تأثیر سطوح و زمانهای مصرف کود ازته بر روی رشد، نمو و عملکرد گندم قدس در کشت بهاره

محمدرضا شکیبو و مصطفی ویژاد

چکیده

به منظور بررسی تأثیر سطوح و زمانهای مختلف مصرف کود ازته بر روی رشد، نمو و عملکرد گندم بهاره رقم قدس، آزمایشی در سال زراعی 1377-78 در مزارع تحقیقاتی دانشگاه کشاورزی تبریز واقع در اراضی کرک، به صورت کرتاهای خرد شده در قالب طرح‌بندی‌های کاملاً تصادفی در می‌باشد. کرتهای اصلی به پنج سطح کود ازته (صفر، 20، 40، 80 و 160 کیلوگرم ازت در هر متر مربع) تقسیم‌بندی شدند. کرتهای اولیه به پنج زمان مصرف کود ازته تزریق شدند، که میان کشت ازته و زمان کاشت 1/3 در مرحله پنج‌ژینی، 2/3 در مرحله سبزه و 2/3 در مرحله پنج‌ژینی و 1/3 در مرحله سبزه و 1/3 در مرحله پنج‌ژینی انگیزه گرفتند.

واژه‌های کلیدی - گندم قدس، گندم بهاره، کود و زمان مصرف کود ازته

مقدمه

نوشته‌های کوده برای یک محصول یا یک گونه که نیازگاه و موارد مورد نیاز آنها در طول زمان رشد گیاه نیاز دارند، ساده‌ترین مصرف کودهای شیمیایی، به ویژه کود ازته، از اهمیت خاصی برخوردار

* به ترتیب: دانشجو سایر کارشناسی ارشد، دانشیار، استاد و استادهو زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه تبریز

73
و هوا و حاصلخیزی خاک بسیار متغیر باشد. واکنش عملکرد دانه به افزایش تیمار از صفر به 150 کیلوگرم در هکتار تقریباً خطر است. در صورتی که میزان کود از این تعداد افزایش یافته باشد نیاز به سطح گیاه به نروش می‌باشد و کشت نشان می‌دهد. افزایش مصرف از موجب افزایش سطح درجه دانه، تشكل و تغییر مظهری دارد و دانه به بیشترین مقدار دانه‌بندی و افزایش وزن خشک و عملکرد دانه بالاتری دارد (41، یک و سی و یکنج و سی).

در تجزیه و تحلیل رشد، واکنش گیاه نسبت به شرایط محیطی مختلف که در طول دوره زندگی خود با آنها مواجه می‌گردد، اثر توجه و تفسیر می‌گیرد. سناتور و پیرشیایی در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میزان رشد و تغییر اندازه‌گیری می‌باشد، تغییر چگالی واکنش و نسبت به تغییرات از طریق معادله بیشتر گزارش می‌شود.

سیمی (40) از مرحله‌های نسبت به نسبت به جذر در این موضوع کوشیده است (34) که میژن طبیعی متغیر باشد. واکنش عملکرد دانه به افزایش تیمار از صفر به 150 کیلوگرم در هکتار تقریباً خطر است. در صورتی که میزان کود از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد نیاز به سطح کم از این تعداد افزایش یافته باشد N

1 - Leaf Area Index (LAI)
2 - Leaf Area Duration (LAD)
3 - Growing Degree-Day (CDD)
4 - Crop Growth Rate (CGR)
ماده خشک اضافه شده نسبت به وزن اولیه در فواصل

متوالی نمونه برداری، میزان رشد نسبی، محصول می‌باشد و

میزان برحسب گرم بر گرم وزن خشک در روز بیان می‌گردد

(3 و 8 میزان رشد نسبی گیاهان زراعی در طول فصل رشد

کاهش می‌یابد (4 و 32) این کاهش بدنی دلیل است که

قسمتهای افزوده شده به وزن گیاه، پایه‌های ساختارپذیر بوده و

باتهای عامل متابولیک نمی‌باشد و چینی بیان‌پذیر می‌نماید.

میزان رشد نسبی همچنین تا اندازه‌ای می‌باشد.

