چکیده
کادمیم در گیاهان، انسان و دام یک آلاینده محصول می‌شود. به‌هدف بررسی مصرف کادمیم و روی بر عملکرد و جذب عناصر ریز مغذی در گندم رقم چمران سیروس جعفری *، زهرا ابراهیم‌نیا، قدرت اول، فتحی، و سید عطایه سیادت.

(تاریخ دریافت: 1387/12/23، تاریخ پذیرش: 1389/8/12)

واژه‌های کلیدی: آلاینده، کادمیم، خاک، روی، قابلیت جذب

1. گروه علوم خاک، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.
2. گروه زراعت، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان.
3. siroosjafari@yahoo.com

* مسئول مکاتبات، پست الکترونیکی.
مقدمه

تورک (۲۹) نشان داد که در گندم با آفراشی غلظت‌کننده، علاوه بر کاهش ارتفاع و زرد شدن برگها، نرگ ریشه‌ها نیز به‌طور غیرطبیعی به‌هنهای‌شده و اندام‌های گره‌های جوان نیز کاهش می‌یابد. کادمیم مانع فوتومتری، تنفس، جذب مواد و فعالیت‌های بیشتری می‌گردد. یکی از نتایج تحقیقات شده در کلام درونی و محیط‌های گیاهی از این نتایج است. (۸) کادمیم باعث آسیب‌پذیری کارولین است. سوال‌هایی مربوط به اثرات کادمیم در گیاهان، از جمله عوامل خاکی و گیاهی می‌توان کاهش تجویز کادمیم از تهیه گیاه در خاک آلوده به کادمیم نشان داده که وجود گل و شوری زیاد نسبت به خاک که این عنصر در آن کمتر باشد دشواره می‌گردد. در خاک آلوده به کادمیم نشان داده شده که وجود گل و شوری زیاد در خاک بسیار میزان کادمیم موجود در خاک و جوان نسبت به خاک که عنصر این آن کمتر باشد دشواره می‌گردد. برخلاف روی که با آفراشیشوری خاک جوان آن در محلول خاک کاهش می‌یابد.

پیشگیری و همکاران (۵۲) نشان دادند که سرگرمی بیشترین تجمع کادمیم را نسبت به گیاه‌های دیگر در ریشه خود دارد و میزان جذب کادمیم در حضور مواد آلی آفراشی می‌باید. نیکم و همکاران (۲۱) در آزمایش‌هایی به این نتیجه رسیدند که ۵۰-۷۵ درصد کادمیم در ریشه ذوب شده و نهایاً مقدار کمی از آن به قسمت‌های هواپیمایی متعلق می‌گردد. ذخیره کادمیم در قسمت‌های مختلف گیاه با این ترتیب می‌باشد: دانه > قسمت هواپیمایی. هواپیمایی نیکم و افرادی که در آزمایش‌های دیگر در ریشه و اندام هواپیمایی نیکم نگهداری می‌شوند و افرادی که آزمایش‌های دیگر در ریشه و اندام هواپیمایی نیکم نگهداری می‌شوند خاصیت این بخش از غلظت گیاهی برای غذای انسان استفاده نمی‌شود. گندم در نمود نسبت به جذب کادمیم حساسیت با گندم ناه یکی از این نتایج است. تحت تأثیر سید می‌یابد و بنی و اندام هواپیمایی در بین رفع‌مانی گندم ناه و فلور خاصیت نبسته به سطح شیمیایی گیاه. بطور مانگین کاهش وزن اندام هواپیمایی گندم دوروم ۲۱ و گندم ناه

۱۴۸
مواد و روش‌ها
این آزمایش در سال زراعی ۱۳۸۸-۱۳۸۷ در گلخانه دانشگاه کشاورزی و منابع طبیعی رامین در ملاحی یک بار، میانگین تعداد ۲۸۴ گیاه در ۳۷ دیفیقه عرض جغرافیایی ۳۱ درجه و ۳۷ دقیقه و به ارتفاع ۱۵ متر از سطح دریا توسط باغداری و دبیران آزمایشی انجام شد. متوسط بارندگی سالانه ۴۸۶ میلی‌متر و میانگین رطوبت نسبی سالانه ۵/۸۵ درصد بود. نتایج دستگاه جذب آزمایشات مورد استفاده برای خصص‌گیری و به‌دلیل وارد آزمایشات از نرم‌افزار آماری SAS تحلیل (۲۵) و برای رسم نمودارها و نیز برای نرم‌افزار Excel استفاده شد.

