ارزیابی وضعیت تغذیه‌ای چغندر قند با استفاده از روش DRIS و مقایسه آن با روش DOP در استان آذربایجان غربی

ناصر میران* و عباس صمدی ١

چکیده

به منظور تعيين اعداد مرجع و شاخص‌های DRIS در چغندر قند (Beta Vulgaris L.) و مقایسه آنها با شاخص‌های DOP در چغندر قند، در استان آذربایجان غربی چرم آوري و غلظت‌های عناصر غذایی Cu، Mn، Zn، Fe، Ca، K، P، N، Mg در محلات زراعی و باغات در بلوچستان تهیه شدند. نتایج کفايتي عناصر غذایي در برگهای چغندر قند در مراحل مختلف تهیه شده و مقایسه با نتایج در مراحل مختلف تهیه شده. نتایج نشان داده که مصرف بیش از اندازه در روش DOP و شاخص‌های DRIS از نظر مشابهی به یکدیگر نیست.

(ناریں دریافت: ١٣٨٩/١٢/٨; تاریخ پذیرش: ١٣٩٠/١٢/٧)

واژه‌های کلیدی: نر. چغندر قند، DOP، DRIS

* گروه علوم کشاورزی، دانشگاه کشاورزی، دانشگاه ارومیه
nasermiran@yahoo.com

١: مسئول مقالات. بست کلیاتی: ارومیه
مقدمه

یکی از اهداف اصلی تغذیه معدنی گیاهان، افزایش درآمد خاصی به مفاهیم مدیریت مولکولی کوده‌دار است. تعیین یک روش مؤثر ارزیابی تغذیه گیاه به منظور افزایش متقابلیت علم تغذیه گیاهی با بشر، تحقیقاتی انجام شده. در حال حاضر، می‌باشد (15) عبارت ممکن برای تفسیر نتایج تجریبی در این طرح، فناوری فیزیولوژی گیاه‌های اندازه‌گیری شده در نمونه‌های برنج با اعداد مرجع غلظت‌های غذایی بحثی با دانشمندان کمایت مربوط به یکی مورد نظر می‌باشد. مثلاً، نمونه‌هایی از میوه و سیب به‌طور مشابه تغذیه شده‌اند.

کنترل شده و اغلب در کشورهای دیگر جهان تغییر شده‌اند. بیانی مناسبی در تشخیص و ضعیفی عناصر غذایی و در نهایت اثری‌ای رواج دارد که به منظور رفع نارسایی‌های غذایی می‌باشد. در (3) و (8) هر چه این عناصر مدرج در افزایش و شرایط اقلیمی متفاوت تغییر یابد (21).

اهتمام تغذیه غذایی اگر چه در گذشته مطیع شده بود ولی این مسئله تغییر می‌یابد. سیستم تشخیص فیزیولوژیکی بصری در حال پیشنهاد (DRI (6)) در این روش همانند محدودیت می‌تواند به مدت بیش از حالت تغییرشده بررسی کند و همگی تغییرات گیاهی را در روش تجزیه برگ متعدد شده است (21).

بر این روش می‌توان با استفاده از تغییرات به‌طور آمد. مهم‌ترین این بخش‌های تغذیه‌ای بخصوص بدنی این پژوهش نرم‌های و شاخص‌های دریس برای چیدم‌های نرم و در نهایت روش BRIS متقابلی می‌گردد.

مواد و روش‌ها

شناخت‌های دریس یک عناصر غذایی در مزارع با عملکرد بالای را تعیین و به حالت تغییرشده، بیشتر و با یک کمپانی با عناصر بی‌برد و ترتیب نیاز موردی به عناصر غذایی مختلف را به‌دست آورد. همچنین بر این روش با مباحث شاخص تعادل‌گذار گردیده، شاخص‌های غذایی (NBI)، می‌توان این انحراف از حالت تغییر شده بود. و ناهنجاری‌های تغذیه‌ای را شناسایی نمود. از آنجا که میزان عملکرد هیچ‌یک تغییر غلظت عنصری است که در محدودیت فرا دارد،بان‌یاب‌های تشخیص تغذیه عملکرد غذایی و ترتیب نیاز آنها بسیار مهم است (2). اگر چه برخی از محققین معقدنده چه
ارزیابی وضعیت تغذیهای چند رقمی با استفاده از روش DRIS

