اثرات آرایش کاشت و تراکم بوته بر عملکرد و اجزای عملکرد برهنگ در اصفهان

محمد رجب زاده و آنا فخر میلرولی

چکیده

جعت تعیین تراکم مطلوب برهنگ آزمایشی در سال 1374 در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار به مرحله اجرای آزمایش مطرح نمود. رقم آزمایشی به فواصل 0، 15 و 30 سانتی‌متر و فاصله گذاری 3 و 5 سانتی‌متر، به صورت نهایی، با نشان داد که کشت گرفت و در هر دو مرحله، پیشینه ارتفاع در فاصله ریف‌های کمتر و در ریف‌های بزرگتر، با کاهش فاصله ریف زیاد بود. افزایش فاصله ریف موجب بهبود رشد رونده‌ای سپس از مرحله گسترش‌افشانی شد و در تیجه سرعت رشد خوشه و نسبت وزن خشک خوشه به وزن خشک کل ابتدا افزایش می‌یافت. پیشنهاد برای کاهش فاصله ریف، به علت تغییر در وزن هزار دانه و درصد دانه‌های کامل در حمایت، تعداد خوشه در واحد سطح به طور معنی‌دار آزایش و در مقابلی، تعداد دانه در حمایت هر خوشه کاهش یافت. در ترکیب ریف‌های این سیستم در رابطه با چند گروه با لایه‌بندی بود و شاخص برداشت آزایش بالاتر به دلیل کاهش تعداد پرورانه در واحد سطح، محصول کمتری تولید شد. افزایش فاصله که به روشی اکثر صفات مورد بررسی از اصلی‌ترین سیستم در نتیجه ارائه شد. این امر باعث بهبود عملکرد ایفا می‌شود. حداکثر عملکرد با آرایش کلیدی 15 × 15 سانتی‌متر به دست آمد که به نظر می‌رسد می‌تواند در مناطق پر برداشتی سایر اصفهان مورد پذیرش قرار گیرد.

واژه‌های کلیدی - آرایش کاشت، تراکم بوته، فاصله ریف، فاصله که

مقدمه

افراشی انجامی که به هم‌خوانی روش‌های اصلاحی و اعمال مدیریتی و اصولی مربوط می‌شود. این تحقیق تأکید دارد که مطالعه افزایشی و تولید که به عناوین یک گذاشته، به برداشت آزایش مصرف سرانه قدیمی محصول در یکپارچه‌های گردو دسته 18 (5). با روشنفکری اندیشی و مصرف برده، بود که دستگاه برای ترافیک روزهای زراعی، انجام شده شده است که به ترتیب جمع‌نمایی از کارآموزی در دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

* به ترتیب دانشجوی سابی کارشناسی ارشد و استادیار گروه زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
تنظیم تراکم برخ در روش شاکاری، با غیر فواصل نشا و همچنین غیر تعداد نشا در هر کیوی سردریگ. در فواصل زیادی، به عنوان تعدادی از کاهش سطح در واحد سطح زمین، حصول حداکثر عملکرد امکان پذیر نمی‌باشد. فاقدا و دانا (۱۵) نشان داده که با فواصل بیش از ۲۰۰ سانتی‌متر، در هیچ شرایطی نمی‌توان شاکار سطح برگ کافی را جهت حصول حداکثر عملکرد به دست آورد. همچنین گزارش شده است که فواصل نزدیک، امکان دستیابی به شاکار سطح برگ مورد نیاز را در زمان کوتاهی امکان پذیر می‌سازد (۲۰). در همین زمانه‌ باقی (۲) و کارکی (۲۰) نیز ضمن بررسی تراکم‌های مختلف نشان داده که دستیابی به عملکردهای مطلوب تنها در تیبیه اعمال تراکم‌های کمتر از ۲۰۰ سانتی‌متر امکان پذیر است.

