مشاهده شده می‌باشد. به‌دردی خس‌روشاهی (2) نیز در تحقیق خود در حوزه آبخیز رودخانه جاجردان با وسعت حدود 1772 کیلومترمربع و تاب کوهستانی نتیجه گرفته است که هیدروگراف واحد اشتایندر در مقایسه با SCS نسبت به موارد

103
جدول 5 - درصد اختلاف دبی حداکثر لحظه‌ای و مجموع مربع خطاهای (SS) حاصل از مقایسه هیدرولوگ‌های واحد طبیعی حوضه‌ای پلاسیان با هیدرولوگ‌های واحد مصنوعی

<table>
<thead>
<tr>
<th>روش آشناپر</th>
<th>SCS</th>
<th>روش منشأ</th>
<th>مدت پارش مؤثر (ساعت)</th>
<th>بارش مؤثر (ساعت)</th>
<th>دبی حداکثر (میلی‌متر)</th>
<th>دبی حداکثر (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01</td>
<td>0/7 + 0/16/07</td>
<td>0/025</td>
<td>1/014 + 1/0/16/07</td>
<td>1/014 + 0/20/014</td>
<td>0/27 - 6/014</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6 - پیآوردن درصد اختلاف زمان تا اوج محاسبه شده از طریق روش‌های مصنوعی با زمان تا اوج هیدرولوگ‌های واحد طبیعی حوضه‌ی پلاسیان

<table>
<thead>
<tr>
<th>روش منشأ</th>
<th>SCS</th>
<th>روش آشناپر</th>
<th>زمان تا اوج (ساعت)</th>
<th>زمان تا اوج (ساعت)</th>
<th>زمان تا اوج (ساعت)</th>
<th>زمان تا اوج (ساعت)</th>
<th>مدت مشاهده شده در هیدرولوگ واحد مصنوعی (ساعت)</th>
<th>مدت پارش مؤثر (ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01</td>
<td>0/7 + 0/16/07</td>
<td>0/025</td>
<td>1/014 + 1/0/16/07</td>
<td>1/014 + 0/20/014</td>
<td>0/27 - 6/014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>0/12/02 + 0/16/07</td>
<td>0/0176</td>
<td>1/010 + 1/0/12/02</td>
<td>1/010 + 0/22/010</td>
<td>0/27 - 5/010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
روش‌های SCS و مثلاً با افزایش طول مدت بارش مؤثر، به طور متوسط مجموع مربع خطاهای کافی‌کننده می‌باشد.

روش‌های مثلاً در مورد SCS سخت بازیادن تعداد بارش در ساخت شکل هیدرولوژی، وارد و تبعیز از آنها تغییر آن دروان حوضه آبخیز دارد.

۴- به‌طورکلی، روش مثلاً به میزان ۵/۱ درصد و روش SCS به میزان ۵۸/۵ درصد مجموع مربع خطاهای کنترل شده نسبت به روش اشیابدی دارد. برای ساختن هیدرولوژی و ادبیات از اولویت یک نا سه SCS و اشیابدی استفاده می‌شود.

۵- در روش اشیابدی، با افزایش طول مدت بارش مؤثر، مجموع مربع خطاهای حاصل از مقایسه هیدرولوژی ویکانیکی افزایش می‌یابد.

۶- برخوردیمند.

۷- در روش اشیابدی، با افزایش طول مدت بارش مؤثر، مجموع مربع خطاهای حاصل از مقایسه هیدرولوژی ویکانیکی افزایش می‌یابد.

۸- در روش اشیابدی، با افزایش طول مدت بارش مؤثر، مجموع مربع خطاهای حاصل از مقایسه هیدرولوژی ویکانیکی افزایش می‌یابد.

۱۰۵