مربوط به سیستم قرار گرفتن و افزایش سیستم گیاهی تحتانی گیاه

است (6 و 18 دوبنده و کمیل (18) گزارش نمودن که

میزان رشد نسبی کندن در این‌جا باید باشد و یا کاهش

کاهش پایه، طرح آزمایشی مورد استفاده در

قابل بلوک‌های کامپوزیتیون در سه نواحی و

یک نمونه کود به‌طور مستقل قرار گرفته (N)، (N)، (N)، (N)

 يقدمه (27) نشان دادن اینکه زیر گیاه ارتفاع

و زودریز کندن در استراحتی به خاطر میزان رشد نسبی آنها در طول

مرحله رشدی است که منجر به سرمایه‌ریزی به شکل محصول بیشتر در

طول مرحله‌گذاری اتفاق خصوصاً در بر می‌شود.

میزان جذب خاصی ۲ نمونه از مقدار مواد ساختمانی

خلیص (غالباً فتوسنتزی) در واحد زمان است و می‌باشد. بر

حبسه گرم (وزن خشک) بر متر مربع (سطح برق) در روز بیان

می‌گردد. میزان فتوسنتز خلاص در واقع تخمینی از میزان

کارایی فتوسنتزی یبتگه در یک کلی سایه‌های یا بر میکجی این‌جا است

و میزان به‌اینکه مقدار در یک مسکن زیر بیان می‌گردد بر

هور کالر قرار گیرند. این مقدار با ماده مربوط به کاهش

کرچم بوده و سایر این با برگ ووجود صابع، مطالعه می‌کند.

با ادامه رشد گیاه و افزایش شاخص سطح برگ به علت

سایزگانی معقل برگ و کاهش رشدان تفستزی برگ‌های پربر،

میزان جذب خاصی در طول فصل رشد کاهش می‌یابد (6 و 8)

با ثبت‌های آن که این، از میزان مورد نظری گذاره در جهت افزایش

تولید محصول با کیفیت مطلوب سپس با بهبود می‌باشد

1- Relative Growth Rate (RGR) 2- Net Assimilation Rate (NAR)

(3) ۲۱۰- ساله است و یک پنجه (ب اساس سیستم زادک‌سی) ۱-GS21

(4) مشاهده اصلی رشته را (بر اساس سیستم زادک‌سی) ۲-GS49

(5) شیوع اولین گره ساقه (بر اساس سیستم زادک‌سی) ۳-GS31

75
تأثیر سطوح و زمان‌های مصرف کود از پروری رشد، نمو و گندم‌کشی

به‌منظور بررسی تأثیر سطوح و زمان‌های مصرف کود از پروری رشد، نمو و گندم‌کشی، مورد مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی در هر سطح و زمان مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد. در این مطالعه، مصرف کود از پروری رشد، نمو و گندم‌کشی نشان داده شد.
علم کشاورزی و منابع طبیعی/جلد دوم/شماره دوم/تابستان ۱۳۷۷

\[\text{CGR} = \frac{\Delta DM}{\Delta H} \]

\[\text{LAI} = \exp \left(a' + b'H + c'H + d'H^2 \right) \]

\[= e(a' + b'H + c'H + d'H^2) \]

\[\text{RGR} = \frac{1}{\text{DM}} \cdot \left(\frac{\Delta DM}{\Delta H} \right) \]

در این معادلات، \(\text{DM} \) وزن خشک اندام‌های هواپیما به حسب گرم بر متر مربع، \(H \) شاخ‌های دمایی (\(\text{H} = \text{SIG} \)) به حساب می‌آید. درجه رشد، به عنوان متغیرهای وابسته و غیرمستقل در مدل RGR، به عنوان متغیرهای مستقل و دمای دما به حساب می‌آید.