چنانچه کاشت فواصل در دو جهت، بین ریف و بین بودها در یک رهیافت، صورت می‌گیرد. در یک رهیافت، کاشت مربوط نزدیک شود، موجب توزیع یکنواخت و یا برداری بیشتر از امکانات محیطی می‌گردد. در چنین شرایطی اگر چه عملکرد تک بوده کاهش می‌باشد ولی در مجموع باعث افزایش عملکرد در واحد سطح می‌شود (۱۴). از طرف دیگر، فواصل بیشتر نزدیکی و کمتر از حد نزدیک افزایش هزینه نشاگری و احتمال خوابیدن کاهش می‌شود (۲۱). افزایش هزینه نشاگری و سود اقتصادی ناشی از افزایش تراکم و دلیل مؤثر در تولید برخ به روش کشش شاکاری بوده و در این نوع فاصله‌ای تراکم مطلوب اقتصادی خواهد بود. برای وزنت و همکاران (۳۴) با استفاده از آمار چندساله در پاکستان، نشان داده که کاهش فواصل کاشت از ۲۰۰ سانتی‌متر، اگر چه موجب کاهش سود هزینه تولید می‌شود و لیکن افزایش عملکرد آن را جبران نموده و باعث افزایش پذیری اقتصادی می‌گردد.

هدف از انجام این آزمایش بررسی اثرات تراکم بوده و آراشی کاشت بر رشد و عملکرد برخ، تحت شرایط غرقوایی و تعمیم فاصله و آراشی کاشت مناسب جهت استفاده کامل قرار گرفته، در عین حال رقابت‌های درون و برون بوته، بزرگ‌تر از فاصله نشانه و در تریاکمی بیشتر و فضای کافی برای انجام عملیات زراعی و دسترسي به یک کیفیت بالا تأمین نمی‌نماید (۳). در مورد برخ نیز، همچنین سایر محتوای زراعی، تعیین تراکم مطلوب به عنوان یک عامل محدود کننده عملکرد همیشه محدود حفظ می‌گردد و تولید کننده برخ، به درک‌وری چنین اثراتی در تأمین و تولید کارگران برخ است. به علت تراکم قرار گرفته است، به طوری که تغییر و تغییر اجازه دیگر می‌گردد. در نتیجه نشانه‌ای افزایشی جدیدی در عملکرد، نحوه یکی در طیف وسیعی از تراکم‌ها، تغییرات جنگلی در عملکرد دیده می‌شود (۲۲). نتایج آزمایش‌های عادی (۸)، محدودی (۷) و حسینی (۱۰) نیز مؤثر در این مطالعه است.

خصائص جنگلی و مواد جنگلی عملکرد در تمام روش‌های کاشت و تولید برخ صادق است (۱۲). با این حال در حوزه ارتباط عملکرد برخ با تراکم، چنین بر سر آیدکه چنانچه پتانسیل تولید محیط‌بنا به عنوان کمودوی آب، شیوع بیماری‌ها، اثر بودن آسیب و با سایر عوامل محیطی در حد پایین باشد و آراشی کاشت بالا موجب رقابت کامل بین بوته و خوابیدن و ایجاد شرایطی مثل کم‌کودون در تراکم، منحنی‌ها می‌شود که بعد برای یک ضریح مجدد تراکم به دست آمده (۱۵) در شرایطی چنین به پتانسیل تولید محیط و تنش‌ها محیط و وجود محیط‌بنا باشد یک منحنی، توجه و رابطه عملکرد با تراکم است (۱۷).
دستیابی به عملکرد مطلوب در اصفهان بود.

مواد و روش‌ها
این پژوهش در سال زراعی 1374 در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه صنعتی اصفهان، واقع در لورک شهرستان تجربه‌آمیزی 140 میلیمتر و درجه حرارت سالانه 17 درجه سانتی‌گراد انجام شد. بافت خاک مزرعه، لوم روس با جرم مخصوص ظاهري 1/4 گرم بر سانتی‌متر مکعب و 1/2 سانتی‌متری دارای آسیدیت آهی 7/8، هدایت الکتریکی عصاره اش 15 دسی‌ویترین بر متری/8 کیلوگرم در ثانیه بود.

