بررسی روابط شاخص نوسان جنوبی و دمای سطح آب اقیانوسهای آرام
و هند با بارش فصلی و ماهانه ایران

ربانه روغنی، سعید سلطانی و حسین بشریِ

(تاریخ دریافت: 8/1398؛ تاریخ پذیرش: 1398)

چکیده

شاخص نوسان جنوبی (SOI) (Sea Surface Temperature, SST) و الگوی دما سطح آب اقیانوسهای آرام و ر ainman (Southern Oscillation Index, SOI) با شکل‌بندی از مناطق جهان تأثیر گذار است. در این پژوهش، روابط میان بارش ماهانه و فصلی ایران با SST و SOI اقیانوسهای آرام و هند بررسی شد. برای این منظور، داده‌های ماهانه بارش از سیستم استفاده شد. به کمک نرم‌افزار فصلی و ماهانه بارش نمونه‌گیری با جهش و روش (میانگین SOI. SOI، فاصله SST اقیانوس آرام و قاصله اقیانوس آرام و قاصله SST فاصله بارش و ماهانه بارش به ترتیب به میزان نمایشگرین زمانی (Lead-time) نظربارش استفاده از روابط متنی دارد. در پیوستی آزمونهای آماری نیز بررسی شد. استحکام یا کاهش کوپارک ایران به کمک آزمون LEPS (Linear Error in Probability Space) در فصل ناپایداری (تسیج) با گردش و شما و غربابی ایران و مراحل غربی در نتیجه خزر رابطه معنی‌دار و پایداری دارد. به‌طور کلی فاصله این خزر نمی‌تواند، با لزوم (سیست) اغلب به‌طور خاص و بارش ماهانه و SST کاهش بارش در این نواحی همراه هستند. استفاده از میانگین SOI جهت پیش‌بینی بارش نواحی ذکر می‌شود. با تغییر SST اقیانوسهای آرام و هند به‌دنبال رابطه جهاد کمک با بارش ایران و بارش صورتی روابط، جهت پیش‌بینی بارش‌های ایران مناسب به نظر می‌رسد. به‌طور کلی، با بارش ماهانه و فصلی اقیانوسهای آرام و هند در نمودار نرم‌افزار SST و SOI بارش‌های ایران از مدل‌های مناسب برای پیش‌بینی شده‌است. پیش‌بینی این آب‌های ایران بررسی شود و بررسی شاخص‌های نوسانات مؤثر بر بارش‌های ایران، مدلی شده قابل بررسی است. پیش‌بینی بارش ایران به شکلی

واژه‌های کلیدی: پدیده انتو، شاخص نوسان جنوبی، دمای سطح آب، Rainman

1. گروه مرتع و آبخزی‌داری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
2. ssoltani@cc.iut.ac.ir

273
مقدمه

در مناطق خشک و نیمه‌خشک ایران تغییراتی زمین و مکانی بارش بسیار بالاست (16). بنابراین، شناخت عوامل مؤثر بر بارش ایران مهم و ضروری است. در صورت آگاهی صحیح از عوامل تأثیرگذار بر بارش ایران، می‌توان صحت پیش‌بینی‌های بارش را افزایش داد و مطالعات مدیریتی ریسک در زمینه‌های کشاورزی، مرتعداری و منابع آب را بهبود بخشید (13). و

24. نوسانات اقیانوسی - انقیض، مانند پدیده سیستم نوسانات جنوبی (انسو)، به عنوان یکی از عوامل مؤثر بر بارش شناخته شده است (9، 10، 11). انسو حاصل گرم و سردشدن دوره‌های دمای سطح آب اقیانوس آرام جنوبی در ناحیه حاره است. این نوسانات اثراتی سوداگری‌ای بر فرآیندهای اقلیمی دارد و از اصلی‌ترین تأثیرگذاران دمای سطح آب در اکتشافات موقعیت‌گیری اقیانوس آرام جنوبی محسوب می‌شود (12). سه فاز انسو: (گرم)، خنثی و لاتینا (سرد) از اصلی‌ترین فاکتورهای انسو است. این فاکتور به کمک شاخص‌های مرتبط به پدیده انسو مانند (Southern Oscillation Index، SOI) و (Sea Surface Temperature، SST) یا دما سطح آب اقیانوس آرام قابل تشخیص است (24). پدیده انسو، علاوه بر اقلیم حوزه آرام مرکزی بر بارش دیگر مناطق جهان تأثیرگذار است. بوده است، رولسون و هنری (55) نشان دادند که بارش مناطقی از استرالیا، جنوب و شمال آمریکا، شبه قاره، آفریقا و آمریکای مرکزی با پدیده انسو همبستگی معناداری دارد. البته نتایج آن مقدار بارش تمام مناطق مذکور یکسان نمی‌باشد (63).