نتایج و بحث
اثر تیمار‌ها بر تولید و اجزاء عملکرد گندم
نتایج حاصل از تحلیل آماری داده‌ها نشان داد که بین سطوح مختلف تیمار کادیم و روی و یا اثر متقابل آنها بر وزن هزار دانه، نهایت معنی‌داری وجود نداشت. ولی بین سطوح مختلف هوا، لایه نسبت به گندم، کادیم در بخش هواپیمایی هنگام وجود دارد. در این آزمایش مشاهده شد که کادیم در بخش هواپیمایی جوانه‌های بزرگ‌تری روی هواکشان و خاک کنترل می‌بازد. همچنین آنالیز مکانیکی که روی اثری به اندام هواپیمایی متوقف و از طریق از فرآیند آتش از بود‌گری
برپایه‌های جوان منتقل می‌شود و برخی از روی، کادیم به میزان نیشتر در ریشه باقی می‌ماند. در خاک‌های شهر و منطقه سبک‌الحالت عنصر کم صرفه چون آهن، مس، روی، مکنزی و مولیبدن عضوی کم بهره‌برداری در این شرایط اغلب کم‌عمق عنصر فوکا نشان می‌دهند. تحت شرایط شوری، عملکرد گیاه گیاهی می‌پا که با این‌که عملکرد بسته به نوع گیاه و نوع پایداری گیاهی، سطح سوری شرایط رشد، غلظت عنصر کم صرفه در محیط رشد، نوع ترکیب گیاه و طول دوره تیمار شوری متفاوت است (1). بیان‌بران این آزمایش به‌هند بررسی آزمایش عنصر توسط بود‌گر و ژن‌بر این عنصر توسط بود‌گر متناسبه مصرف‌کننده و روی بر عملکرد گندم و جذب این عنصر توسط بود‌گر متناسبه مصرف‌کننده شد.

اهدا می‌شود و در این آزمایش در سال زراعی ۱۳۸۸-۱۳۸۷ در گلخانه دانشگاه کشاورزی و منابع طبیعی رامین در ملاحی یک بار، میانگین تعداد ۲۸۴ گیاه در ۳۷ دیفیقه عرض جغرافیایی ۳۱ درجه و ۳۷ دقیقه و به ارتفاع ۱۵ متر از سطح دریا توسط باغداری و دبیران آزمایشی انجام شد. متوسط بارندگی سالانه ۴۸۶ میلی‌متر و میانگین رطوبت نسبی سالانه ۵/۸۵ درصد بود. نتایج دستگاه جذب آزمایشات مورد استفاده برای خصص‌گیری و به‌دلیل وارد آزمایشات از نرم‌افزار آماری SAS تحلیل (۲۵) و برای رسم نمودارها و نیز برای نرم‌افزار Excel استفاده شد.