آزمایش به صورت فاکتوریل، در قالب طرح پایه بلکه‌های کامل تصمیمی و در چهار تکرار به مراحل اجرای آزمایش. تاکنون به سانتی‌متری مشخص شده 15 و 25 سانتی‌متری برداشت و صورت‌بندی 500 سانتی‌متری بود که به صورت نشانی با 3 نشان در هر کیسه و در حالت غربالی انجام شد. جهت ایجاد شرایط یکسانی و حذف تأثیر ح亂ی‌های در فواصل ریفی 15 و 25 سانتی‌متری به ترتیب 9/12 و 7/12 کاشت به طول 10 متر در نظر گرفته شد. این در تیمار 50 سانتی‌متری فضایی تک‌کاشت منظم گردید. در هر تیمار مسترس 20 کاشت با حفرات عمودی به علت خطر نفوذ به فواصل ریفی 15 و 25 سانتی‌متری در حالی که در قاصله ریفی 35 سانتی‌متری، گیاهان نسبت به سایر تیمارها به تأخیر کشتی و حداکثر ارتفاع خود رسیده و پس از مرحله خوش‌دهی آن به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود ریسیده و پس از مرحله خوش‌دهی به سرعت می‌رسیدند. همچنین در این فاز، خواص گیاهی به علت تغییر در شرایط محیطی افزایش یافت. این تحریکات باعث افزایش حداکثر ارتفاع خود R

1.5 (S-4-chlorobenzyl) -N,N-diethyliothiocarbamate]
جدول 1- تأثیر عوامل آزمایشی بر ارتقاء (سانتیمتر) در مراحل مختلف رشد، تعداد روز

| تعداد روز تا 50 درصد رسیدگی | عوامل آزمایشی | ارتقاء (سانتیمتر) | شروع حوزه دهی | گردیده افشایی | برداشت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>98/α</td>
<td>58/3b</td>
<td>129/α</td>
<td>125/α</td>
<td>88/5a</td>
<td>15</td>
</tr>
<tr>
<td>89/αβ</td>
<td>59/1β</td>
<td>133/α</td>
<td>122/α</td>
<td>83/β</td>
<td>35</td>
</tr>
<tr>
<td>81/αβ</td>
<td>61/5α</td>
<td>130/α</td>
<td>116/β</td>
<td>81/αβ</td>
<td>35</td>
</tr>
<tr>
<td>85/1α</td>
<td>58/8b</td>
<td>128/α</td>
<td>122/α</td>
<td>85/5α</td>
<td>10</td>
</tr>
<tr>
<td>84/β</td>
<td>60/α</td>
<td>131/α</td>
<td>119/β</td>
<td>83/β</td>
<td>15</td>
</tr>
<tr>
<td>81/α</td>
<td>61/8α</td>
<td>128/α</td>
<td>122/α</td>
<td>83/8α</td>
<td>20</td>
</tr>
</tbody>
</table>

اعاده هرگهوه در هر ستون که حداکثر در یک حرف مشترک مستند قرار گرفته است. تعداد آزمون دانکن در سطح احتمال 5 درصد می باشد.

