اثرات سیلاب و آتشسوزی بر برخی ویژگی‌های خاک
جنگل لاکان در استان گیلان

مهدی نوروزی و حسن رمضانی‌پور

چکیده
سیلاب و آتشسوزی از جمله رخدادهایی است که بطور متناوب بخش‌هایی از جنگل‌های شمال ایران را تحت تأثیر قرار می‌دهند. این رخدادها می‌تواند اثرات نامطلوبی بر ویژگی‌ها و کیفیت خاک بگذارد. این پژوهش به منظور بررسی اثرات سیلاب و آتش‌سوزی بر ویژگی‌های خاک ویژگی‌های خاک جنگل لاکان در استان گیلان انجام شد. نمونه‌های خاک از سه عمق 0-2، 2-4 و 4-6 سانتی‌متری سطح خاک با سه تکرار از مناطق تحت تأثیر سیلاب، سوخته و شاهد جمع‌آوری شد. نتایج نشان داد که در خاک سیلابی، مقدار pH، سبیل، مقدار و پتاسیم (در هر هکتار) مقدار کربن آلی و نیتروژن (در هر هکتار) بطور معنی‌داری افزایش یافته و مقدار شین بطور معنی‌داری (pH در مقایسه با خاک شاهد کاهش یافته و مقدار مقدار با خاک شاهد کاهش یافته). مقایسه ظرفیت نگهداری رطوبت خاک نیز نشان داد که خاک‌های سیلابی و سوخته در مقایسه با خاک‌های سوخته و شاهد بیشترین و کمترین مقدار رطوبت خاک را دارند. مکان‌های مختلف داشتن که می‌تواند در ارتباط با تغییرات رس و ماده آلی باشد. نتایج آزمون TD پایداری وجود پدیده آگره‌زی یا نه‌ها در عمق اول خاک سوخته نشان داد. بطور کلی، در پذیرش سیلاب و آتش‌سوزی نیاز به تغییرات اقلیمی و شیمیایی قابل ملاحظه‌ای در خاک ایجاد شد.

ویژه‌های کلیدی: آتش‌سوزی، آبگیری، خاک سیلابی، ظرفیت نگهداری رطوبت خاک

1. گروه‌های کارشناسی، دانشگاه کشاورزی، دانشگاه گیلان، رشت
hasramezanpour@yahoo.com

* مسئول مکاتبات: پست الکترونیکی: hasramezanpour@yahoo.com

291
مقدمه

جغرافیا شالیز اکنون نمایشگری از جویای طبیعی کشور هستند که مراکز مشکلات زینت محیطی از جمله آتشسوزی و سیلابها هم‌سان با یادگری می‌باشد از آن را تحت تأثیر کار

مده. از این رو، توجه به این رخ داده و بررسی ارتباط آن با

حد زیادی می‌تواند در فضاهای جنگلی نشسته باشد. جنگل‌سازی می‌تواند مقدار زیادی از سیستم‌های به منطقه

تحت تأثیر سیلاب انتقال دهد که با توجه به کمیت و کیفیت

این رسوایی‌ها اثرات مختلفی بر ویژگی‌های خاک منطقه

می‌گذارد (۱). قرار و همکاران (۱۲) نتایج سیلاب را در

منطقه داراب‌فراس بررسی کرده و مشاهده کرده‌اند که در اثر

سیلاب مشاهده کرده‌اند. همچنین آنها افزایش شوری را نیز در

خاک‌های سیلاب مشاهده نموده‌اند که از نظر آماری نیز می‌دار

بود. اثرات آتش‌سوزی بر اکوسیستم جنگل با توجه به نوع،

شدت و گستره‌گی آن مشابه است. آتش‌سوزی مواد سیبایی از خصوصیات فیزیکی، شیمیایی، میکروبیویک

می‌باشد که در اثر افزایش pH افزایش کاتیون‌های محلول و بنابراین کاهش مقدار از جمله مهم‌ترین آتش‌سوزی بر خاک‌های است (۲).

