اثر باکتری تولید کننده اسید لاکتیک (LAB) و اوره بر ترکیب شیمیایی و ارزش غذایی علوفه کامل جو

چکیده
این آزمایش به منظور بررسی اثر باکتری تولید کننده اسید لاکتیک (LAB) و اوره بر ترکیب شیمیایی، ارزش غذایی و ویژگی‌های سایع شکم‌های علوفه کامل جو سیلیم شده انجام گردید. در یک طرح کامل‌ال‌اعدادی و به صورت چرخشی، جهار کوستنی نر سافتنک مورد استفاده قرار گرفت. محصول LAB به میزان دو لیتر بر هر تن گیاه تر کجو (۲本市ه علوفه) و اوره به میزان چهار کیلوگرم به هر تن ماده خشک (با ۴۵本市ه علوفه) افزوده و به مدت ۲۰ روز سیلو شد.

سیلازه‌های با ماده خشک کم pH پایین‌تر، قند‌های محصول در آب بالاتر می‌باشد، ازت آزمایی، اسید لاکتیک و آنتیونات بیشتر و نسبت لاکتیک به استات غذایی می‌باشد. 

واژه‌های کلیدی: گیاه کامل جو، باکتری تولید کننده اسید لاکتیک (LAB)، اوره، ارزش غذایی، اسید لاکتیک

مقدمه
انواع سیلازه‌ها به عنوان علوفه از مطلوب به مقدار زیاد در تغذیه دام استفاده می‌شوند. علوفه کامل غلظت از خوراک‌های انواع دام را تشکیل می‌دهند. دربرداشت مورد استفاده قرار گیرد که کشت

1. استادیار علوم دامی، دانشکده کشاورزی، دانشگاه شیراز

115
به گیاه کامل را یا حدود ۲۰-۳۰ درصد ماده خشک کم‌وکم به‌دست می‌آید. این درصد حاوی میکروب‌های بافت‌پرور می‌باشد. این میکروب‌ها از پاتوگن‌هایی مانند Bacillus subtilis، Staphylococcus aureus و E. coli به‌جای غذا و پایه‌های نهایی خشک‌سازی می‌گردد. نتایج این سری از تحقیقات نشان می‌دهند که استفاده به‌کار بردن این میکروب‌ها در پایه‌های نهایی خشک‌سازی می‌تواند باعث افزایش کیفیت و بهبود میزان خشک‌سازی گیاه شود.

درصد (۷۵ درصد) استفاده شده، در این مطالعه در دو دسته آزمایش کار گردیده است. دسته اول به‌صورت تصادفی به میزان ۵۰ درصد ماده خشک اضافه گردید. در دسته دوم، میزان ماده خشک اضافه شده به ۱۰۰ درصد افزایش یافت. نتایج نشان داد که استفاده از این میکروب‌ها به سبب افزایش ظرفیت خشک‌سازی، کیفیت غذایی گیاه را بهبود می‌بخشد. در نتیجه، استفاده از این میکروب‌ها به عنوان میکروب‌های بهبود‌بخش در پایه‌های نهایی خشک‌سازی گیاه به عنوان یک راه حل محکم می‌تواند به‌کار رفته شود.