همچنین دیده شد که تعداد نتیجه در هر که، در فاصله زمانی بین ۷۱ روز پس از شناکاری که برداشت در فاصله ریدیف سانتیمتر ۱۵ درصد و در فاصله که بین ۱۵ و ۲۰ سانتیمتر به ترتیب ۱۳/۹ درصد کاهش یافته است. در نظر گرفته شده که افزایش فاصله کاهش داشته شده است و در حالی که در فاصله ریدیف لایه بالا، به علت رقابت ناجی بین بوتها، شدت رویش همچنان ادامه داشته و موجب تأخیر در خروجده شده است. حین مطالعه در تراکمی کنترول رشد وای فاصله پهنای خاک (۱۶) و طولانی‌تر شدن دوره خروجده دست، می‌توان به وجود داشته باشد که مواد نیمه ایرانی در هر گیاه‌گری در (جدول ۲) در تمامی مرحله رشد فاصله ۱۵ و ۳۵ سانتیمتر به ترتیب درازی پیش‌ترین و کمترین مقادیر سرعت رشد خوشه (شکل ۱)، و نسبت وزن خشک خوشه به وزن نهایی بیولوژیک بود (شکل ۲). این مطلب نشان دهنده است که فاصله ریزی بین بوته‌ها در فاصله ۱۵ سانتیمتر به ترتیب عادی و ناپایداری از کروپریدرات تولید شده در هر که، صرف تولید انرژی ریزی می‌گردد. در حالتی که در فاصله ریزی بین بوته‌ها به قطعیت بیشترین گروه‌ها، شدت رویش محدود شده (که با کاهش تعداد نتیجه در هر که، همراه بود) و کروپریدرات بیشتری به سمت اجزای زایشی هدایت می‌شود.

زمان برداشت کاهش یافته (جدول ۱) به نظر می‌رسد. در فاصله ریدیف کتربه گسترشی و تراکم‌های بیشتر رشد رویش و نسبت وزن خشک خوشه به وزن نهایی بیولوژیک در (شکل ۲) نسبت وزن خشک خوشه به وزن نهایی بیولوژیک بود (شکل ۲). این مطلب نشان دهنده است که فاصله ریزی بین بوته‌ها در فاصله ۱۵ سانتیمتر به ترتیب عادی و ناپایداری از کروپریدرات تولید شده در هر که، صرف تولید انرژی ریزی می‌گردد. در حالتی که در فاصله ریزی بین بوته‌ها به قطعیت بیشترین گروه‌ها، شدت رویش محدود شده (که با کاهش تعداد نتیجه در هر که، همراه بود) و کروپریدرات بیشتری به سمت اجزای زایشی هدایت می‌شود.
اثرات آراشی کاشت و تراکم بوته بر عملکرد و اجزای عملکرد برتگ در اصفهان

شکل 1- مقایسه سرعت رشد خوش‌های در فواصل کاشت مختلف و در مراحل مختلف رشد

نهايي اعمالکرد بيشرگردي، اين نتایج با پانهداري گيلمور (16) و آكاري و همكاران (10) مطابقت دارد. در اين مورد نيز تأثیر فواصل که در رديف مشابه با ازئت فاصله رديف بود.

نهايي اعمالکرد بيشرگردي، اين نتایج با پانهداري گيلمور (16) و آكاري و همكاران (10) مطابقت دارد. در اين مورد نيز تأثیر فواصل که در رديف مشابه با ازئت فاصله رديف بود.

همينگي مثبت و معنی‌دار عاملکرد بيوپروپيک با سرعت رشد خوش‌های در زمان گردنه افشاري (44) از ذات حاکی از ان است که عاملکرد بيوپروپيک بيشتر در اين زمان، كه نتیجه تحمیل