نتایج و بحث
اثر تیمار‌ها بر تولید و اجزاء عملکرد گندم
نتایج حاصل از تحلیل آماری داده‌ها نشان داد که بین سطوح مختلف تیمار کادیم و روی و یا اثر متقابل آنها بر وزن هزار دانه، نهایت معنی‌داری وجود نداشت. ولی بین سطوح مختلف هوا، لایه نسبت به گندم، کادیم در بخش هواپیمایی هنگام وجود دارد. در این آزمایش مشاهده شد که کادیم در بخش هواپیمایی جوانه‌های بزرگ‌تری روی هواکشان و خاک کنترل می‌بازد. همچنین آنالیز مکانیکی که روی اثری به اندام هواپیمایی متوقف و از طریق از فرآیند آتش از بود‌گری
برپایه‌های جوان منتقل می‌شود و برخی از روی، کادیم به میزان نیشتر در ریشه باقی می‌ماند. در خاک‌های شهر و منطقه سبک‌الحالت عنصر کم صرفه چون آهن، مس، روی، مکنزی و مولیبدن عضوی کم بهره‌برداری در این شرایط اغلب کم‌عمق عنصر فوکا نشان می‌دهند. تحت شرایط شوری، عملکرد گیاه گیاهی می‌پا که با این‌که عملکرد بسته به نوع گیاه و نوع پایداری گیاهی، سطح سوری شرایط رشد، غلظت عنصر کم صرفه در محیط رشد، نوع ترکیب گیاه و طول دوره تیمار شوری متفاوت است (1). بیان‌بران این آزمایش به‌هند بررسی آزمایش عنصر توسط بود‌گر و ژن‌بر این عنصر توسط بود‌گر متناسبه مصرف‌کننده و روی بر عملکرد گندم و جذب این عنصر توسط بود‌گر متناسبه مصرف‌کننده شد.
کدامیان از لحاظ اثر بر عملکردشان تفاوت معنی‌داری ملاحظه
شد (جدول 1). تیمار کدامیان صفر با میانگین 116/1 گرم در
گلدان و تیمار کدامیان 100 با میانگین 114 گرم در گلدان
بهترین دارای بیشترین و کمترین عملکرد دانه می‌باشد. بر این
اساس با افزایش سطوح کدامیان صفر، عملکرد دانه کاهش
می‌یابد. وجود کدامیان زیاد در محیط ریشه و جذب آن توسط
گندم می‌تواند موجب کاهش عملکرد کمی و کیفی محصول
شود. کدامیان باعث به هم ریختگی کریپوپلاست سلول‌های
زمفیلی باشیم در برگ‌های Günther و در نتیجه با کاهش
فتوسترز باعث کاهش عملکرد دانه می‌شود که گوییا و یوتالیا
(۱۲) نیز چنین اثر گزارش نموده‌اند. هم‌چنین در سطوح
۵ درصد وجود داشت (جدول 6). مصرف ۱۰۰ میلی گرم
در دیگرگونه ری میانگین 114 گرم در گلدان و تیمار صفر
آن با میانگین 108/8 گرم در گلدان بهترین دارای بیشترین و
کمترین عملکرد دانه است. با افزایش میزان روز معصره،
عملکرد دانه افزایش می‌یابد. روز در غلظت اکسیمین و تولید
کلروفیل و در نتیجه افزایش فتوسترز در گیاه نقص داشته و در
نتیجه باعث افزایش عملکرد دانه می‌شود. اجماع (۱۲) نیز
نتایج مشاهده را در شرایط تقریباً مشابه ارائه نموده‌اند.
نتایج نشان داد که بین سطوح مختلف کدامیان از لحاظ اثر
بر عملکرد کمی، تفاوت معنی‌داری وجود دارد (جدول 2).
براساس نتایج حاصله، تیمار کدامیان صفر با میانگین
91/6 گرم و کدامیان 100 با میانگین 92/9 گرم بهترین دارای
بیشترین عملکرد کل ماده خشک می‌باشد. با افزایش سطوح
کدامیان صفر، عملکرد کل کاهش یافته. وجود کدامیان زیاد در
محیط ریشه و جذب آن توسط سطوح کدامیان کمی و کیفی محصول
عملکرد کمی و کیفی محصول شود. کدامیان با کاهش شدت
فتوسترز های آنزیمی، غیرفعال کردن آن‌ها را کاهش فتوسترز
در گیاه و نیز در فیزیولوژی، برای بعضی جذب
عصار غذایی، نسبت کاهش عملکرد می‌شود. نتایج مشاهده
توسط مارچیل و همکاران (۱۸) نیز از طریق محقق اثر

۱۷۰
جدول 1. تحلیل آماری اثر تیمارهای افزایش کادمیم و روي بر عملکرد دانه

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربوط</th>
<th>مجموع مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/7</td>
<td>31/5</td>
<td>94/3</td>
<td>3</td>
<td>تکرار</td>
</tr>
<tr>
<td>14/3</td>
<td>87/3</td>
<td>164/5</td>
<td>2</td>
<td>کادمیم</td>
</tr>
<tr>
<td>9/7</td>
<td>55/5</td>
<td>111/5</td>
<td>2</td>
<td>روي</td>
</tr>
<tr>
<td>0/8</td>
<td>4/8</td>
<td>19/1</td>
<td>4</td>
<td>کادمیم+روی</td>
</tr>
<tr>
<td>-</td>
<td>5/7</td>
<td>13/7/1</td>
<td>4</td>
<td>شهناز</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>57/9/1</td>
<td>35</td>
<td>کل</td>
</tr>
</tbody>
</table>