می‌توان گفت که استفاده از این میکروب‌ها به عنوان میکروب‌های بهبود‌بخش در پایه‌های نهایی خشک‌سازی گیاه به عنوان یک راه حل محکم می‌تواند به‌کار رفته شود.
جمهوری مدفعی انجام گردید.
گوسفندان در فضه‌های متابولیک تکه‌گذاری و به آب و آتش دسترسی داشتند و در ساعت 9 صبح هر روز با سیلزه‌ای مختلف و کشی‌شته (به نسبت 6:1:1 به ترتیب 360 گرم ماده خشک از سیلزه‌ای و 180 گرم ماده خشک از کسانتر) و در سطح تکه‌گذاری تغذیه می‌شدند. هر روز صبح 100 میلی‌لیتر اسید سولفوریک 20 درصد به عنوان تکه‌گذارنده نیتروژن ادار، در داخل سطل هایی با گنجشک چهار لیری رخته شد و پس از گذاشتن پارچه تمیز روی سطح‌ها، سطح‌ها از نظر مخزن
جمع آوری ادار هر قسم قرار می‌گرفت. ادار و مدفعی تولید شده در هر روز جمع آوری و پس از روتور بارداری، 20 درصد از کل ادار و مدفعی تولید برای تجزیه بعده در مسایل -20 درجه سانتی‌گراد تگهداری می‌شد.
در هر دوره آزمایش قابلیت هضم میزان ۳/۷ درصد از خوراک‌ها نمونه‌برداری و سپس همان‌هایی خوراک جمع آوری و از مقدر خوراک داده شده کسر می‌گردید. در پایان هر دوره آزمایش قابلیت هضم، نمونه‌های ۱۰ مایلی کمک به تعیین به طول هشت ساعت (هر ۲ دقیقه تا چهار ساعت پس از تغذیه، و سپس هر یک ساعت تا هشت ساعت پس از تغذیه) از طریق چهار تکه‌گذاری آزمایشی با استفاده از آزمون تکی (۱۵) برای تعیین اختلاف آماری استفاده گردید.

نتایج و بحث
تزکیه
تزکیه شیمیایی
تزکیه شیمیایی گیاه کامل جو پس از افزودن LAB و اوره و پیش از سیلو کردن در جدول ۱ نشان داده شده است. این

جدول، مقایسه تزکیه شیمیایی گیاه جو در میزان ماده خشک را نشان می‌دهد. در گیاه با ماده خشک کم در مقایسه با ماده خشک زیاد، نشان می‌دهد که فاصله‌ای دیواره سلولی و دیواره‌های سلولی بدون همی سلول کمتر و این فاصله در میزان ماده خشک از سیلزه‌ای و ۱۸۰ گرم ماده خشک از کسانتر) و در

جدول ۲ تزکیه شیمیایی سیلزه‌ای پس از ۶۰ سیلزه کردن نشان می‌دهد. شرایط سیلزه کردن یک هنگی تیمارها یکسان بودند ولی نتایج شت که همه سیلزه‌ها به خوبی فشرده و

مهم‌ترین، مقایسه تزکیه شیمیایی گیاه باید در صفحات دیگر به‌طور جزئی آورده شود. تیمارها ۱ و ۲ (باید ماده خشک) کم در دارای pH ۴ (با ماده

در نتایج گزارش شده، نمونه تیمارها ۴ به برنامه مایلی کمک به تعیین به طول


جدول ۱ مقایسه تزکیه شیمیایی گیاه جو در نتایج گزارش شده در مورد سیلزه‌ای جو با میزان ماده خشک مشابه، ولی کمتر از pH ۴ تریت به

چون برای همین فقط یک سیلو تهیه گردید، از طرح آماری برای تجزیه داده‌های تزکیه شیمیایی گیاه و سیلزه‌ای استفاده شد. داده‌های آزمایش قابلیت هضم و برگی‌های خاص و آمیک از آزمون تکی (۱۵) برای تعیین اختلاف آماری استفاده گردید.

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در

کمتر بودن از آمونیاک (۲۳) و نبود اسید بیوشیمی در
جدول ۱. ترکیب شیمیایی علوفه کامل چوب (گرم در کیلوگرم ماده خشک) در دو مرحله رشد. پیش از سیل کردن