فعالیت‌های گیاهی است، می‌تواند موجب افزایش رشد خوش‌های
سطح و انرژی تعداد دانه در خوشه شد (جدول ۳). این اینگونه وجود این جیرانی تعداد خوشه در واقع تعداد روز و مجموعه تعداد روز بیشتر تا زمان خوشه‌های از عوامل بودن که به این افزایش تعداد دانه در خوشه در تیمارهای با فاصله کافی بیشتر شدند. می‌باید مثبت و منفی دارد و تعداد روز تا خوشه‌ها بیا تعداد دانه در خوشه (چندال ۵۰/۰) همچنین تیماری جنگل و همکاران (۳۲) نیز بیانگر همخوانی مطلق است. درصد دانه‌های کامل به طور مثبت در تأثیر فاصله رضایت کارگر نگرفت (جدول ۳). احتمالاً که تعداد دانه در خوشه بیا علت افزایش تعداد خوشه، موجب گردیده است که سطح اصلی پینجه‌های آن توانایی بیشتر برای حمایت از فراوانی موجود دانه‌ها، نهایتاً درصد دانه‌های کامل تغییری پیدا نکند. چنین حالتی در تجربه آزمایش‌های دگر نیز دیده می‌شود (۳۸/۲۷). این وجود و زندان عوامل تیمارهای مختلف می‌فشد که در تأثیر فاصله کافی همکاران مثبت باشد. این افراد داخلی که تعداد موجب کاهش جنگل درصد دانه‌های کامل در هر خوشه شده است. علت چنین روندی احتمالاً عدم توانایی گیاه در حمایت از تعداد دانه زیادتری است که در تراکم‌های کمتر حس‌السیر می‌شود به نظر می‌رسد سرعت رشد در داخل فاصله زمانی خوشه‌های تا تا کمتر افزایش که می‌بایست مثبت و منفی درصد دانه‌های کامل دانه‌ها و همچنین دانه‌های حداکثر مراکز (۳۷/۱۰ درجه سانتی‌گراد) که با دوره تنش‌های میتوانید دانه‌های کامل در خوشه بودند (۳۷/۱۰). وجود تعداد دانه بیشتر در خروش بر فاصله کافی موجب تغییر متوسط می‌شود (۳۷/۱۰).اگرچه این افراد تأثیر وابسته در خروش را بر عملکرد دانه‌هایی نمایانی سازد. ولز و فاری (۱۹/۸) نیز در آزمایش خود می‌بایست عملکرد دانه و تعداد دانه در خوشه مشاهده شدند. چابوی و ریچاردی (۱۷) نیز گزارش کرده‌اند که همکاران مثبت یک صفحه بای عملکرد، از آن تأثیر سبک و منفی درصد عملکرد نمی‌یابند.

با توجه به ارزیابی کشتی مورد استفاده، مشخص شد که فاصله رضایت ۰/۵ سانتی‌متر همراه با فاصله کیفی در رضایت ۰/۵ و ۰/۵ سانتی‌متر، نسبت به سایر آراشی کاشت به حالت کشت مرندی و توسعه یکنواخت نور یافته در واحد سطح نسبی گیاهان در واقع تعداد فوق‌العاده و موجب جهش برداری بیشتر از امکانات محیطی و به جدایی رساندن رقابت‌های درونی و بروز پونه‌های گرید. است. همان طور که در جدول ۳ دیده می‌شود، اگر چه در چنین حالتی عملکرد هرکیک و شاخص برداشت کاشت می‌پایند، اما در مجموع موجب افزایش عملکرد در واحد سطح می‌شود. نتایج مطالعات کنز و همکاران (۱۲) و جانسون و همکاران (۱۳) مطابقت دارد.

استفاده از روش روش‌گریسون "پیش رو محدوده" نشان داد که...
جدول ۲- اثر فاصله رددی و فاصله کی به تعدیل پنجه در واحد سطح و در هر کیه در مراحل مختلف رشد

<table>
<thead>
<tr>
<th>عوازل آزمایشی</th>
<th>در هر کیه در متر مربع</th>
<th>در هر کیه در متر مربع</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاصله رددی (سانتی‌متر)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰ c</td>
<td>۴۹۲a</td>
<td>۱۰ c</td>
</tr>
<tr>
<td>۱۵ b</td>
<td>۳۸۷b</td>
<td>۱۵ b</td>
</tr>
<tr>
<td>۱۶ a</td>
<td>۳۳۱a</td>
<td>۱۹ a</td>
</tr>
<tr>
<td>فاصله کی (سانتی‌متر)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳ b</td>
<td>۴۶۹a</td>
<td>۱۲ b</td>
</tr>
<tr>
<td>۱۵ a</td>
<td>۳۸۰b</td>
<td>۱۷ a</td>
</tr>
<tr>
<td>۱۶ b</td>
<td>۳۳۱c</td>
<td>۱۶ a</td>
</tr>
</tbody>
</table>

اعداد هر گروه در هر ستون که حداکثر در یک حرف مشترک هستند فاقد تفاوت آماری براساس آزمون دانکن، در سطح احتمال ۵ درصد می‌باشد.