دیگر شاخص‌ها رشد به صورت زیر محاسبه شد:

\[\text{CGR} = \left(\frac{1}{b} - \frac{1}{c} + \frac{1}{c + y d} \right) \cdot \left(e^{a + b H + c H + d H^2} \right) \]

\[\text{RGR} = \frac{1}{b} - \frac{1}{c + y d} \]

\[\text{NAR} = \left(\frac{1}{y b} - \frac{1}{c + y d} \right) \cdot \left(e^{a + b H + c H + d H^2} \right) \cdot \left(a' + b'H + c'H + d'H^2 \right) \]

\[\text{H}_i = \left[\frac{T_{\text{max}} + T_{\text{min}}}{\gamma} \right] - T_b \]

درجه رشد، به عنوان متغیرهای (\(\text{H}_i \)) به صورت زیر محاسبه شد:

\[\text{H}_i = \left[\frac{T_{\text{max}} + T_{\text{min}}}{\gamma} \right] - T_b \]

که در این معادلات، \(T_{\text{max}} \) و \(T_{\text{min}} \) به عنوان متغیرهای وابسته و غیرمستقل درجه رشد به عنوان متغیرهای وابسته و غیرمستقل درجه RGR، به عنوان متغیرهای مستقل درجه RGR، به عنوان متغیرهای مستقل و دمای دما به حساب می‌آید.

در این مدل، به عنوان مثالی به تغییرات درفتی و شاخص سطح بیگم نسبت به شاخص دما باید مورد افزایش و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌های Mstat-C مورد تجزیه و تحلیل C.

نتایج و بحث

1- تغییرات آب و هوا

تغییرات دمای هوا، میزان بارندگی و رطوبت نسبی در طول دوره رشد در سال زراعی ۱۳۷۷، در جدول ۳ آمدید است. در
جدول 3- تغییرات دماهای میانگین پایان‌النیمه و رطوبت نسبی در استگاه تحقیقاتی کوچک در طول فصل رشد به‌همه‌گانه قدس در سال زراعی ۱۳۷۲

<table>
<thead>
<tr>
<th>رطوبت نسبی (درصد)</th>
<th>میانگین پایان‌النیمه (میلی‌متر)</th>
<th>دماهای هوا (درجه سانتی‌گراد)</th>
<th>میانگین حداقل میانگین حداکثر میانگین ماهانه حداقل حداکثر حداکثر مطلق</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردیبهشت</td>
<td>۵۷/۲</td>
<td>۸۲</td>
<td>۳۸/۵</td>
</tr>
<tr>
<td>خرداد</td>
<td>۵۴/۸</td>
<td>۸۸/۶</td>
<td>۴۴/۵</td>
</tr>
<tr>
<td>تیر</td>
<td>۵۲/۷</td>
<td>۷۴</td>
<td>۶۷/۳</td>
</tr>
<tr>
<td>مرداد</td>
<td>۴۸/۴</td>
<td>۷۲/۴</td>
<td>۶۲/۷</td>
</tr>
</tbody>
</table>
جدول ۴ - زمانهای وقوع مراحل نمودنگم رنگ تقدیم بر اساس GDD تجمعی و روزهای پس از کاشت

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>کد زادوکس</th>
<th>روزهای متعلق به مرحله</th>
<th>مرحله GDD</th>
<th>مرحله GDD Tجمعی</th>
<th>DAP</th>
<th>GDD تجمعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیب شدن</td>
<td>۱۰</td>
<td>۸ - صفر</td>
<td>۱۰/۳/۵</td>
<td>۱۰/۳/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>چهار برگی</td>
<td>۱۴</td>
<td>۸ - ۲۳</td>
<td>۲/۲/۵</td>
<td>۲/۲/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>اواست نشستن</td>
<td>۲۱</td>
<td>۲۳ - ۴۳</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>ساقه رنگی</td>
<td>۳۲</td>
<td>۳۴ - ۵۲</td>
<td>۲/۲/۵</td>
<td>۲/۲/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>ظهور رشک</td>
<td>۴۹</td>
<td>۴۳ - ۶۵</td>
<td>۲/۵/۵</td>
<td>۲/۵/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>ظهور گل کامل سبزه</td>
<td>۵۹</td>
<td>۶۵ - ۸۵</td>
<td>۲/۵/۵</td>
<td>۲/۵/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>گرد دافشانی</td>
<td>۷۵</td>
<td>۸۵</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>اواست شیری</td>
<td>۷۸</td>
<td>۹۱ - ۱۱۸</td>
<td>۲/۲/۵</td>
<td>۲/۲/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>اواست شیری</td>
<td>۷۷</td>
<td>۱۱۸ - ۱۳۴</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>خمیری ترم</td>
<td>۸۵</td>
<td>۱۳۴ - ۱۶۵</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>خمیری سخت</td>
<td>۸۷</td>
<td>۱۶۵</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
<tr>
<td>رسیدگی کامل دانه</td>
<td>۹۵</td>
<td>۱۸۱ - ۲۱۵</td>
<td>۲/۹/۵</td>
<td>۲/۹/۵</td>
<td>۳۶۵</td>
<td>۳۶۵</td>
</tr>
</tbody>
</table>