جدول 2. تحلیل آماری اثر تیمارهای افزایش کادمیم و روي بر عملکرد کل ماده خشک گندم

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربوط</th>
<th>مجموع مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>24/7</td>
<td>130/9</td>
<td>3</td>
<td>تکرار</td>
</tr>
<tr>
<td>2/9</td>
<td>42/3</td>
<td>93/0/6</td>
<td>2</td>
<td>کادمیم</td>
</tr>
<tr>
<td>8/2</td>
<td>124/9</td>
<td>278/8</td>
<td>2</td>
<td>روي</td>
</tr>
<tr>
<td>0/9</td>
<td>14/7</td>
<td>58/9</td>
<td>4</td>
<td>کادمیم+روی</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>399/3</td>
<td>24</td>
<td>شهناز</td>
</tr>
</tbody>
</table>

جدول 3. تحلیل آماری اثر تیمارهای افزایش روي و کادمیم بر میزان کادمیم دانه

<table>
<thead>
<tr>
<th>F</th>
<th>میانگین مربوط</th>
<th>مجموع مربوط</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>2/5</td>
<td>10/8</td>
<td>3</td>
<td>تکرار</td>
</tr>
<tr>
<td>12/2</td>
<td>264/8</td>
<td>3/2</td>
<td>2</td>
<td>کادمیم</td>
</tr>
<tr>
<td>3/7</td>
<td>113/7</td>
<td>1/2</td>
<td>2</td>
<td>روي</td>
</tr>
<tr>
<td>0/6</td>
<td>28/5</td>
<td>16/5</td>
<td>4</td>
<td>کادمیم+روی</td>
</tr>
<tr>
<td>-</td>
<td>0/0</td>
<td>0/0</td>
<td>24</td>
<td>شهناز</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>35</td>
<td>35</td>
<td>کل</td>
</tr>
</tbody>
</table>

گزارش شده است، از آنگاهی که وجود بیش از 0/10-0/12 میلی گرم در کیلوگرم کادمیم در دانه بالاتر از حد مجاز است(2) باید از کشت گندم در خاکهای آلوده که میزان کادمیم در خاک آنها بیش از 18 میلی گرم در کیلوگرم باشد، خودداری کرد. همچنین تحلیل آماری داده‌ها نشان داد که میزان سطوح مختلف روی از حیات اثر بر غلظت کادمیم دانه تفاوت معمایی می‌دارد (جدول 3 و شکل 1). براساس نتایج این آزمایش تیمار روی 100 میلی گرم در کیلوگرم و روی سفرا باید میانگین 0/8 میلی گرم در کیلوگرم بهترین درایای کمترین و بیشترین غلظت کادمیم دانه می‌باشد. با افزایش میزان

171
نقش‌هایی کیاه‌می توانند بیان‌گر اثرات مقابل آنها باشند. در (3، 3 و 27) همچنین تحلیل آماری داده‌ها نشان داد که میان سطح مختلف کادمیم از لحاظ اثر بر غلظت روي در دانه تفاوت معنی‌داری وجود دارد (جدول 4 و شکل 2). تیمار کادمیم صفر 140 میلی گرم در کیلوگرم روی و کادمیم 100 96 میلی گرم در کیلوگرم روی بهترین دارای بیشترین و کمترین غلظت روي دانه می‌باشد. با افزایش سطح کادمیم مصرفی به علت اثر رقابت غلظت روی دانه کاهش می‌یابد. کست (7) گزارش نمود که کادمیم سبب محضیت‌بندی در جذب روی می‌گردد. از لحاظ آماری سطح مختلف روی مصرفی بر غلظت روی در دانه تفاوت معنی‌داری ایجاد نموده است (جدول 4). براساس نتایج این آزمایش، تیمار روی 100 96 میلی گرم در کیلوگرم و روی صفر 140 میلی گرم در کیلوگرم و کمترین غلظت روي در دانه می‌باشد. با افزایش میزان روی مصرفی، غلظت روی دانه افزایش یافته و باعث آن شدن دانه گندم شده است. هنوز نمی‌توان حضور روي بیشتر در محیط دانه و در نتیجه جذب بیشتر روی توسط کاهش می‌گردد. تیمار کادمیم صفر 140 میلی گرم در کیلوگرم روی بهترین همکاران (35) نیز دارای تأثیر زیادی داشت با افزایش روی به حجم کازورش نموده. مقایسه این دو نتیجه با هم نشان می‌دهد که اثر کاهشگر کادمیم بر غلظت روی در دانه حتی از اثر خود روي.