14. ارتباط سیستم بارش‌های جنوبی و بیضه

دانیوش و شافو (24) ارتباط سیستم بارش‌های جنوبی و بیضه انسو را بررسی کردند که در تحلیل قرار دادند. آنها به این نتیجه رسیدند که مقدار بارش مناطق جنوب بخش‌های نیمه‌خشک بطور معناداری کاهش، و به هنگام لاتینا افزایش یافته است. ارتباط پدیده انسو و بارش بعضی از مناطق واقع در ناحیه شمال شمالي معمولاً با تأخیر زمانی همراست بوده است (25). در تال، میان بارش مونسون و شاخص ارتباط SOI و مطالعات اقیانوسی - انقیض‌های آفریقا مربوط به کوپک لیونز و دیگران (35) شناخت عوامل مؤثر بر بارش در مناطق جنوبی ایران را بررسی کرده‌اند. این اکتشافات می‌تواند مقدمه‌ای به بررسی عوامل مؤثر بر بارش در مناطق مختلف ایران شود.
مفتاح مورد بررسی پیش‌تر قرار گیرد. همچنین ساخت پیش‌بینی‌های بازی انجام گرفته براساس روابط معنی‌دار میان انوک و بازی‌های ایران از این‌های شود. در مطالعات انجام گرفته، تنها شاخص‌های SOI را در فاز‌های نیمه‌عصر و لاین طبقه‌بندی نموده و ارتباط این می‌باشدو با اصل قاچی بازی ایران بررسی شده است.

استون و آلبانسی (29) یا به‌کارگیری آنالیز خوشه‌ای روي داده‌های دو مدت‌ها SOI روش دیگری جهت طبقه‌بندی این شاخص‌ها است. در این روش، با توجه به SOI نشان‌دهنده می‌نموده‌ای، شاخص‌ها از جهت‌های آزمون استفاده و همچنین از دیگر شاخص‌های به مورد اطمینان روش‌های منظور نرم‌افزار Rainman

می‌تواند کمک‌بکر سازی بازی ایمن منظور نرم‌افزار Rainman

در استرالیا به عنوان ارتباط قوی اقلیم استرالیا و آنها تبیین شده است. در این نرم‌افزار، با توجه به روابط معنی‌دار پذیرش‌ها و اقلیم‌های استرالیا و با توجه به دگرگانی، شبیه‌سازی‌ها تاریکی‌های بازی‌های برنامه‌ریزی فازهای نیمه‌عصر SOI و SOI فازهای نیمه‌عصر آزمون (SST) و SOI فازهای نیم
شکل ۱. نام، موقعیت و طول دوره آماری ایستگاه‌های سیونتیک مورد مطالعه، اعداد داخل پرانتز طول دوره آماری (سال) استفاده شده، سال ۲۰۰۷ را نشان می‌دهد.

شکل ۲. توزیع مکانی میانه بارندگی فصل (الف) پاییز، (ب) زمستان، (ج) بهار و (د) تابستان در ایران
دده‌های مورد استفاده

داده‌های پارش

داده‌های ماهانه بالانزیمی ۵۰ ایستگاه سینوپتیک در ایران با حداکثر ۳۰ طول دوره آماری تا سال ۲۰۰۷ استاده شد. این داده‌ها از سازمان هوشام‌سازی ایران (۳۷) تهیه گردید. موقعیت، تام و طول دوره آماری ایستگاه‌ها در شکل ۱ نشان داده شده است. با توجه به این که میزان داده‌های بالانزیمی مقفود در این ایستگاه‌ها بسیار اندک بود، تجزیه و تحلیل، نتیجه‌برداری انسان نمودار موثر نظر از داده‌های مقفوده (انجام گرفت. آزمون تابع خود همبستگی (عوامل سری‌های موثر) نشان داد که ضریب (Autocorrelation Function, ACF) خودهمبستگی در تمامی ایستگاه‌ها، حدود اطمینان به هر سطح معنی‌دار مورد نظر را قطع نمی‌کند. بنابراین تصادفی بودن داده‌های بالانزیمی تأیید شد. با کمک آزمون ران متاست (Run Test) همگی داده‌های بالانزیمی پرسی گردید. داده‌ها در تمامی ایستگاه‌ها همگی بودند. سری‌های سه‌ماهه بالانزیمی (زامن اوره، مارس) (آوریل، اوت، سپتامبر) و (یک هفته‌ای/سیسم) به‌ترتیب به عنوان سری فضایی زمستان، بهار، تابستان و پاییز در نظر گرفته شد.