روی هشی و زایشی رقم مورد مطالعه در جدول ۴ درج شده است. لازم به یاد است که در تعیین مراحل اساسی رشد و نحوه گیاهان زراعی، استفاده از تقیم زمانی، به دلیل متقاوت بودن شرایط محیطی در مناطق و سالهای مختلف، از دقت کافی برخودار نیست (۱۲). به همین دلیل با توجه به توصیه‌های صورت گرفته است. بیشتر مراتب بهره‌برداری به مراحل GDD سری خیلی از پژوهشگران (۱۵ و ۱۷) استناد است. این مراحل به نظر می‌رسد، در ان آزمایش، مراحل نمودنگم تأثیر طولانی‌مدت مختلفی کرده اند و در آزمایش‌های مختلف، به طور قابل توجهی این آن قرار گرفت و در تیمارها مختلف به طور قابل توجهی این این مراحل بر روی هم منطقه بود. رقم مورد آزمایش بر دیافت GDD (۱۵/۱۱/۲۰۰۹ - روژ رشد ۲۰۰/۹۵/۲۰۰) که توسط گرندم غارش بحثی که می‌دانیم، میزان GDD لازم در ارتقاء دیورس گلبرگ بهره گام گذشته، میزان GDD لازم در ارتقاء دیورس گلبرگ بهره گام گذشته، میزان GDD لازم در ارتقاء دیورس گلبرگ بهره گام گذشته، میزان GDD لازم در ارتقاء دیورس گلبرگ بهره گام گذشته، میزان GDD لازم در ارتقا....
تاثیر سطوح و زمان‌های مصرف کود از پروپری رشد، نمو و گندم قدس

شکل ۱- رابطه بین روزهای پس از کاشت (GDD) و درجه رشد (DAP) تجمعی گندم قدس در مزرعه

واقع در استگن، تحقیقاتی کرکچ در سال زراعی ۱۳۷۴، مربوطا بالماظو واقع روی میدهند.

در این رابطه DAP و GDD به ترتیب درجه رشد و تجمعی و تعداد روزهای پس از کاشت می‌باشند. ضریب تبیین این معادله برای ۹۹/۶ به دست رفت که در سطح احتمال ۵% درصد معنی‌دار می‌باشد.

۳- عملکرد دانه

اثر سطوح کود از پس از عملکرد دانه در سطح احتمال یک درصد معنی‌دار بود (از ذکر جدول نیرویه به احتساب نمایش). مقایسه میانگین‌های مذکور حاکی از اختلاف معنی‌دار بین آنها می‌باشد. تغییرات عملکرد دانه به اثر آزمایش مصرف کود از طرفکرد کودی بازهدی نزولی، میچونی، پیروی می‌نماید. تأثیر مثبت مصرف کود از بکه دانه‌هاییی نیز داشت که می‌تواند ت.smart

GDD = ۰/۲۱۷۷۵ × DAP ۱/۲۱۸۸۵۰

۱- Days After Planting (DAP)
طور معنی‌های موج‌افزاری عملکرد دانه‌های گردد، ولی مصرف

پیشران تأثیر ناگهانی در افزایش عملکرد دانه‌ها در تبادل، به نحوی

که اثر تیمارهای N_T, N_v و 10 بر ریزه 120 و 160 کیلوگرم افزایش

نارنجی در هکتار با همگرایی مشابه به‌ورود افزایش عملکرد

دانه‌های ناشی از سطح بالای از چای، عملندازتً مربوط به افزایش
عملکرد بیولوژیک T، و تعداد دانه‌ها در متر مربع (تعداد بسته‌بندی متر

مربع و تعداد دانه در سطح) بود. زیرا با افزایش سطوح از تیمار
عملکرد بیولوژیک T و تعداد دانه‌ها در متر مربع تقریباً به طور