با داده‌ش/output/برای آنها تکمیل و نمونه‌های بزرگ از آنها در

هفته دوم تیرماه (بیشتر وارد کنند) و غذایی در گیاه

نسبتاً تبادل بیشتر مانند) از بزرگ‌های کامل و سالم (17) تهیه

شده. نمونه‌برداری از بزرگ‌ها و جمع‌آوری اطلاعات بدنی

شرح انجام گرفت. به این هدف هکتار مزرعه که نمونه مربک

برک (تعداد 20 برک جوان و کاملاً) تهیه گردید.

تعیین نرم عنصر

پس از مشخص کردن ارقام مرحله گیاهی، مقایسه نتایج تجزیه

برگی با عمکرد پایین (زن و پایین) با ارقام مرحله (زن‌های)

انجام گردید. مقادیر کمی احتمال در اندازه‌گیری بر اساس ارقام

بسته آمد. به بروز نیاز نیاز نیاز غذایی با استفاده از

شناخت غذایی ادامه گذاشتم. انتخاب می‌کنند و پردازش می‌کنند

ان شناختی از این نسبی

عناصر غذایی آنها ممکن است انتخاب می‌کنند و پردازش می‌کنند

عنصر غذایی به صورت مفهومی برای شاخص (بیشترین نیاز) و کم

نیاز‌ترین آنها با مبتنین شاخص بیان شده است. هرچه

شاخص به صورت ضریب کاهش می‌رسد می‌تواند اثر غذایی بیشتر است. (6)

شاخص‌های دریس براساس فرمولی که توسط بیواد

یپشتهاد می‌کند. به طور مثال برای بررسی صحور زیر

محاسبه گردید:

\[I(N) = \frac{f(N/P) + f(N/K) - f(Ca/N) - f(Mg/N)}{f(Fe/N) - f(Mn/N) - f(Zn/N) + f(N/Cu) - f(B/N)/9} \]

روش‌های شناخته‌های دریس

\[f(N/P) = \left(\frac{N}{P} \right)^{1.111} CV \]

وقتی باشد: \[N/P > n/P \]

وقتی باشد: \[N/P < n/P \]

\[f(N/P) = \left(1 - \frac{N/P}{n/P} \right)^{1.111} CV \]

وقتی باشد: \[N/P = n/P \]

\[f(N/P) = 0 \]

در فرمول های فوق مقدار نرم تعیین شده (میانگین عمکرد

محاسبه گردید.

میزان نرم عمکرد بالا) و N/P در نمونه‌های پایین

میانگین عمکرد بالا) و N/P در نمونه‌های پایین

\[CV \]

ضریب تغییرات

تعیین عمکرد چند رقمی

در زمان برداشت محصول (هوته‌ها) شهروندان نا هفته اول

مهربان) با بازگشت از هوته‌ها و نزدیک‌ترین به صورت مداوم

که در تک تک مرازور مدار مطلوب، اندام‌های کیبری و پاداش‌

بیاورد با هنگام که نمادین عقود دارای بوده و در گروه با

عمکرد بالا و پایین نسبت گردید. مرازور با عمکرد بالا، جهت

تعیین نردها، در حالی که شاخص‌های دریس برای تشخیص عدم

تعادل عنصر غذایی در نمود و با عمکرد پایین استفاده شد. میزان

مور با عمکرد بالا و پایین نسبت گردید. مرازور با عمکرد بالا و

پایین میانگین عمکرد و انحراف معیار به شرح زیر بود (19):

\[\text{تحت‌المعنی} \]

\[\text{تحت‌المعنی} \]

\[\text{تحت‌المعنی} \]

\[\text{تحت‌المعنی} \]
موفق‌ترین محاسبه شاخص‌های DOP و NBI استفاده شد. وقیتی
عناصر غذایی مقدار با ارقام اولویت‌بندی شوند. به عنصر
غذایی با کمترین شاخص DOP، احتمالاً نیاز بیشتری نسبت به
سایر عناصر وجود خواهد داشت. شاخص تعادل تغذیه‌ای
DOP از مجموع قدر مطلق ارقام شاخص‌های DOP
به دست آمده:

\[\Sigma \text{باشند } A + B + C = |A| \]