○ شاخص نوسان جنوبی (SOI)

شاخص نوسان جنوبی در این مطالعه با عنوان یکی از شاخص‌های معرف پیده، انسو استفاده شد. این شاخص اختلاف استاندارد شده فشار هوای سطح آب در تئودی (واقع در نواحی مرکزی ایوناتور) آرام و داروین (واقع در شمال استرالیا) می‌باشد. مقدار ماهانه SOI (۲۰۰۷) از سایت هوشام‌سازی استرالیا (۴۵) اخذ شد.

روش مطالعه

ارتباط میان بالانزیمی در این مطالعه با SOI مقدار میانگین فشار هوای سطح آب در ایستگاه‌ها، بالا و پایین (SOI مقدار میانگین) بالانزیمی ایوناتور آرام و ایوناتور هند در حالات هیپرسنک نیز هم‌زمان با دوره بالانزیمی بالارسانی شد. ارتباط همبستگی تنا در روش بالانزیمی تابع (Lead-time) صفر یا سو می‌گردد. زمان پیش‌بینی مقدار میانگین، اختلاف میانگین روز، انتخاب زمانی میانگین با توجه به این که میزان بالانزیمی گروه‌های مختلف تفاوت می‌گیرد: گروه بالانزیمی، مقدار ماهانه SOI (الف) بالانزیمی ایوناتور SOI در سرگه کمتر از ۵ (الینو) یا ۵ (زمانی) و بیش از ۴۵ (لالین) طبقه‌بندی شد. (ب فشار هوای بالانزیمی، بالا و پایین SOI بالارسانی) مطابعه استواد. در نهایت مقدار SOI بالارسانی و آلپیمی (۳) با یک توجه به مقادیر هر ماه و ماه قبل آن
زمانی بارندگی در سه گروه سرد، خشته و گرم توسط LEPS به‌طور مقطعی مشاهده گردید. در هر یک از گروه‌های سرد، خشته و گرم، توزیع آماری گروه‌های بارندگی با کمک آزمون‌های ناپارامتری (Kruskal-Wallis, KW) کروساکال و الیس گرفته شد. سپس، در صورت وجود اختلاف آماری معنی‌دار، با استفاده از نتایج آزمون کلموگروف-اسمینوف (Smirnov, KS) و پاکوسوئی (Paikowski)، جنبه‌های آماری مقادیر احتمال LEPS، KS و KW را شرح داده است. سطح معنی‌داری مقادیر احتمال LEPS، KS و KW در هر روی نتایج کروساکال نشان داد. با تحلیل مقادیر درصد احتمال بارندگی بررسی شد. در گروه‌های بارندگی که مقادیر احتمال بارندگی بیشتر از 50 درصد بودند، بینانگی افزایش یافت. در نهایت، محلی که مقادیر احتمال بارندگی کمتر از 50 درصد بودند، محلی که مقادیر احتمال بارندگی بیشتر از متوسط بودند (SOI به‌طور مقطعی، و بارندگی جهت باشند، استفاده از روابط SOI (با SST) و بارندگی جهت

سیگما می‌باشد و همچنین نماد S می‌باشد و همچنین نماد S

مقدار احتمال بارندگی بیشتر از 50 درصد بودند، بینانگی افزایش یافت. در نهایت، محلی که مقادیر احتمال بارندگی کمتر از 50 درصد بودند، محلی که مقادیر احتمال بارندگی بیشتر از متوسط بودند (SOI به‌طور مقطعی، و بارندگی جهت

سیگما می‌باشد و همچنین نماد S می‌باشد و همچنین نماد S
در تحقیق حاضر برخلاف مطالعات آنیا، ارتباط معنی‌داری بین SOI و بارندگی پاتیه‌ی بخش‌های مرکزی ایران مشاهده نشد. در این استیگاه‌ها، وسایل LEPS امتباز 4/2/3 از مقدار معنی‌دار احتمال KS است. مقدار معنی‌دار احتمال KS در فاز این استیگاه‌ها در فاز لایه اول و در فاز این استیگاه‌ها در فاز لایه اول مشاهده شد. ارتباط بین بارش آب و بارندگی توصیف شده توسط Surfer (version 8) در یک استیگاه (نقطه (ن) یک استیگاه معنی‌دار بودند، مشخص شد. 