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>تیمار ۱</th>
<th>تیمار ۲</th>
<th>تیمار ۳</th>
<th>تیمار ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک (گرم در کیلوگرم ماده تر)</td>
<td>۵۸۲</td>
<td>۵۵۱</td>
<td>۳۲۷</td>
<td>۳۵۰</td>
</tr>
<tr>
<td>pH</td>
<td>۸/۰۸</td>
<td>۷/۰۱</td>
<td>۶/۴۳</td>
<td>۶/۴۷</td>
</tr>
<tr>
<td>ارت کل</td>
<td>۵/۰</td>
<td>۱۱/۱</td>
<td>۱۲/۳</td>
<td>۱۲/۳</td>
</tr>
<tr>
<td>قندهای محلول در آب</td>
<td>۲۳/۰</td>
<td>۳۶/۸</td>
<td>۱۲۳/۹</td>
<td>۱۲۳/۹</td>
</tr>
<tr>
<td>نشانه</td>
<td>۳۰۰</td>
<td>۳۰۰</td>
<td>۹۰</td>
<td>۹۰</td>
</tr>
<tr>
<td>دیوواره سلولی</td>
<td>۵۰۲</td>
<td>۵۰۵</td>
<td>۴۶۱</td>
<td>۴۶۱</td>
</tr>
<tr>
<td>دیوواره سلولی بدون همی سلولز</td>
<td>۲۸۳</td>
<td>۲۸۱</td>
<td>۲۸۱</td>
<td>۲۸۱</td>
</tr>
</tbody>
</table>

هر عدد میانگین ۳ تکرار است. تیمار ۱ = گیاه کامل جو با ماده خشک کم تیمار ۲ = گیاه کامل جو با ماده خشک کم + LAB Tیمار ۳ = گیاه کامل جو با ماده

جدول ۲. ترکیب شیمیایی گیاه کامل جو (گرم در کیلوگرم ماده خشک) در دو مرحله رشد. ۶۰ روز پس از سیل کردن

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>تیمار ۱</th>
<th>تیمار ۲</th>
<th>تیمار ۳</th>
<th>تیمار ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک (گرم در کیلوگرم ماده تر)</td>
<td>۵۵۷</td>
<td>۵۳۰</td>
<td>۴۰۰</td>
<td>۲۸۵</td>
</tr>
<tr>
<td>pH</td>
<td>۸/۹۹</td>
<td>۵/۴</td>
<td>۳/۷۱</td>
<td>۳/۸۶</td>
</tr>
<tr>
<td>ارت کل</td>
<td>۴۱/۸</td>
<td>۱۱/۹</td>
<td>۱۶/۵</td>
<td>۱۶/۵</td>
</tr>
<tr>
<td>دیوواره سلولی</td>
<td>۵۰۶</td>
<td>۵۱۳</td>
<td>۵۶۶</td>
<td>۵۶۶</td>
</tr>
<tr>
<td>نشانه</td>
<td>۴۷۰</td>
<td>۴۰۰</td>
<td>۳۹</td>
<td>۳۹</td>
</tr>
<tr>
<td>قندهای محلول در آب باقی مانده</td>
<td>۳۰۸</td>
<td>۲۷۰</td>
<td>۳۰۵</td>
<td>۳۰۵</td>
</tr>
<tr>
<td>ارت آمونیاک (درصد از ارت کل)</td>
<td>۵/۰</td>
<td>۵/۰</td>
<td>۱۰/۱</td>
<td>۱۰/۱</td>
</tr>
<tr>
<td>اسید لاتیک</td>
<td>۴</td>
<td>۹/۸</td>
<td>۵۸</td>
<td>۵۸</td>
</tr>
<tr>
<td>اسید استیک</td>
<td>۴/۸</td>
<td>۳/۲</td>
<td>۲۳/۴</td>
<td>۲۳/۴</td>
</tr>
<tr>
<td>اسید بوتیکریک</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۰/۸</td>
<td>۰/۸</td>
</tr>
<tr>
<td>تست لکاتات به استات</td>
<td>۰/۸</td>
<td>۳/۱</td>
<td>۱/۷</td>
<td>۱/۷</td>
</tr>
<tr>
<td>انول</td>
<td>۱/۴</td>
<td>۱/۸</td>
<td>۶/۸</td>
<td>۶/۸</td>
</tr>
</tbody>
</table>