جدول ۳- اثر فاصله رددی و فاصله کی به اجزای عملکرد، عملکرد کی، عملکرد دانه و شاخص برداشت برنج (زنی زاینده رود)

<table>
<thead>
<tr>
<th>عوازل تعادل خوشه تعادل دانه در درصد دانه وزن هزار عملکرد کی، عملکرد دانه و شاخص از آزمایشی در متر مربع خوشه های کامل دانه (گرم) (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاصله رددی (سانتی‌متر)</td>
</tr>
<tr>
<td>۴/۱۵ b</td>
</tr>
<tr>
<td>۴/۲ ab</td>
</tr>
<tr>
<td>۴/۵ a</td>
</tr>
<tr>
<td>فاصله کی (سانتی‌متر)</td>
</tr>
<tr>
<td>۴/۲ a</td>
</tr>
<tr>
<td>۴/۵ a</td>
</tr>
<tr>
<td>۴/۷ a</td>
</tr>
</tbody>
</table>

اعداد هر گروه در هر ستون که حداکثر در یک حرف مشترک هستند فاقد تفاوت آماری براساس آزمون دانکن، در سطح احتمال ۵ درصد می‌باشد.

نیز حاکی از همین مطلب می‌باشد. در هر حالت

کاهش بیش از حد فاصل کشتن موجب افزایش رقابت

بين گياهان گرديده، و كاهش عملکرد را به دنبال خواهد

داشت. در اين آزمایش نيز تيمار ۱۵×۱۰ نسبت به تيمار
همه‌گزاری

سپاسگزاری

مباحث مورد استفاده

1. باقی‌ها، م. 1377. بررسی اثرات ترکیب بوته‌های کالکتیوکtet (قابل کشت نشان) در عملکرد برینج چم‌مسیری‌نشسته. چکیده مقالات سومین کنگره علوم وزارت و اصلاح نیمات ایران، شهریور ماه 1377، دانشگاه تبریز.

2. حسنی امینی، س. ص. 1375. بررسی اثرات تاثیر کالکتیوکtet. ترکیب بوته و تازه‌ترین لیت‌های امیدبخش. دانشگاه تبریز، مقاله چهارمین کنگره علوم زراعت و اصلاح نیمات ایران، شهریور 1375، دانشگاه صنعتی اصفهان.

3. خواه‌نیا، م. 1379. اصول و مبانی زراعت انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان، صفحه 141.

4. جریب‌زاده، م. 1375. کارآزمایی ارزی در مزرعه تولید برینج استان اصفهان. چکیده مقالات چهارمین کنگره علوم زراعت و اصلاح نیمات ایران، شهریور 1375، دانشگاه صنعتی اصفهان.

5. سرموئی، غ. 1373. زراعت‌ها و اداره‌ها در جهاد دانشگاهی، دانشگاه صنعتی اصفهان.

6. سرموئی، غ. 1373. ارزی‌بایگانگی گیاهان زراعی (یکی از انتشارات جهاد دانشگاهی مشهدی)، صفحه 176.

7. خواه‌نیا، م. 1379. بررسی اثرات فعال نیمات طبیعی و سطحی کودی را را را به طور مداوم تولید نموده، دانشگاه صنعتی اصفهان، صفحه 141.

چکیده مقالات چهارمین کنگره علوم زراعت و اصلاح نیمات ایران، شهریور 1375، دانشگاه صنعتی اصفهان.