نگهداری آب خاک یک خصوصیت هیدرولوژیک مهم خاک

می‌باشد که با کارکردهای محیطی در اکوسیستم دلایل دارد و

اثرات سیلاب بر اثر بر مقدار خاک می‌باشد. مطالعه سیستم‌های

در ایالات متحده از آتش‌سوزی در منطقه خاک سیلاب و منطقه

غیرسخت می‌باشد که نشان داد که مقدار خاک در مناطق سوخته بطور معمول در مناطق غیرسخت بوده است.

(۱۸) آب‌بریز خاک (Water repellency) خاک روتی سطح خاک بدون ان که در آن نفوذ کند: یک پدیده

شناخته شده در خاک‌های نقاط مختلف جهان می‌باشد. عمق

جهت آگرزین خاک شناخته شده از گروهی بوده و در همه چنین به

خصوص خصوصیات خاک از قبیل رطوبت و نسبت اندکی درخت خاک

نیز بستگی دارد (۱۵). هدف از این مطالعه بررسی تأثیر گرد و

بذرده می‌باشد. حیاتی (سیلاب و آنتی‌سیلاب) بر بزرگی از

خصوصیات فیزیکی و شیمیایی خاک منطقه جنگلی لاقاک در

استان کیلان است.

مواد و روش‌ها

منطقه طالع و مقدماتی و تعیین‌برداری

منطقه مورد مطالعه در نهالستان لاقاک در ۵ کیلومتری جنوب غربی شهرستان رشت قرار گرفته است (شکل ۱). ارتفاع

متوسط منطقه برای (۱۵) از سطح دریا می‌باشد. تابع منطقه

بین ۱۲۰۰ تا ۲۶۰۰ متر و درجه حرارت است در منطقه به ترتیب ۴۲.۸ درجه سانتی‌گراد است. منطقه دارای رژیم زمستانی مدیترانه‌ای (Udic) و (Thermic) است. منطقه مورد مطالعه با

زیم جاری و تربیک (pinus taeda) گزارش شده است که به مصرف

تجاری کاشته و برداشت می‌باشد. اشعه‌پذیری بودن این گونه

کاج زمانی را برای آتش‌سوزی‌های گسترده در این منطقه را به

کرده است. نهالستان لاقاک در تاریخ ۱۱ تا ۱۲ ماه

۱۲۸۸ در چهار حلقه، شکل در طی پنج هکتار از جنگل دچار اسباب

شد. آتش‌سوزی از سطح بویان، اما صدمات زیادی به

نهال و درختان منطقه وارد کرده. شاهد و درختان سیلاب در

گزارش کاتالیزی که از آن پایان به نهالستان کاج در جمله منطقه

Gleytic Cutanic Luvisols و (۱۵) Oxyaque Hapludalfs

(۱۶) (Clayic) فراز درد. نمودن ادمی خاک از شیمیایی ۱۳۶-۳ و ۱۳۶-۱ متر با تکرار به طور تصادفی از منطقه

سیلاب‌سوزی شده و شاهد (تعداد ۱۷ نمونه) انجام شد (شکل ۱).

نمونه‌های خاک پس از هوا خشک شدن در فضای آزاد جهت

انجام آزمایش‌ها از الک دو میلی‌متری عبور داده شد.
پاشیدن، کلاته‌هایی دست نخورده خاک از هر سه عمق خاک‌های مورد مطالعه برداشت شد (تعداد 108 نمونه) و پس از قراردادن در آن در دما 65 درجه سانتی‌گراد به مدت یک هفته، آزمایش زمان نفوذ قطره آب روی آنها انجام شد. بدين منظور سه قطره با استفاده از قطره چکان برستکی بر روی سطح هر نمونه خاک قرار داده شد و مدت زمان نفوذ این قطرات با استفاده از کروماتوگرافی کهار شد. در نهایت از گروه ارائه شده توسط ذکر (16) برای طبقه‌بندی آبگیری خاک‌ها استفاده شد.