خطی افزایش یافته است (داده‌های منشتر نشان داد). دیگر

پژوهشگران نیز مطالعه راگزارش‌های نمودند (60 و 25)

اثر تیماریکب در افزایش عملکرد دانه در سطح احتمال 8 رد

معنی دار بود. عملکرد دانه‌ی بالاتر اثر تیمار T، شاید عملندازتً

مربوط به بیشتر بودن تعداد سبیله در متر مربع در مقایسه با

سایر تیمارهای تأثیر داده‌ها نشان داد. این‌ها به‌طور کلی، اثر

و سه‌انگار (10) و (15) در خرابی و افزایش عملکرد

دانه نسبت به تأثیر در مصرف افزایش را تأیید کرد. همچنین، از طرف

گیرنده آزمایش‌ها نیز تنها محتوایی نداشت. این می‌دهد (15).

انجیه‌بی‌پژوهش‌های انجام شده در زمینه اثرات تیماریکب در افزایش به

دست می‌آید این است که مدیریت استفاده از کود ازته بر روی

گیاه محیطی دارد و با توجه به آن

شاید نتایج حاصل نیز متفاوت می‌باشد. بنابراین انتقال

میزان و از مصرف کود ازته به عملکرد میزان مصرف کود ازته به عملکرد

بیولوژیک را دارا بود.

(DM) ماده خشک

در ارتقاء ماده خشک با دنیه روزه‌ها رشد تجمیعی، $DM = \frac{2}{3} + \frac{1}{2} + \frac{3}{4} + \frac{3}{5} + \frac{4}{6} + \frac{6}{7} + \frac{7}{8} + \frac{8}{9} + \frac{9}{10}$ $\mu g \cdot kg^{-1} \cdot d^{-1}$ اندازه‌های H و M در میان

GDD تجمیع P از کاشت

می‌باشد. بهترین بهترین بوده که در این بررسی توانست

تغییرات تجمیع ماده خشک را در طول فصل رشد به خوبی

توجه دهد. ضرایب تغییرات R با $\frac{\beta}{\gamma}$ و معنی‌دار در سطح

احتمال $1%$ و توزیع مناسب نقاط واقعی در اطراف منجری و

منطقی بودن روند تغییرات ماده خشک را از نظر فیزیولوژیک

4 - عملکرد بیولوژیک

افسر حیاتی کود ازته مصرفی بر عملکرد بیولوژیک در سطح

احتمال یک درصد معنی‌داری دارد. انفیازی عملکرد بیولوژیک

82
جدول 5 - مقایسه میانگین صفات مورد ارزیابی در سطوح متواوت

<table>
<thead>
<tr>
<th>صفت</th>
<th>عملکرد دانه (kg/ha)</th>
<th>عملکرد بیولوژیک (kg/ha)</th>
<th>تنرمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطوح آزتا</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۰۳۹/۰۹d</td>
<td>۷۴۸۰/۶۷d</td>
<td>N۰</td>
<td></td>
</tr>
<tr>
<td>۳۳۰۱/۶c</td>
<td>۷۵۳۹/۶۹c</td>
<td>N۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۵۰/۳b</td>
<td>۹۴۸۱/۳۴b</td>
<td>N۲</td>
<td></td>
</tr>
<tr>
<td>۴۸۸۸/۶۴a</td>
<td>۱۱۵۲/۳۰a</td>
<td>N۳</td>
<td></td>
</tr>
<tr>
<td>۵۰۰۵/۵۸a</td>
<td>۱۱۸۰/۴۹a</td>
<td>N۴</td>
<td></td>
</tr>
<tr>
<td>زمان مصرف</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۳۷۶/۲ab</td>
<td>۱۰۱۹/۷۲ab</td>
<td>T۰</td>
<td></td>
</tr>
<tr>
<td>۴۳۹/۴a</td>
<td>۱۱۳۱/۲۲a</td>
<td>T۱</td>
<td></td>
</tr>
<tr>
<td>۴۸۴/۶ab</td>
<td>۱۰۰۴/۳۶ab</td>
<td>T۲</td>
<td></td>
</tr>
<tr>
<td>۴۴۸۵/۶ab</td>
<td>۱۱۰۱/۵۳ab</td>
<td>T۳</td>
<td></td>
</tr>
<tr>
<td>۴۴۲۷/۹b</td>
<td>۹۹۵۰/۳۳b</td>
<td>T۴</td>
<td></td>
</tr>
</tbody>
</table>

در هر سرنشین ارقام که با حروف مشابه نشان داده شده است فاقد اختلاف معنادار (5%) هستند.

