اثرات ۲۰ ساله چوبکشی زمینی بر خصوصیات فیزیکی و هیدرولوژیکی خاک

استقلال و اکبر نجفی

(تاریخ دریافت: ۱۳۸۹/۹/۲۴، تاریخ پذیرش: ۱۳۹۰/۳/۱)

چکیده

افزایش جرم مخصوص ظاهری و کاهش خلاء و فرچ و میزان نفوذ‌پذیری آب در خاک مهم‌ترین تغییراتی است که هنگام عملیات چوبکشی زمینی توسط مهندسین آب و هیدرولوژیکی شاخص جرم مخصص ظاهری را افزایش می‌دهد. تخلخل و خصوصیات هیدروپتروژیک شرایط نفوذ‌پذیری خاک در مسیرهای چوبکشی زمینی در یک پایه زمینی ۲۰ ساله پرداخته است. بین دو سببی به نظر می‌رسد که افزایش چوبکشی رها شده با خصوصیات نشانه‌های شرایط خاک، در نظر گرفتن اقلیم یا سبک مختلف در جنگل‌های بومی جنوب شرقی ایران در شرایط مانند آب و هیدرولوژیک خاکی آثار ترده‌ای آتش نگه‌داری شده در مسیرهای چوبکشی دارد که در تردد سرعت زمانی کاهش یافته و در نهایت به صورت در مسیرهای چوبکشی مشاهده می‌شود. در ۲۵ و ۲۷ درصد از تعداد شاهدی بر این نتیجه نشان داده که در تردد یک ساله و چوبکشی زمینی ۲۰ ساله جرم مخصوص ظاهری خاک در مسیرهای چوبکشی کاهش می‌یابد که در صورت عدم عملیات پیش‌بینی‌ها در تردد کم ممکن است به پایداری برسد.

واژه‌های کلیدی: بازیابی خاک جنگل، تخلخل خاک، نفوذ‌پذیری خاک، جرم مخصوص ظاهری، ظالملورد- ظالملورد

١. گروه جنگل داری، دانشگاه تربیت مدرس، تهران
a.najafi@modares.ac.ir

٢. مسئول مکاتبات: پست کلیاتی:

۲۶۱
کشور ایران با نسبت به داده‌های کیفی و کمی حدود ۵۰ سال زمان لازم این مسئله را به‌دست آورد. در مورد واقعیت‌هایی که بایستی تحقیقات ویژه‌ای برای پیدا کردن یک مدل دقیق برای انرژی‌های خوراکی و انرژی‌های تجدیدپذیر وجود دارد. به‌طور کلی، این مسائل به‌صورت رایج در علوم زمین‌شناسی و زمین‌شناسی هسته‌ای است.

مقدمه
کشور ایران یکی از کشورهای کودکی و رشدی در جهان است که در زمینه استفاده از توانایی‌های انرژی‌های تجدیدپذیر، به‌نظور به‌بیش از ۳۰ سال از زبان زمین‌شناسی و زمین‌شناسی هسته‌ای است. این مسئله به‌طور کلی برای بهترین استفاده از توانایی‌های انرژی‌های تجدیدپذیر و پیش‌بینی خوراکی منابع طبیعی، بسیار حائز اهمیت دارد.

مواد و روش‌ها
منظور مورد تحقیق این مطالعه از جمله‌ای که در زمینه استفاده از توانایی‌های انرژی‌های تجدیدپذیر و پیش‌بینی خوراکی منابع طبیعی، بسیار حائز اهمیت دارد.

نتایج و سلسله‌های مناسب
این تحقیق در زمینه استفاده از توانایی‌های انرژی‌های تجدیدپذیر و پیش‌بینی خوراکی منابع طبیعی، بسیار حائز اهمیت دارد.

منابع و منابع جستجویی
این تحقیق در زمینه استفاده از توانایی‌های انرژی‌های تجدیدپذیر و پیش‌بینی خوراکی منابع طبیعی، بسیار حائز اهمیت دارد.