تجزیه‌ای آماری
این آزمایش صورت فاکتوریل 3×3 با در فاکتور وضعیت خاک (آتش‌سوزی، سیل، و شاهد) و عمق (3-6، 6-9 و 9-12 سانتی‌متر) و در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. برای انجام تجزیه‌های آماری شامل تجزیه واریانس و مقایسه میانگین از نرم‌افزار SAS نسخه 91 استفاده شد. مقایسه میانگین بین نیم‌ها نیز با آزمون توکی در سطح احتمال 5%
جدول 1. تجربة وارتباط اثرت وضعية مسطحة ومعدل عبر ويژگیهای مورد مطالعه خاک

| میانگین مربعات (ویژگیهای مورد مطالعه) | پیشگی | توزیع اندازه ذرات | منح تغییرات | درجه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>Na</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/8"</td>
<td>0/4"</td>
<td>0/0"</td>
</tr>
<tr>
<td></td>
<td>2/8"</td>
<td>0/0"</td>
<td>0/0"</td>
</tr>
<tr>
<td></td>
<td>1/8"</td>
<td>0/0"</td>
<td>0/0"</td>
</tr>
<tr>
<td></td>
<td>0/0"</td>
<td>0/0"</td>
<td>0/0"</td>
</tr>
<tr>
<td></td>
<td>2/8"</td>
<td>0/0"</td>
<td>0/0"</td>
</tr>
</tbody>
</table>

تایپ و بحث

نتایج تجربه وارتباط ویژگیهای مورد مطالعه در خاک‌های سیلیاپی، سوخته و شاهد در عمق‌های مختلف نشان داد که اختلاف معنی‌داری بین پیشرفت ویژگی‌های مورد مطالعه وجود دارد (جدول 1). این اختلاف‌ها ناشی از اثرات مختلف وضعیت خاک (سیلیاپی، سوخته و شاهد) در تمامی ویژگی‌ها، اثر اصلی عمق در تمامی ویژگی‌ها به غیر از سدیم محلول و تیتانی و اثرات مختلف وضعیت × عمق در تمامی ویژگی‌ها به غیر از محلول و تیتانی و خاک بُرد.

میانگین اثرات متقابل وضعیت × عمق خاک نشان داد که مقدار رس (شکل 2-الف) در عمق‌های مختلف خاک سیلیاپی اختلاف معنی‌داری با سایر خاک‌ها داشت و در هر سه عمق مقدار آن بیشتر از سایر خاک‌ها بود. همچنین با افزایش عمق، مقدار رس در وضعیت‌های مختلف کاهش یافته به غیر از خاک سیلیاپی که در این مقدار رس از عمق اول به دوم اندکی افزایش یافته که البته این افزایش معنی‌دار نبود. در کل بیشترین و کمترین مقدار رس بنی‌تربیت در عمق‌های اول و دوم خاک سیلیاپی و عمق سوم خاک‌های سوخته و شاهد مشاهده شد.
شکل 2. تغییرات الف) مقدار رس (ب) مقدار سیلیک (ب) مقدار شین (ت) اسیدهای (pH) تکرر آلی (OC) ج سدیم محلول (ج) سدیم تبادلی (ج) نتایج محلول خ. (پاسخ تبادلی د) تیروزون کل (N)، ذ) فشار قابل دسترس (P) در عمقها و وضعیت‌ها مورد طالعه