نتایج و بحث
بررسی وضعیت عناصر غذایی مزارع جنگل‌قند مورد مطالعه
اماده مرحله‌ای باید انجام شود. در این مطالعه، ابعاد اکستس
عنصر غذایی با استفاده از روش دریس تعیین شدند. در واقع
ارقام مرحله دریس عناصر غذایی که از میانگین غلظت
عناصر برگ مزارع جنگل‌قند با عملکرد بالا به دست آمد.
میانگین حد کفایت را تشکیل داد. حدود کافی ارقامی است که
از میانگین (SD) 3

\[|A| \]

نامنده دامنه غلظت عناصر غذایی با استفاده از روش دریس
دامنه کفایت غلظت عناصر غذایی پرتنور و کم نیاز بربرگ
جنگل قند با استفاده از روش دریس تعیین شدند. در واقع
ارقام مرحله دریس عناصر غذایی که از میانگین غلظت
عناصر برگ مزارع جنگل‌قند با عملکرد بالا به دست آمد.
میانگین حد کفایت را تشکیل داد. حدود کافی ارقامی است که
از میانگین (SD) 3

\[|A| \]

مقدار حد کم در نظر گرفته شد. ارقام بین M و 3

\[|A| \]

میانگین تا 8

\[M \]

میانگین برای حدود زیاد و ارقام بیش از 8

\[M \]

میانگین به عنوان حدود خیلی زیاد در نظر گرفته شد. (۱۰).

\[(DOP) \]

انحراف از میانگین (DOP) برای تغییر وضعیت تغذیه‌ای
شاخص برای مزارع تعیین شد. جنگل‌قند از رابطه

\[[(C \times 100)/C_{\text{ریاضی}}] - 100 \]

در این رابطه C

\[[(C \times 100)/C_{\text{ریاضی}}] - 100 \]

غلظت عناصر غذایی درون‌دره برگ جنگل‌قند مزارع با عملکرد بالا و

\[[(C \times 100)/C_{\text{ریاضی}}] - 100 \]

غلظت بهینه عناصر غذایی (ارقام مرحله) در برگ جنگل‌قند است. در این مطالعه میانگین غلظت
عناصر غذایی در جامعه گیاهی با عملکرد بالا به عنوان ارقام
جدول ۱: میانگین ± SD ضریب تغییرات (CV)، نسبت واریانس بین مزارع با عملکرد بالا و پایین (S²/L/S²H) غفلت عناصر غذایی در بزرگ و میزان عملکرد در چندنفران

<table>
<thead>
<tr>
<th>CV(%)</th>
<th>مزارع با عملکرد بالا</th>
<th>مزارع با عملکرد پایین</th>
</tr>
</thead>
<tbody>
<tr>
<td>S²/L/S²H</td>
<td>علائم</td>
<td>علائم</td>
</tr>
<tr>
<td>۲/۵۴۶</td>
<td>۱۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>۰/۵۹۹</td>
<td>۲۰</td>
<td>۱۷</td>
</tr>
<tr>
<td>±۰/۷۸۸</td>
<td>۲۸</td>
<td>۲۸</td>
</tr>
<tr>
<td>۰/۷۱</td>
<td>۲۱</td>
<td>۲۱</td>
</tr>
<tr>
<td>±۰/۱۱</td>
<td>۳۱</td>
<td>۳۱</td>
</tr>
<tr>
<td>±۰/۲/۶</td>
<td>۲۷</td>
<td>۲۵</td>
</tr>
<tr>
<td>۰/۹۳</td>
<td>۱۳</td>
<td>۱۲</td>
</tr>
<tr>
<td>±۰/۰۷</td>
<td>۲۲</td>
<td>۲۱</td>
</tr>
<tr>
<td>±۰/۵**</td>
<td>۳۰</td>
<td>۲۹</td>
</tr>
<tr>
<td>±۱</td>
<td>۳۱</td>
<td>۳۰</td>
</tr>
<tr>
<td>±۲***</td>
<td>۸۳</td>
<td>۸۰</td>
</tr>
</tbody>
</table>