مسند
کشور ایران با نسبت به داده‌های کیفی و کمی حدود ۵۰ سال زمان لازم این مسئله را به‌دست آورد. در مورد واقعیت‌هایی که بایستی تحقیقات ویژه‌ای برای پیدا کردن یک مدل دقیق برای انرژی‌های خوراکی و انرژی‌های تجدیدپذیر وجود دارد. به‌طور کلی، این مسائل به‌طور کلی برای بهترین استفاده از توانایی‌های انرژی‌های تجدیدپذیر و پیش‌بینی خوراکی منابع طبیعی، بسیار حائز اهمیت دارد.
طرح تحقیق
به منظور مطالعه بررسی روند بزرگ‌پایی خواس فیزیکی خاک با نکته از خصوصیات هیدرولوژیکی خاک، در چهار کانی با روزانه چوبک شوین و خصوصیات فیزیکی خاک شامل جرم مخصوص ظاهری و فضای وسیع‌تر خاک در هرینتری از این مسره‌ها اندازه‌گیری گردید.

این مطالعه در قالب آزمایش فاکتوریل طرح پایه بلوک کاملاً
تصادفي با دو فاکتور شدت ترافیک در سه سطح (کم، متوسط و
زیاد) و سه مسره چوبکی در چهار کانه (5، 10، 15 و
20 سال) انجام گرفته است. در هر یک از مسره‌های
چوبکی براساس فاصله از دیو سه شدت تردد جدا شد
(10، 15 و 20 سانتی‌متر) در هر کلیه‌ی ترافیک پنج ترکیب
و عرض 4 متر (عرض مسره) یاده شد که 3 ترکیب نمونه مورد بررسی
تصادفی از آن انتخاب شد (22). برای تعیین بافت حاکی از هر
پیک نمونه برداشت شد. در هر فاصله خاک محسوب شد.

نتایج
یافته‌ها منطقه مورد مطالعه
نتایج یافته‌ها برای اطمینان خصوصیات مسره چوبکی به کمک
شنید ترافیک در طی‌مدت 10 سانتی‌متر به بهترین
(10 سانتی‌متر) خاک نیز با انتخابه از استوانه‌های مضر ابزار انتدازه‌گیری (ATSM D-3385 - 75)

 확اس (SPSS 11.5 & SASS) انجام شد.
جدول 1. خلاصه مشخصات منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>طول مسیر چوبکشی (متر)</th>
<th>شماره چوبکشی (سال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0-5</td>
</tr>
<tr>
<td>240</td>
<td>5-10</td>
</tr>
<tr>
<td>140</td>
<td>10-15</td>
</tr>
<tr>
<td>100</td>
<td>15-20</td>
</tr>
</tbody>
</table>

جدول 2. پایه خاک تیمارهای مسیر چوبکشی در 100-5 میلی متر خاک

<table>
<thead>
<tr>
<th>مسیر چوبکشی (سال)</th>
<th>تراپیک شدید</th>
<th>تراپیک متوسط</th>
<th>تراپیک روی</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسیر چوبکشی (سال)</td>
<td>رسته-لومی</td>
<td>رسته-لومی</td>
<td>رسته-لومی</td>
<td>رسته-لومی</td>
</tr>
</tbody>
</table>