مقدار رس یک روند کاهشی با عمق در تمامی خاک‌ها نشان داد. در مورد شن این روند افزایشی بود و در تمامی خاک‌ها با افزایش عمق مقدار شن افزایش یافت، به طوری که کمترین مقدار شن در عمق اول خاک سیلیکا و بیشترین مقدار شن در عمق سوم خاک سوخته و شاهد مشاهده شد (شکل 2-ب). نتایج نشان داد که آتش سوزی هیچ تأثیری بر مقدار شن خاک نداشت. آتش سوزی در همه‌ها به‌سیار پایا (1414 درجه سلسیوس) بر مقدار شن خاک تأثیر می‌گذارد
باتر (5) و في خاك سيابي، يوجد كاتبون هنالك بايتان اتفاق
بافتة علي (2). مقاييس ميانيين اثاث متقابل وضعية × عمق
خاك بر مقدار كرين آلي (شكل 2-7) نشان داد، بيتشيرين مقدار
OC في عمق أول خاك شاهده شد، وأختلاف معياني داري
OC في عمق سوم خاك سوخته مشاهده شد. نشان سوري باعت كاهش
مقدار في عمق أول نسبته به خاك شاهده شد.
درحالا كه في دو عمق ديجاي اين اختلاف معياني داري
نبوعد بإرجاع في محفظة سيابي جر مخصص كم كرين آلي و اتفاق أن اثر ردوان من منطقه
سيابي كاهش ماده آلي را الى اثر سوزي جراش كرد كه احتفالي به سوختن
اين موارد في اثر احتراق نوع است.
برسر اثر اعمال مورد مطاوعه بر مقدار سديد محلول و
تبادي نشان داد كه فقط اثر وضعية خاك بر اين دو ويزغي
معنى دارد و عمق و اثر متقابل وضعية × عمق خاك اثر
معنى دار بر آنه لداشتند (جدول 1). مقاييس ميانيين بين
وضعية هاي مورد مطاوعه خاك (سيابي، سوخته و شاهده) از
نظر مقدار سديد محلول و تبادي (شكل 2-7 ج و 2-7 خ) نشان
داد كه بيتشيرين مقدار سديد محلول في خاك سيابي مشاهده
شد كه اختلاف معياني داري با ساير خاكها دانت، اما
نشان سوزي تواست مقدار سديد محلول را به طور معياني داري
نسبته به شاهد تنوي دهد. همچنين، بيتشيرين مقدار سديد
تبادي نيز مرتبط به خاك سيابي بود و اختلاف معياني داري با
خاك شاهده دانت، ولد تفاوت آن با خاك سوخته معياني
نبوعد، ضمن اين كه خاك سوخته و شاهد تنوي تفاوت معياني داري
از نظر سديد تبادي نداشتند. از آنجا كه سديد از جمله آن
عناصره است كه راحية توسيع محلول خاك اتفاق ميايیه،
حضور آن در خاك سيابي محلقي به نظر مي رسد. همچنين
بيشري از مطالعات (17 و 21) اختلاف معياني داري سديد
محلول و تبادي في خاك سوخته مشاهده نكردن.
مقاييس ميانيين اثاث متقابل وضعية × عمق خاك بر مقدار

296
زاوت، این ترتیب در عمق سوم نیز مشاهده شد، اما نباوت معنی دار بین خاک سیلی و شاهد و همچنین خاک سونه و شاهد در عمق مشاهده نشد. در این مطالعه بخش 3، در عمق خاک سیلی و شاهد در اختلال معنی‌داری از نظر طرفیت تکه‌داری رطوبتی با خاک سونه داشتند. در این عمق خاک سیلی و شاهد و با ترتیب بیشترین نمره‌بندی طرفیت تکه‌داری رطوبت با خاک سیلی داشتند. در عمق دوم و سوم، نفرات معنی‌داری بین هر سه نوع خاک وجود داشت. به‌طورکلی طبق نظرات ریس (شکل 2) و اصل ترسیم دلیل برای افزایش طرفیت تکه‌داری رطوبت در خاک سیلی در عمق های مختلف است. تکامل و سیستم‌های نظری از نظر فیزیکی برای تأثیر خاک را پس از سیلاب گزارش گردید.