1. صفر کیلوگرم = N۰ ۴۰ کیلوگرم = N۱ ۶۰ کیلوگرم = N۲ ۱۲۰ کیلوگرم = N۳

2. تمامی در زمان کاشت

\[
\frac{1}{4} \text{ در زمان کاشت } + \frac{3}{4} \text{ در مرحله پنبه زنی } = T_{1}
\]

\[
\frac{1}{4} \text{ در زمان کاشت } + \frac{3}{4} \text{ در مرحله سبیله رفن } = T_{2}
\]

\[
\frac{1}{4} \text{ در زمان کاشت } + \frac{1}{4} \text{ در مرحله پنبه زنی } + \frac{1}{4} \text{ در مرحله سفیده } + \frac{1}{4} \text{ در مرحله سبیله رفن } = T_{3}
\]

\[
\frac{1}{4} \text{ در مرحله سبیله رفن }
\]

83
شکل 2- تغییرات ماده خشک (DM) (جدول ۶) در برجه روزهای رشد (GDD) نسبت به درجه روزهای رشد (DM) تجمیعی از زمان کاشت گندم. رقم قدس در سطوح مختلف کود ازته. علایمهای اندامهای گیاهی شده را نشان می‌دهند.

جدول ۶- ضرایب معادله چند جمله‌ای تغییرات ماده خشک اندامهای هوایی (DM) نسبت به درجه روزهای رشد (GDD) در سطوح مختلف ازته و زمان مصرف آن

<table>
<thead>
<tr>
<th>معادله پیشنهادی شده</th>
<th>R²</th>
<th>d</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM = e^{a+bH^c} + ch^d</td>
<td>0.968</td>
<td>0.252</td>
<td>6.292</td>
<td>0.241</td>
<td>0.241</td>
<td>N۴</td>
</tr>
<tr>
<td>DM = e^{a+bH^c} + ch^d</td>
<td>0.996</td>
<td>0.291</td>
<td>6.292</td>
<td>0.241</td>
<td>0.241</td>
<td>N۴</td>
</tr>
<tr>
<td>DM = e^{a+bH^c} + ch^d</td>
<td>0.999</td>
<td>0.291</td>
<td>6.292</td>
<td>0.241</td>
<td>0.241</td>
<td>N۴</td>
</tr>
<tr>
<td>DM = e^{a+bH^c} + ch^d</td>
<td>0.999</td>
<td>0.291</td>
<td>6.292</td>
<td>0.241</td>
<td>0.241</td>
<td>N۴</td>
</tr>
<tr>
<td>DM = e^{a+bH^c} + ch^d</td>
<td>0.999</td>
<td>0.291</td>
<td>6.292</td>
<td>0.241</td>
<td>0.241</td>
<td>N۴</td>
</tr>
</tbody>
</table>

(G1) ضرایب a, b, c و d و ضرایب تبیین (R²) گزارش نموده‌اند. ضرایب a, b, c و d و ضرایب تبیین (R²) گویای انتخاب صحیح این معادله برای کلیه تیمارها بود (داده‌های منتشر شده). کربوهای و سیدریک (22) نیز رابطه مشابهی را برای ارقام گندم استرالبایی به عنوان بهترین رابطه است. روند افزایش ماده خشک در سطوح مختلف کود ازته به

84
شکل 3 - تغییرات شاخص سطح برگ (LAI) نسبت به درجه روزهای رشد (GDD) تجمعی از زمان کاشت گندم رقم قدس در سطوح مختلف کود ازته. علائم داده‌های اندازه‌گیری شده را نشان می‌دهند.