است (جدول 2). به منظور بررسی دقیقتر اثرات بهره‌برداری بر روی اندازه منطقه خاک، به دو بخش منطقه‌ریز و درشت تفسیر گردد و نتایج آن در جدول 3 ارائه شده است. بررسی دقیقتر جدول 3 نشان می‌دهد کمترین و بیشترین درصد کاهش منطقه درشت در ناحیه مورد مطالعه مربوط به تراپیک کم مسیر انجام عملیات بهره‌برداری در جدول 3 ارائه شده است. ارائه و تحلیل داده‌های مربوط به جرم مخصص ظاهري نشان داد که با افزایش شدت تراپیک، جرم مخصص ظاهری خاک افزایش یافت که است. به طوری که بیشترین افزایش جرم مختص در تراپیک شدید بوده است. درصد افزایش جرم مخصص در ظاهری در تراپیک شدید 4 مسیر چوبکشی بترتیب شاهد است (جدول 3). به موازات افزایش جرم مخصص ظاهری، مقاپسه داده‌های مجموع تخیلی خاک نشان داد که بیشترین کاهش آن در تراپیک شدید بوده است. درصد کاهش مجموع تخلخل خاک در تراپیک شدید در 4 مسیر چوبکشی بترتیب سال می‌شود و رضا شدن در طبیعت رطوبت اشناع بیشتری را به نسبت تردد کم داشته است.

264
جدول ۳. خصوصیات فیزیکی اندازه‌گیری شدته در خاک در تیمارهای مورد مطالعه به تفکیک سن‌ها و شدته در مسیرهای چویکشی

<table>
<thead>
<tr>
<th>شدت تراویک</th>
<th>رطوبت خاک</th>
<th>مجموع تخلخل خاک</th>
<th>فاکتور تخلخل خاک</th>
<th>ابعاد در کم مکعب</th>
<th>به درصد</th>
<th>نسبت به درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>19.5</td>
<td>61</td>
<td>41</td>
<td>0.9</td>
<td>61</td>
<td>41</td>
</tr>
<tr>
<td>کم ۱-۵</td>
<td>37.6</td>
<td>82</td>
<td>41</td>
<td>2.4</td>
<td>82</td>
<td>41</td>
</tr>
<tr>
<td>متوسط</td>
<td>37.6</td>
<td>82</td>
<td>41</td>
<td>2.4</td>
<td>82</td>
<td>41</td>
</tr>
<tr>
<td>شدید ۵-۱۰</td>
<td>37.6</td>
<td>82</td>
<td>41</td>
<td>2.4</td>
<td>82</td>
<td>41</td>
</tr>
<tr>
<td>کم ۱۰-۲۰</td>
<td>37.6</td>
<td>82</td>
<td>41</td>
<td>2.4</td>
<td>82</td>
<td>41</td>
</tr>
<tr>
<td>متوسط</td>
<td>37.6</td>
<td>82</td>
<td>41</td>
<td>2.4</td>
<td>82</td>
<td>41</td>
</tr>
</tbody>
</table>

نتایج اندازه‌گیری اعمال آب در تیمارهای مختلف مسیر چویکشی در مقایسه با چاه عیانینه، نشان دارد که در شکل ۱ ارائه شده است. شکل ۱ نشان می‌دهد که در سه کلاسه تراویک، نفوذ لحظه‌ای به سرعت کاهش پیدا کرده است. میزان کاهش در تردد کم سیر برتر از سایر تیمارها بوده است. روند تغییرات نفوذ آب در خاک در تمام تیمارهای مسیر چویکشی از یک کلیه مشابه پیروی کرده است. در کلیه روند گزارش شده در تغییرات نفوذ لحظه‌ای، مركب برای سه به ترتیب در نفوذ لحظه، حرکت تغییر افقی سیستم افزایش نفوذ و به دنبال آن کاهش نفوذی نزدین به نفوذ لحظه و تغییرات کلی نفوذ (شکل ۱). بررسی جریان نفوذ در شدت تراویک‌های مختلف در کل دوره بیست ساله نشان داد که سرعت نفوذ از تردد کم به شاهد کاهش یافته است.
ب) سرعت نفوذ در شدت ترافیک‌های مختلف در سیر چوبکی 5-10 سال

ج) سرعت نفوذ در شدت ترافیک‌های مختلف در سیر چوبکی 15-20 سال

شکل 2: مقایسه سرعت نفوذ در سیرهای چوبکی بیست سال پس از چوبکی زمینی

سرعت نفوذ، در تمام سیرهای چوبکی در ترافیک کم به‌استثنای مسیر 5-10 و مسیر 15-20 سال بوده است.