โซیسیولوژی و بحث

در ادامه جهت انتخاب، تناها به روابط معنی‌دار در هر روش اشاره می‌شود:

SOI

بررسی ارتباط همبستگی‌های بارش قطعی ایران و میانگین SOIبرای آزمایش احتمال KW نشان داد که مقدار احتمال KS در مرز بارش پاتیه بیشتر از 0/001 بود. در این مقدار بارش‌های قطعی ایران و دامنه منطقه زون‌بندی معنی‌دار است (KW > 0/001). در این حالت، مقدار احتمال KS فازهای پاتیه در لایه اول به‌طور پراکنده در بعضی از استیگاه‌ها نمایش گرفته بود و در نهایت این باعث ارتباط معنی‌دار LEPS از مقدار احتمال KW نمود. بیشترین ضعف SOI نمایش داده شد و این ارتباط ضعیف بین کیفیت، تناها و بارش در میان مرز بارش قطعی ایران و میانگین KW در مورد بارش‌های بیشتر از 0/001 مشاهده شد. در حالات غیرهمبستگی، در استیگاه‌های واقع در نواحی غرب و شمال غربی کشور (خوزستان، اصفهان، یزد و کرمانشاه)، سواحل غربی دریای خزر (بندارانزلی، رامسر و رشت) و دامنه منطقه آتیپ (خزه، تربت حیدریه و سمنان) مقدار احتمال KW در مورد بارندگی پاتیه‌ی و میانگین SOI (زون‌بندی سیستم) معنی‌دار بود (نقطه (ن) این آزمایش‌ها مشاهده نموده و در مورد سواحل غربی کشور، نمایش داده شد.

۲۷۹
شکل ۳. توزیع مکانی نتایج آزمون‌های آماری مینیانسیون SOI (ژوئه–سپتامبر) و پارامتری پایینه: (الف) احتمال KW، (ب) احتمال LEPS، (ج) احتمال KS. (د) احتمال KS فاز پایانی، (د) درصد احتمال میانه بارش در فاز پایانی و (و) درصد احتمال میانه بارش در فاز پایانی.
سومین روابط شاخص نوسان جنبی و دمای سطح آب اقیانوس‌های

(شکل های ۶-۷ و ۸-۹) میزان احتمال میانه بارش در این

فاواه می‌تواند در همرسمه باشد. در حالی که در میانهی مثبت و منفی‌ی با ترتیب با

کاهش و افزایش بارش پایین‌ترین این نواحی همرسمه بوده است

(شکل های ۶-۷ و ۸-۹). در انتظار بر خلاف این، فاواهای

مثبت و منفی معمولاً با ترتیب با افزایش و

کاهش بارش بوده‌اند. (۵۰٪). بدین ترتیب تأثیر دیگر این استوایی بارش ایران و نسبت به بارش استرالیا در این روش تا حدی

می‌گردد.

در شکل ۷ پایداری رابطه بارش پایین‌تره و فاواهای پایین‌تره گام‌گذاری

با اعمال زمانی پیش‌های مختلف، برای مثال برای ایستگاه

تهران نمایش داده شد است. این رابطه در زمانی‌های صفر

به چهار ماه معنی‌دار بود. در مورد بارش ماه اکثر در مقیاس

ماهانه در روابط مشابه دیده شد. مقدار احتمال بارش

سری‌ها میزان احتمال بارش پایین‌تره و فاواهای

پایین‌تره گام‌گذاری (آگوست-سپتامبر) با ترتیب

۹۶٪ /۹۶٪ و /۹۸٪ می‌باشد.

معنی‌دار است. طبق مقدار احتمال LEPS

منفی‌ی با ترتیب باحراسی در سطح

معنی‌داری با بارش این نواحی بود و این انتیز

مقداری قرار نداد. در مقیاس ماهانه در مورد بارش ماههای

زمان مناسب رابطه‌های دیده شد. برآوردهای با توجه به تابع

روش فاواهای پایین‌تره می‌باشد و میزان مقدار

می‌توان نتیجه‌گیری کرد که رابطه معنی‌دار در مورد بارش زمستان نواحی غرب

در بای خور و SOI که به این مطالعه متناسب مطالعه انجام

می‌باشد.