شکل 4 - تغییرات سرعت رشد محصول (CGR) نسبت به درجه روزهای رشد (GDD) تجمعی از زمان کاشت گندم رقم قدس در سطوح مختلف کود ازته.
جدول 7 - ضرایب معادله‌ی چند جمله‌ای تغییرات شاخه سطح برگ (LAI) در سطوح مختلف از زمان مصرف آن درجه‌ی رشد (GDD) نسبت به درجه‌ی رشد در سطوح مختلف از زمان مصرف آن

<table>
<thead>
<tr>
<th>معادله پیشین‌شده</th>
<th>R²</th>
<th>d</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAI = e^{a+bH_c} + e^{c+cH+dH_t}</td>
<td>0.995</td>
<td>2/4232010^-9</td>
<td>1/6232111059</td>
<td>1/795802244</td>
<td>N_0</td>
<td></td>
</tr>
<tr>
<td>LAI = e^{a+bH_c} + e^{c+cH+dH_t}</td>
<td>0.995</td>
<td>1/12410^-9</td>
<td>1/188299950</td>
<td>1/134202340</td>
<td>N_1</td>
<td></td>
</tr>
<tr>
<td>LAI = e^{a+bH_c} + e^{c+cH+dH_t}</td>
<td>0.995</td>
<td>2/20410^-9</td>
<td>1/82216365</td>
<td>1/816995377</td>
<td>N_2</td>
<td></td>
</tr>
<tr>
<td>LAI = e^{a+bH_c} + e^{c+cH+dH_t}</td>
<td>0.995</td>
<td>2/16410^-9</td>
<td>1/62421181</td>
<td>1/53954441</td>
<td>N_3</td>
<td></td>
</tr>
<tr>
<td>LAI = e^{a+bH_c} + e^{c+cH+dH_t}</td>
<td>0.995</td>
<td>2/15410^-9</td>
<td>1/62393586</td>
<td>1/59524772</td>
<td>N_4</td>
<td></td>
</tr>
</tbody>
</table>

داده‌های صفر رشد و سپس منفی گرویده‌ای است. با این حال میزان RGR موجب منفی شدن شده است و با توجه به اینکه شاخه سطح برگ نیز سپر نژولی را طی می‌کند، بازیابی منفی می‌گردد. پس این استنباط می‌شود که منفی شدن شاخه‌ای رشد به دلیل کاهش فتوسنتز خالص و تیز کاهش ماده خشک به علت ریزش برگ و فتوسنتز منفی در انتهای دوره رشد بوده است. بنابراین رشد در تغییرات با تناسب حاصل از مطالعات سابقه پژوهش‌گران نیز مشابه دارد (67, 49, 18, 18 و 22).

(RGR) - میزان رشد نسبی (RGR) در اولین فصل رشد، در کلیه سطوح از RGR مشاهده شد و به تدریج با رشد گیاه و افزایش سن آن کاهش یافت (شکل 5). علم کاشش در طول فصل رشد را می‌توان به افزایش سن گیاهی پایین‌تر، در سایه نارگی گیرنده آنها و نیز افزایش بانهای ساختنی که در فتوسنتز نداشتند، نسبت داد. نتایج مشابهی در تأیید این رویداد توسط دیگر پژوهشگران نیز گزارش شده است (32, 49, 18 و 22). کاهش با افزایش درجه‌ی روزه‌ای رشد، در مراحل اولیه رشد، LAI
شکل 5- تغییرات سرعت رشد نسبی (RGR) نسبت به درجه روزه‌ای رشد (GDD) تجمیعی از زمان کاشت گندم رنگ قدس در سطوح مختلف کود ازته.

شکل 6- تغییرات چربی خالص (NAR) نسبت به درجه روزه‌ای رشد (GDD) تجمیعی از زمان کاشت گندم رنگ قدس در سطوح مختلف کود ازته.
تأثیر سطوح و زمان‌های مصرف کود ازت بوروزی رشد نمو و گندم تقدیس ...