P** = معيار در سطح احتمال ۰/۰۵ ≤ P ≤ ۰/۰۱

درجه حرارت ۲ (۲۲). (ب) استفاده از روش DRIS می‌تواند به عنوان یکی از روش‌هایی وأنرژی نسبت واریانس از مزارع انتخاب شود. در کلیه مزارع، در کلیه عناصر غذایی (Ca, Mg, K, P, N, Fe, Mn, Zn, Cu, B) GNI (گنتی‌لا) به جهت محدودیت صفحه نشان داده نشده است. شاخص‌های با علامت منفی نشان‌دهنده کمبود، شاخص‌های با علامت مثبت نشان‌دهنده حالت بیشتر بوده و شاخص‌های با عدد صفر نشان‌دهنده حالت تعادل عناصر غذایی مورد نظر در مزرعه با آن بوده‌است. در این مطالعه نشان داده شد که نسبت واریانس بین عملکرد بالا و پایین در مزرعه با آن بوده‌است.

**درجه حرارت ۲ (۲۲). (ب) استفاده از روش DRIS می‌تواند به عنوان یکی از روش‌هایی وأنرژی نسبت واریانس از مزارع انتخاب شود. در کلیه مزارع، در کلیه عناصر غذایی (Ca, Mg, K, P, N, Fe, Mn, Zn, Cu, B) GNI (گنتی‌لا) به جهت محدودیت صفحه نشان داده نشده است. شاخص‌های با علامت منفی نشان‌دهنده کمبود، شاخص‌های با علامت مثبت نشان‌دهنده حالت بیشتر بوده و شاخص‌های با عدد صفر نشان‌دهنده حالت تعادل عناصر غذایی مورد نظر در مزرعه با آن بوده‌است.

**درجه حرارت ۲ (۲۲). (ب) استفاده از روش DRIS می‌تواند به عنوان یکی از روش‌هایی وأنرژی نسبت واریانس از مزارع انتخاب شود. در کلیه مزارع، در کلیه عناصر غذا...
جدول ۲. ترمیم دریس، میانگین نسبت عنصر غذایی، ضریب تغییرات (CV)، نسبت واریانس مزارع با عملکرد بالا به مزارع با عملکرد پایین در مزارع چغندرنده

<table>
<thead>
<tr>
<th>S1/S1_h</th>
<th>CV%</th>
<th>میانگین</th>
<th>فرم بیان</th>
<th>S1/S1_h</th>
<th>CV%</th>
<th>میانگین</th>
<th>فرم بیان</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3</td>
<td>122</td>
<td>Ca/K</td>
<td>1/1</td>
<td>36</td>
<td>16</td>
<td>N/P</td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>0.72</td>
<td>Ca/Mg</td>
<td>0.7</td>
<td>0.72</td>
<td>0.7</td>
<td>N/K</td>
<td></td>
</tr>
<tr>
<td>0.78</td>
<td>0.76</td>
<td>Ca/Fe</td>
<td>0.7</td>
<td>0.72</td>
<td>0.7</td>
<td>Cu/N</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.32</td>
<td>Mn/Ca</td>
<td>0.32</td>
<td>0.9</td>
<td>0.32</td>
<td>Mg/N</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>0.47</td>
<td>Mn/Mg</td>
<td>0.47</td>
<td>0.69</td>
<td>0.47</td>
<td>Mn/P</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.07</td>
<td>Zn/Mg</td>
<td>0.07</td>
<td>0.12</td>
<td>0.07</td>
<td>K/P</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>Mg/Cu</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>Ca/P</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>B/Mg</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>Mg/P</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>0.07</td>
<td>Mn/Fe</td>
<td>0.07</td>
<td>0.24</td>
<td>0.07</td>
<td>Fe/P</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>Zn/Fe</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>Mn/P</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.12</td>
<td>Fe/Cu</td>
<td>0.12</td>
<td>0.75</td>
<td>0.12</td>
<td>Zn/P</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>0.09</td>
<td>B/Fe</td>
<td>0.09</td>
<td>1.9</td>
<td>0.09</td>
<td>Cu/P</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>Mn/Zn</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>B/P</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>Mn/Al</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>Ca/K</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>B/Mn</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>K/Mg</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>Zn/Cu</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>K/Fe</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.11</td>
<td>B/Zn</td>
<td>0.11</td>
<td>0.7</td>
<td>0.11</td>
<td>Cu/K</td>
<td></td>
</tr>
</tbody>
</table>