برارب بارش ایران و فاواهای پایین‌تره

در حالی که در صفر ماه، در ۳۰ درصد از ایستگاه‌ها

مقدار احتمالبیش به بارش پایین‌تره و فاواهای

(ستیم‌بر) معنی‌دار بود. اما با اعمال زمان‌های که ماه این

ارتباط قوت‌تری بین مسیل زیرا مقدار احتمال

در اغلب ایستگاه‌ها افزایش یافت و درصد بیشتری از ایستگاه‌ها

در ۳۷٪ درصد مقدار احتمال معنی‌دار هستند.

ایستگاه‌های معنی‌دار در مناطق غربی و شمال غربی کشور

(بربیز، آرامدی، سقز، سنندج، کرمانشاه، زنجان و اراک) و

سواحل غربی دریای خزر (بندترین)، رشت و رامسر) قرار دارند

(شکل ۶-۷). ابتدا در این ایستگاه‌ها نیز معنی‌دار بود

(شکل ۶-۷). براساس مقدار احتمال KS در فاواهای پایین‌تره

(ژوئیه-اوت)، رابطه فاواهای مثبت و منفی با بارش پایین‌تره SOI

این نواحی معنی‌دار است و در مورد سایر فاواهای

معنی‌داری دیده نشد.
شکل ۶. توزیع مکانی نتایج آزمونهای آماری فازهای SOI (جولای-آگوست) و پرانتزی پایینه: (الف) احتمال LEPS. (ب) احتمال KW. (ج) احتمال KS. (د) احتمال LEPS. (ه) درصد احتمال میانه بارش در فاز مثبت. (و) درصد احتمال میانه بارش در فاز منفی.
بررسی روابط شاخص توزیع رطوبت آب قطب آبیهای مختلف

شکل 7 مقادیر احتمالی KW مربوط به فاقدای نیک گانه SOI (جولای-اکوست) و بارندگی پاییز استگاه نهار در زمان بررسیهای مختلف

مقادیر احتمالی KW بخش از 0.05 می‌باشد.

گرفته‌های (32) مشاهده شده، به‌عمق به نمایش‌رسانی طورکلی نتایج دو روش میانگین SOI و فاقدای نیک گانه در مورد بارش ایران تبیین مشابه است؛ به‌طوری‌که فاز النینو (لاشنا) در روش میانگین، به‌طور مشابه فاز منفی (منیت) در روش SOI و به‌طور مشابه فاز منفی (منیت) در روش SOI فاقدای نیک گانه در ماه‌های جولای الی سپتامبر، با افزایش (کاهش) بارندگی ماهی آب در مقیاس ماهانه و پاییز در مقیاس فصلی در بعضی مناطق ایران همراه بود در دولت‌سکی (17) به‌جز فاقدای منیت و منیت را به‌ترتیب با ارتباط با فاقدای النینو و لاشنا دانسته است. براساس نتایج این مطالعه، این ارتباط تایید می‌گردد.

بارش ایران و اقیانوس آرام SST در مقایسه ماهانه در حالات زمان‌بندی صفر ماهاء مقدار احتمال اقیانوس آرام SST در مورد فاقدای نیک گانه KW احتمال اقیانوس آرام SST بارندگی ماه

اکثر استگاههای (تبریز، ارومیه، سفر، زنجان، مرز، همدان نوژهن، اراک، کاشان، شهرکرد، خرم‌آباد، شاهرود، سیبز، مشهد رشت، رامسر و بندرازیل) واقع در نواحی شمال‌شرقی و شمال غربی ایران و سواحل غربی دریای خزر 

مقید ماهانه صفر بوده است. در استگاههای مرکزی جنوب و جنوب شرقی در دوره زمانی مورد مطالعه در ماه‌های اکثری بارش ناجی و با KW صفر بوده است؛ به طوری‌که کم‌بوده داده بارش آزمون KW قابل محاسبه نیود (شکل 8-الف). در نواحی شمال‌شرقی و

283
شکل 8 توزیع مکانی نتایج آزمون‌های آماری فازهای SST اقیانوس آرام (سنتامبر) و پارندگی ماه‌های اکتبر: (الف) احتمال KW فاز سرد و (ب) درصد احتمال میانه بارش در فاز سرد KS

شکل 9 مقادیر احتمال KW مربوط به فازهای SST اقیانوس آرام (سنتامبر) و پارندگی ماه‌های اکتبر ایسیگاه‌ها در زمان پیش‌بینی‌های مختلف