هر عدد میانگین ۳ تکرار است. تیمار ۱ = سیلاز گیاه کامل جو با ماده خشک کم تیمار ۲ = سیلاز گیاه کامل جو با ماده خشک کم + LAB Tیمار ۳ = سیلاز

گیاه کامل جو با ماده خشک زیاد تیمار ۴ = سیلاز گیاه کامل جو با ماده خشک زیاد + اوره

بیتیریک در تیمار ۲ کمتر از ۱۰ درصد از کل بود. که نشانه

آمونیاک در تیمار ۲ کمتر از ۱۰ درصد از کل بود. که نشانه

لیکوپ و رطوبت کمتر در این تیمارها باشد، زیرا گیاه هر دور

تیمار با ماده خشک زیاد برداشت شد. در هر حال، میزان ارت

۱۱۸
(21) در سیال در است. باید توجه کلمات پایین ماده آمیزی در
این ارائه نوشته به آموزش و پرورش و همکاران، می‌تواند به سبب استفاده تکرار از افزایش آمیزی به
و ایجاد اختلاف
در درصد ماده خشک گیاه به کار رفته‌اند.
همچنین، باید نتایج تکرار ماده آمیزی، دیوره سلولی
دبی سلولی بدون همی‌سازی و ازت کل در تیمار 2 نسبت به
پر گروه‌های افزایش یافته در میان بیماری است. افزایش قابلیت
دبی سلولی بدون همی‌سازی در تیمار 2 گزارش‌های پیشین
LAB می‌باشد (19) و (ب) نتیجه شده با
هماهنگی دارد. قابلیت هضم ناشتته در این آزمایش زیاد، و
به‌ندرست که کاهش در کاهش سلولی
می‌باشد (24).

افزونه میزان دیوره سلولی بدون همی‌سازی در فاصله بین
روز گزارش‌های 3 و 4، نشان دهنده کاهش سلولی
در خلال تیمار 2 (23) می‌باشد. همچنین، میزان دیوره سلولی
در فاصله بین روز گزارش‌های 20 در تیمار 4 کاهش یافته، که
می‌تواند به ثابتی قابلیت حییت تبدیل گردد در اثر عمل
آمیزی باشد (20). افزایش میزان دیوره سلولی (یافته بود
انس، جم در کلیپ گروه ماده خشک) در تیمارهای 1 و 3
به خاطر کاهش ماده کاهش تغمیر در خلال سیال کردن (20)، و
با اشتباه در نمونه‌گیری است.

قابلیت هضم و ویژگی‌های مانع شکمه
مایکنین قابلیت هضم مواد غذایی و میزان از تغییرات شده
تیمارها در جدول 3، و ویژگی‌های مانع شکمه در جدول 4
نشان داده شده است. قابلیت هضم تغییر مواد غذایی (بجر
نشانه) در تیمار 1 به طور معنی‌داری کمتر از بقیه تیمارها بود.
قابلیت هضم ماده خشک به طور معنی‌داری (100<)<<100)
تأثیر میزان افزایش گرفت. افزایش قابلیت هضم ماده آلی
در تیمارهای 2 و 3، احتمالاً به علت گروه
هدروژ ماده آلی، در طول سیال کردن در افزودن با دو
سطح ماده خشک می‌باشد. ارقام قابلیت هضم ماده آلی در این
آزمایش، مشابه ارقام گزارش شده توسط مرکوری 2 و برانت
(24) (24)، و با توجه به ارقام گزارش شده توسط ویلکنر و همکاران
ام از تیمار، میزان ایجاد دفع شده در تیمار 2، در مقایسه با
تیمار 1 مهم‌ترین عامل افزایش از تغییرات شده می‌باشد.
جدول 3. قابلیت هضم مواد معذی (گرم در هر کیلوگرم ماده خشک) و ازت تغهداری شده تیمارهای آزمایشی