شناختی و در پیش از ۲۰% موارد در رتبه دوم منفی ترین عملکرد پایین است. در همه مزارع با عملکرد پایین شناختی ها از منفی و با منبت بودند و در کمتر مواردی صفر بودند. که نشان داده که عدم تعلق عنصر غذایی در این مزارع است. هر چه قدر مطلق اعداد بزرگتر باشد، کمبود یا پیش بود، شدت‌تر پیدا شده و به اهمیت اولویت نیاز یک مزرعه به عنصر مختلف تعیین می‌شود. به طورکلی در بین عنصر پریشان فسفر در پیش از ۲۰% مزارع به عنوان منفی ترین
جدول 3 دامنه غلظت عناصر غذایی پرمسرف و کم مصرف با استفاده از روش هاندل و همکاران (2005)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>کم</th>
<th>کافی</th>
<th>زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Mg</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Fe</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Zn</td>
<td>0</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

روش معادلی: میانگین کم درصد در رنگ زرد، کافی درصد در رنگ زелن و زیاد درصد در رنگ قرمز.

پایین‌ترین مقدار کمبود در سه درصد موارد رنگ‌شاده به رنگ زرد بیش از 70 درصد در رنگ زرد و در بیش از 30 درصد ثابت شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگín کm درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی بودند، میانگین کم درصد درصد بیش از 70 درصد به رنگ زرد و در بیش از 30 درصد مشاهده شد. در مواردی که درون محدوده کمبودی کم و کافی B
نسبت ویلی این کمربود را در تمامی مناطقی که چگونگاندی و سیب کاشته شده، می‌توان آن را آن‌ها که با بیشترین واحد یافت کنیم. با توجه به نظر سیستمی که کشور ایران از احاطه بیشتری برای ضعیف‌شدن در پژوهش‌ها، نور خورشیدی مزود مطالعه با اعمالکردد، به‌منظور یافتن در بعضی از موارد نمی‌تواند که نشان‌دهند توزیع‌برکنشیتی خطای در ناحیه‌های مورد مطالعه و با کوددهی نامتعادل این عناصر در مزراعات مختلف بود و با توجه به این که مرزبین کمربود و سمیت بور خیلی نزدیک این بایستی در کوددهی این عناصر در مزراعات دقت می‌کند و با توجه به تجزیه‌خانه و ترکیب نیز گیاه‌های اقلیدی به کوددهی کرده، زیرا همچنین نباید این است که مصرف املاح باید در میان‌های در دست‌آورده، نیز باید مراحل مختلف مضره است. (۵) در بین عناصر کم مصرف تریبیت
اولویت‌بندی عناصر غذایی کم مصرف بپرترتب زیر بود:

\[Cu > Zn > Fe > Mn > B \]

از بین عناصر پر مصرف فسفر و نیتروژن بیشترین کمربود را دارا بود در بین عناصر کم مصرف سس و روی بیشترین کمربود و بور پیشترین بود را دارا بودند. در مجموع عناصر فسفر، سن، ازت و روی در اولویت قرار داشته و پایین به آنها نوشه خاصی

می‌تواند داشت.

\[(\text{DOP}) \]

\[Cu > Zn > Fe > Mn > B \]

مزایا و شاهدی‌های انحراف از درصد به‌هیه

براساس روش میانگین مقدار عناصر غذایی در جامعه N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, B

DOP