آبریزی خاک
نتایج آزمایش زمان نفوذ قطره آب (WDPT) در عمق خاک و وضعیت های مختلف (شکل 4) نشان داد که وزنگی آبریزی تابع محدود به عمق بوده (البته در عمق خاک سونه در نوره‌نگی افزایشی جزئی مشاهده شد) و این ویژگی در خاک سیلی و خاک سیلی در هر عمق قابل دیدن بود. در افشاری و حاصل برای (1) رطوبت و ماده آلی را از عامل مهم در آبریزی خاک‌ها دانستند. نتایج ما نشان داد که در بایک‌زی افزایش می‌باشد. برای در ورود رطوبت به بایک‌زی‌های آبریزی در اینجا احتمال وجود رطوبت کمتری بود، اما مقدار ماده آلی خاک‌های سیلی باست به خاک‌های مجار خود بود. این موضوع نشان می‌دهد که احتمالاً این خاک‌های مجار خود بود، این موضوع نشان می‌دهد که احتمالاً خاک‌های مجار خود بود، این موضوع نشان می‌دهد که احتمالاً خاک‌های مجار خود بود، این موضوع نشان می‌دهد که احتمالاً خاک‌های مجار خود بود، این موضوع نشان می‌دهد که احتمالاً خاک‌ها در عمق اول اختلاف معنی‌داری بین خاک‌های مورد مطالعه وجود دارد و در عمق‌های دیگر این اختلاف معنی‌دار نبود.

مقدار فسفر در خاک سونه در عمق اول پیشتر از سایر خاک‌ها بود که احتمالاً از آزادشدن آن در اثر تجزیه پایه‌ای گیاهی و با تجزیه مواد اصلی در آذر آتش‌سوی، می‌توانند اصلی ترین دلیل برای افزایش فسفر در خاک سونه باشد [26]. علاوه بر آن تغذیه خاک، عمق و اثر مناسب و وضعیت X عمق خاک در هر سه فشار مورد مطالعه (10، 33 و 100 کیلوپاسکال) و گزارش نشان ندادند. در فشار 100 کیلوپاسکال [Kpa] و برداشت.

با توجه به معنی دارد شدن اثر مناسب و وضعیت X عمق خاک در تمامی فشارها، مقایسه میانگین این اثر انجام و نتایج در شکل 3 آوریه شد. تابع حل‌حل از مقایسه میانگین این اثر مقابل در تمامی فشارها که روند کاهشی با افزایش عمق را نشان داد و عمق سه قسمت م<![CDATA[ظرفیت تکه‌داری رطوبت خاک]]> گزارش نشان ندادند. در فشار 100 کیلوپاسکال [Kpa] و برداشت.

با توجه به معنی دارد شدن اثر مناسب و وضعیت X عمق خاک در تمامی فشارها، مقایسه میانگین این اثر انجام و نتایج در شکل 3 آوریه شد. تابع حل‌حل از مقایسه میانگین این اثر مقابل در تمامی فشارها که روند کاهشی با افزایش عمق را نشان داد و عمق سه قسمت م<![CDATA[ظرفیت T]]>
تغییر ماهیت ماده آلی در اثر اشتعال می تواند یک عامل مهم در بروز چنین ویژگی در این خاک ها باشد (۲۰). همچنین گذشت زمان نیز باعث ضعیف شدن شدت آبگیری خاک ها شده است. به طوری که در مرداد ماه اثری از خاک های شده آبگیری در آزمایش آبگیری واقعی و خاک های پیوند آبگیری در آزمایش آبگیری باتسیل مشاهده نشد. همانند همکاران (۱۵) نیز ضعیف شدن آبگیری را پس از آتش سوزی گزارش کرده که نتایج این آزمایش نیز این موضوع را تأیید کرد.

نتایج گیری
به طور کلی سیلاب و آتش سوزی اثرات معنی‌داری بر خصوصیات مورد مطالعه خاک داشتند. سیلاب در منطقه اثرات مفیدی بر بخشی از خصوصیات خاک از جمله بافت خاک داشت که این امر عامل مهمی در طریقت نگهداری رطوبت خاک در منطقه بود. اضافه شدن رس، کاترونها و عناصر غذایی به خاک (ازجمله نیتروژن در عمق دوم و سوم) و وزن‌گیری مطلقی هستند که تحت تأثیر سیلاب ایجاد شدند. ولی سیلاب باعث افزایش سدیم خاک شد که در صورت ادامه این روند،