جدول 4: متوسط سرعت نفوذ (رابطه 1) در ناحیه مورد مطالعه دارای دامنه صفر میلی‌متر (فاقد نفوذ) در ترافیک شدید
جدول 4. پارامترهای نفوذ در هریک از سه‌یاره چوبیکی به ترتیب سن‌ها عرض در طیف

<table>
<thead>
<tr>
<th>مسير چوبیکی</th>
<th>تیمارهای مورد مطالعه</th>
<th>نفوذ نجمی به میلی‌متر</th>
<th>حداکثر سرعت نفوذ mm min^{-1}</th>
<th>متوسط سرعت نفوذ mm min^{-1}</th>
<th>زمان نا لحظه تثبیت نفوذ به دقیقه</th>
<th>شب کاهش نفوذ mm min^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسير چوبیکی 5 سال</td>
<td>شاهد</td>
<td>2/5/0</td>
<td>1/5/0</td>
<td>2/0/0</td>
<td>4/0/0</td>
<td>4/28</td>
</tr>
<tr>
<td>ترافیک کم</td>
<td>4/7/5</td>
<td>4/7/5</td>
<td>2/4/5</td>
<td>4/4/5</td>
<td>4/4/5</td>
<td>4/4/5</td>
</tr>
<tr>
<td>ترافیک متوسط</td>
<td>5/6/2</td>
<td>5/6/2</td>
<td>5/6/2</td>
<td>5/6/2</td>
<td>5/6/2</td>
<td>5/6/2</td>
</tr>
<tr>
<td>ترافیک شدید</td>
<td>5/6/0</td>
<td>5/6/0</td>
<td>5/6/0</td>
<td>5/6/0</td>
<td>5/6/0</td>
<td>5/6/0</td>
</tr>
<tr>
<td>مسير چوبیکی 10 سال</td>
<td>شاهد</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
</tr>
<tr>
<td>ترافیک کم</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
</tr>
<tr>
<td>ترافیک متوسط</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
</tr>
<tr>
<td>ترافیک شدید</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
</tr>
<tr>
<td>مسير چوبیکی 15 سال</td>
<td>شاهد</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
<td>1/7/5</td>
</tr>
<tr>
<td>ترافیک کم</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
<td>2/7/1</td>
</tr>
<tr>
<td>ترافیک متوسط</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
</tr>
<tr>
<td>ترافیک شدید</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
<td>5/6/7</td>
</tr>
</tbody>
</table>

در این رابطه، CF متوسط سرعت نفوذ (میلی‌متر بر دقیقه) و CF مقدار نفوذ جمعی در کل مدت زمان اندازه‌گیری نفوذ (برحسب دقیقه) است. به منظور بررسی کامل سرعت نفوذ و حفاظت از مسيرهای چوبیکی با استفاده از مدل‌های نفوذ در مسيرهای مختلف اقدام به تهیه معادله‌های نفوذ به پیوست در تمامی نقاط از مسيرها به شرح زیر گردیده است.

\[I = \frac{CF}{T} \]

CF در این رابطه، CF متوسط سرعت نفوذ (میلی‌متر بر دقیقه) و CF دقت تیمار کاهش شده سرعت نفوذ در اثرات آب با سطح متفاوت مختلف شدت ترافیک و جریه کوپیک خاک به روند تغییرات سرعت نفوذ، حاصل اهمیت بوده که با توجه به این اشاره این پاتامی با استفاده از رابطه 2 مورد محاسبه قرار گرفته.

\[I_r = \frac{I_{\max} - I_{\min}}{T} \]

در این رابطه، I_{\max} متوسط نرخ تغییرات نفوذ نسبت به زمان (میلی‌متر بر مساحت دقيقه) و I_{\min} به ترتیب حداقل و I_{\max} به ترتیب حداقل.
بحث و نتيجة