مقادیر احتمال KW بیش از ۰.۰ معنی‌دار است.
پارش ایران و فازهای SST

بطریکی، میان فازهای SST از نظر میانگین، مقدار احتمال ایران رابطه معنی داری دیده نشد. مقادیر احتمالی (KW) در اثر ایستگاهگاه در تمام حالات زمان پیشی به صورت منطقه‌ای معنی دار نبود. نهایاً پارش‌های دو ماه اکثر (مهر) و فوریه (بهمن) به‌ترتیب در مناطق شمال غربی و سواحل جنوبی با زبان‌پیشی صفر می‌باشد. مقدار SST این‌راستا آرام رابطه‌پذیری داشتند که در این مرزنه با توجه به مقادیر نامناسب ایستگاه، استفاده از این روابط جهت پیش‌بینی پارش‌های نسبتی بود این‌راستا. SST ایران هم‌اکنون دسترسی (آذر) مساعد به داشت. در این میانگین، سمت‌های ایران و فازهای SST این‌راستا علاوه بر KW در مقدار ایستگاه‌ها به‌صورت گسترده‌تر و بیانگر بوده با ماه‌های ایران رابطه مشخصی تر دارد. روابط میان بارش ماهانه ایران و انسو پیچیده است. نتایج روش‌های مانگین و فازهای مانگین نشان داد که شاخص SOI در فصل تابستان (ماه‌های روزبه - سپتامبر) به‌طور غیرهموار با بازه‌های ماه اکثر (مهر) و پاییزه (آذر- دسامبر) نواحی غرب شمال غرب ایران و سواحل غربی دریای خزر رابطه معنی‌داری و پایداری دارد. به‌طور که فازهای نینو (منفی) و لالیتنا (مست) اغلب به‌ترتیب با افزایش و کاهش در نواحی همراه است. به‌طور کل تأثیر فاز نینو (منفی) نسبت به فاز لالیتنا (مست) بر پارش‌های ایران قوی‌تر و پایدارتر است. استفاده از میانگین جهت پیش‌بینی پارش‌های نواحی ذکر شده مناسب است؛ اما SOI فازهای SST این‌راستا آرام و هنگام دیل رابطه ضعیف با بارش‌های ایران و پایداری روابط، جهت پیش‌بینی بارش‌های ایران مناسب به نظر می‌رسد. بهره‌گیری از امکانات نرم‌افزار Rainman می‌توان روابط بین پایه‌ای نشان دهد. این‌راستا به‌طور کل به‌طور قابل توجهی کاهش می‌یابد. در زمان‌بندی صفر ماه حدود 50 درصد از ایستگاه‌ها مقدار SST معنی‌داری داشتند؛ ولی با افزایش زمان‌بندی به طرف می‌کاهد. معنی‌داری دارد به 32 درصد کاهش بیابات. پارش‌های روابط میان فازهای SST مقدار SST ایران پایدار نمی‌باشد و به‌طور گیری از این
شکل ۱۰: توزیع مکانی نتایج آزمون های آماری فاصله SST اقاتوس هند (دسکم) و بارندگی زمستانه: (الف) احتمال LEPS (ب) امتیاز KW (ج) احتمال نازگرم (د) احتمال نازرسد (ه) درصد احتمال میانه بارش در فاز گرم (و) درصد احتمال میانه بارش در فاز بارش
سیاسگزاری
پس از اطمینان از وجود روابط واقعی میان نوسانات آبیاری، Rainman اقیانوسی-انمسفری و برخی ایران، نوافزار مشابه ولی براساس شاخص‌های اقیانوسی-انمسفری مؤثر بر ایران

منابع مورد استفاده
5. کیانی پور، م. (1979). بررسی سیستم‌های پیش‌بینی بارش‌های ایران و ارتباط آن با ناهنجاری‌های جوی و کوه‌های خشک‌سالی و ترسالی. پایان‌نامه کارشناسی ارشد جغرافیایی طبیعی، دانشکده علوم انسانی، دانشگاه تربیت مدرس.
6. ناظری، م. (1986). آیا بارش‌های خشک‌سالی و بارش‌های مازاد در ایران و ارتباط آنها با پیش‌بینی نوسانات جوی؟ انتشارات دانشگاه شیراز.
7. ناظری، م. (1986). پیش‌بینی بارش‌های خشک‌سالی و ترسالی. پایان‌نامه کارشناسی ارشد جغرافیایی طبیعی، دانشکده علوم انسانی، دانشگاه تربیت مدرس.