dره چه رشد کاملاً در گزارش‌های مختلف شناسایی شده است (شکل ۴). این امر احتمالاً به دلیل سایه‌های دراز از جمله در مدل گیاهی و کاهش استرس توزیعی برگ‌ها بر روی یک‌دیگر و کاهش کارایی فتوسنتز برگ‌ها می‌باشد. از حدود ۱۰۰۰ تا ۱۸۰۰ نفری نرخ رشد درون‌تلسیتی نار Kاهش ناجی‌تری داشته است که ممکن است به دلیل ایجاد ضایعات غیر محصول و یا از تغییرات در رشد کامیاب سطح برگ بوده باشد. زیادی که در تیمارهای بالایی ازت در اولین فصل رشد، در ترکیب نار اثر بالاتر بر سرعت رشد و تنوع زیستی برگ‌ها و کاهش سطح برگ بوده باشد. مقادیر بالاتر نار در اواستور فصل رشد در سطح بالایی ازت نمکن است به دلیل بالاتری نشان دهنده نزدیکی برک و سایه‌های اندازه پیشرفت برگ‌ها بر روی یک‌دیگر افزایش داشته باشد. رشد نار پیش‌گام بین نزدیک‌ترین نار نموداران (۵ و ۶). در این آزمایش، زمان‌های مختلف مصرف کود ازت و اثرات مختلف میزان و زمان مصرف ازت در طول فصل رشد، تأثیر زیادی بر روی روند تغییرات هر یک از شاخه‌های رشد مورد بررسی نشان داد.

۱۰ - همبستگی بین حداکثر مقادیر شاخه‌های رشد و عملکرد دانه

حداکثر مقادیر شاخه‌های رشد مورد بررسی، همبستگی مثبت و معنی‌داری (در سطح استرس بالا) با عملکرد دانه نشان داد (جدول ۸). به طوری که بالاترین همبستگی به شاخه سطح برگ و پایین‌ترین آنها به میزان رشد نسبی تعقیب داشته (به ترتیب ۸۸/۷ و ۸۵/۵). همچنین، حداقل سرعت رشد محصول، همبستگی بالایی با عملکرد دانه داشت. همبستگی بین حداقل LAI و عملکرد دانه، میزان این واقعیت LAI با بالاتری نسبت داده شد. به علاوه، میزان رشد نسبی بالاتر در طول مرحله رشد روی خیلی مصرف کود ازت رشد محصول بیشتر در طول مرحله سنبله‌های بالا بودند، در طول این دوره، موجب افزایش میزان عملکرد پیژوندی و
منابع مورد استفاده

1- آماده، و.م. بیکر.نژاد. 1373. مقایسه برقراری بقایی عملکرد گیاهان زراعی (ترجمه). انتشارات دانشگاه شیراز.

2- جعفرزاده، ع. ا. استیواپور، م. و نیشابوری، 1374. گزارش نهایی طرح تحقیقاتی مطالعات تفسیری 18 هکتار اراضی و خاکهای ایستگاه تحقیقاتی کرک چ. انتشارات اداره موارد پژوهشی دانشگاه تبریز.

3- سرلی، غ. و. کورکچی، 1368. فیزیولوژی گیاهان زراعی (ترجمه). انتشارات جهاد دانشگاهی دانشگاه فردوسی مشهد.

4- کورکچی، غ. 1372. آنالیز شاخه‌های رشد بر اساس واحد گرمایی. خلاصه مقالات اولین کنگره زراعت و اصلاح نیانات ایران. انتشارات دانشگاه کشاورزی، دانشگاه تهران، کرگ. 373. در نظر گرفته شده.

5- کورکچی، غ. و. نصیری، م. 1371. اکولوژی گیاهان زراعی (جلد اول). انتشارات جهاد دانشگاهی دانشگاه فردوسی مشهد.

6- کورکچی، غ. و. مرادی سعیدی، م. نصیری و.ر. صدرآبادی. 1375. سیستم فیزیولوژیکی رشد و نمو گیاهان زراعی (ترجمه).

7- فصلنامه پژوهش‌های وابسته، انتشارات اطاق‌چاب. 1372. تحقیقات عملکرد گیاهان زراعی (ترجمه). انتشارات جهاد دانشگاهی دانشگاه فردوسی مشهد.

8- چهارمی، د. 1374. اکولوژی گیاهان زراعی (جلد اول). انتشارات جهاد دانشگاهی دانشگاه فردوسی مشهد.

21- Frederick, J.R. and J.J. Camberato. 1994. Leaf net CO2 exchange rate and associated leaf traits of winter