الفاتح خاكر

نتائج دهاءه مربوط به براكتشيذ فاتح خاكر في تجاوزهم

مختلف في تراضي 100-1000 ميلي متر عمق خاكر خسرا بعد كل مذكست

بيست مال في انتاج عمليات تيركيس تنتان داد كه مفه خاكر

بصوصتر رسي تا رو - لومي بوده است. كه ترابكش شيد د

تام مسيريه تيركيس كه استراتي مسير 5-10 سال بات خاكر

بيست مال شن مماكل شد است. كه ترابكش دمير 5

1-5 سال بات خاكر رسي - شيني بوده اين در حال است كه

بات خاكر في هفين مييار دام مسير 15-20 سال بة ممت

سيتي - رسي - لومي مماكل است كه نتشان ايزا بارسي كم تا

متوسط ذرات خاكر و درشت شن خاكرنه خاكر خسرا

ممكن است كه ارتنم با مخلوط شن خاكر لازه سطحلي با

لاهيه تناندن في لك تيركيس زينبي، بالا بودن رفتوت

خاكر حين عمليات و احتكاكا يكسك جرخها ناهي ايزا تيركيس

در خاكر مرفوتب بايع اين تغيرات تنسب به ماسير تيمرها

شهده است (42). النبيه اين عمل بايع كاهش تخلخل حك

بويزي تخلخله داحت و احتكاكا افلاش سهم تخلخله

رايز من وردد (جدول 3).

خصائص فزيكي خاكر

بيست مال س في عمليات تيركيس زينبي جرم مخصص

ظاهره في ترابكش شيد تقاسمه به ادائه مصلاة شاهد برود و

اختلاف معنها داري با ممطهه شاهد دارد. طوري كه ميزان أن هنوز

ب ادائه 44 درصد بيشتر ف احتاجه بوده است. بالا بودن

جرم مخصص ظاهره في ترابكش شيد في ممطهه با ناحيه

شاهده توسط ساير نيوسيزنداي (12، 13، 24 و34) في مصالحات

بارسي خاكر عزاق شده است. اين موضوع نشان مهد في

جاهل نهيكاثا تأثير ناطن عمليات مسرباردي نا

سالا باي من مان. جرم مخصص ظاهره في ترابكش كم في

ميمطهه با تراست مسطروش و شيد في استراتي مسير 15-20 سال
نفوذی‌های خاک
در تمام مسئله‌های چوبکینی به انتساب تردد کم در مسیر 5-10 سال، با افزایش شدت ترافیک از سرعت نفوذ آب به داخل خاک افزایش یافته که به مطالعات ۱۵ و ۲۱ مطابقت دارد. این امر در ترافیکی شدید کمک ممکن می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌باشد. عدم نفوذ آب در تردد کم می‌باشد. عدم ترافیکی کمک ممکن است به دلیل آب بیشتر در وسعت کم می‌ба
مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک / سال شانزدهم / شماره ششم و یکم / پاییز 1386

1. عزیزی، س. ا.، تجفی، و. حسنی. 1388. بررسی کوبیدگی خاک و تأثیر آن بر حاصلخیزی رویشگاه ده سال پس از عملیات چوکیشی جنگل. مجموعه مقالات چاپ شده در دومین همایش انجمن جنگل‌پسی ایران. دانشکده منابع طبیعی تهران کرج. بهار 1388.

2. نقذی، ر.، یازدادی، ک. طاهری آبیکار و م. عاکفی. 1388. ارزیابی خسارتهای به توده سریا (درختان و رادیوری) ناشی از اجرای روش بهرهبرداری گردنه در حوزه شفاغورد گیلان. مجله منابع طبیعی 138: 931-947.

3. نی، نام. 1376. کاربندی طرح جنگل‌داری پنج نفره نیویورک. شرکت مهارتی نهاد چوب مازندران.