<table>
<thead>
<tr>
<th>مواد معذی</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک</td>
<td>697 b</td>
<td>704 b</td>
<td>792 a</td>
<td>714 b</td>
</tr>
<tr>
<td>ماده آلی</td>
<td>726 a</td>
<td>736 b</td>
<td>824 a</td>
<td>746 b</td>
</tr>
<tr>
<td>دیواره سلولی</td>
<td>264 a</td>
<td>269 a</td>
<td>344 a</td>
<td>294 b</td>
</tr>
</tbody>
</table>

جدول 4. اثر تغذیه سیلزالازیه آزمایشی بر معیارهای تخمیر شکمی

<table>
<thead>
<tr>
<th>معیار</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7/88 a</td>
<td>6/81 b</td>
<td>6/84 a</td>
<td>6/89 a</td>
</tr>
<tr>
<td>ازت آمیتوبیاکتریا (لیبر/ میلی گرم)</td>
<td>17/63 a</td>
<td>17/61 a</td>
<td>17/64 a</td>
<td>17/62 a</td>
</tr>
<tr>
<td>اسیدهای گیاه (میلی مول)</td>
<td>33/62 a</td>
<td>33/61 a</td>
<td>33/63 a</td>
<td>33/62 a</td>
</tr>
</tbody>
</table>

جدول 5. نتایج ارزیابی تغییرات ماده مولار (درصد)

<table>
<thead>
<tr>
<th>نتیجه مولار (درصد)</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>استات</td>
<td>7/66 a</td>
<td>7/65 a</td>
<td>7/65 a</td>
<td>7/65 a</td>
</tr>
<tr>
<td>پرپوپنت</td>
<td>47/89 a</td>
<td>47/89 a</td>
<td>47/89 a</td>
<td>47/89 a</td>
</tr>
<tr>
<td>ازدیستورنت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>بیوتراکس</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>ازدیستورنت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>ولرانت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
</tbody>
</table>

جدول 6. سنجش اثرات بر معیارهای

<table>
<thead>
<tr>
<th>معیار</th>
<th>Tیمار 1</th>
<th>Tیمار 2</th>
<th>Tیمار 3</th>
<th>Tیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>استات</td>
<td>7/66 a</td>
<td>7/65 a</td>
<td>7/65 a</td>
<td>7/65 a</td>
</tr>
<tr>
<td>پرپوپنت</td>
<td>47/89 a</td>
<td>47/89 a</td>
<td>47/89 a</td>
<td>47/89 a</td>
</tr>
<tr>
<td>ازدیستورنت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>بیوتراکس</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>ازدیستورنت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
<tr>
<td>ولرانت</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
<td>1/2 a</td>
</tr>
</tbody>
</table>
ان عامل در مورد گیاه کامل ظرفیت غذایی این است که از نظر پروتئین قرار است میکروبها در تیمار نسبت به پهناوری بیشتری و افزایش مصرف یا کاهش تولید میکروبها در تیمار 2 می‌باشد.

هیچ مشکل سلامتی ناشی از تغییرهای تیمارها دیده نشد. غوسفندان سیلانی 2 تیمار 2 (سیلان دارای LAB) را به طور کامل و سریع تر مصرف کردند و زمان طولانی‌تر برای عادت کردن به سیلان در تیمار 4 (سیلان دارای اوره) مصرف گردید. که ممکن است به علت نبند این سیلان و کاهش خوش‌خوراکی باشد. بر اساس نتایج این آزمایش، افزودن تولید کندنه اسید لاکتیک در میزانی به کار رفته (دو لیتر به هر تن گیاه) به کبک کامل جو به حدود 35 درصد میدان خوشک، موجب تولید سیلان‌ای بی‌ثبات دارد. درصد کمتر استات سیلان بیشتر پروپیونات نسبت به سیلان غنی شده با اوره گردید. که می‌تواند روند تخمیر در شکم به طوری تغییر دهد که موجب بی‌هدر شدن کارآیی استفاده از مواد غذایی گردید و از مشکلات مسمومیت اورژانسی و میخی زیستی گاه‌ده شده است که این اسید‌ها از تجزیه و لیپید و لوسین (8).

منابع مورد استفاده