روی افزوده شده، غلظت کادمیم دانه کاهش یافته، با افزایش روی، رشد و توسعه سلولی بایستی به گاهی بر سر رفت و به دلیل اثر رقابت، غلظت کادمیم در تیمارهای با افزایش روی کاسته می‌شود. آدامز و همکاران (5) رابطه بین خاک و غلظت کادمیم موجود در خاک، را فاکتوری تعدیل کرده و انتقال کادمیم گزارش گردیده. حکمران کی قیام رابطه می‌تواند جذب کادمیم توسط ریشه گیاه رابطه معکوسی و وجود دارد. باعث سطح کادمیم 120 میلی گرم در کیلوگرم دانه حاصل شد. کمترین غلظت کادمیم دانه نیز در تیمارهای بوده که کادمیم مصرفی آنها در سطح صفر بود. در این آزمایش با افزایش مصرف روی، غلظت کادمیم دانه کاهش یافته، علت اثر کاهشگر روی بر غلظت کادمیم دانه است. به گونه‌ای که این اتفاق با افزایش روی به حجم کازورش نموده.

روی دارای اثر مقابل شدیدی نسبت به سایر گونه‌ها و تجمع در روی افزوده شده، غلظت کادمیم دانه کاهش یافته، با افزایش روی، رشد و توسعه سلولی بایستی به گاهی بر سر رفت و به دلیل اثر رقابت، غلظت کادمیم در تیمارهای با افزایش روی کاسته می‌شود. آدامز و همکاران (5) رابطه بین خاک و غلظت کادمیم موجود در خاک، را فاکتوری تعدیل کرده و انتقال کادمیم گزارش گردیده. حکمران کی قیام رابطه می‌تواند جذب کادمیم توسط ریشه گیاه رابطه معکوسی و وجود دارد. باعث سطح کادمیم 120 میلی گرم در کیلوگرم دانه حاصل شد. کمترین غلظت کادمیم دانه نیز در تیمارهای بوده که کادمیم مصرفی آنها در سطح صفر بود. در این آزمایش با افزایش مصرف روی، غلظت کادمیم دانه کاهش یافته، علت اثر کاهشگر روی بر غلظت کادمیم دانه است. به گونه‌ای که این اتفاق با افزایش روی به حجم کازورش نموده.

روی دارای اثر مقابل شدیدی نسبت به سایر گونه‌ها و تجمع در
جدول ۴: تحلیل آماری اثر تیمارهای افزایش کادمیم و روي بر غلظت روي دانه

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>مجموع مربعات</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>ارزش F</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>۵۵۹ /۸</td>
<td>۲</td>
<td>۲۷۹ /۸</td>
<td>۶۸۳ /۷</td>
</tr>
<tr>
<td>کادمیم</td>
<td>۵۳۹ /۴</td>
<td>۲</td>
<td>۲۷۹ /۸</td>
<td>۶۲۶ /۷</td>
</tr>
<tr>
<td>روي</td>
<td>۴۸۵ /۷</td>
<td>۴</td>
<td>۲۷۹ /۸</td>
<td>۶۸۳ /۷</td>
</tr>
<tr>
<td>کادمیم+روی</td>
<td>۵۹۵ /۷</td>
<td>۴</td>
<td>۲۷۹ /۸</td>
<td>۶۸۳ /۷</td>
</tr>
<tr>
<td>خطا</td>
<td>۹۹ /۸</td>
<td>۲۲ /۲</td>
<td>۴ /۵</td>
<td>۶۸۳ /۷</td>
</tr>
<tr>
<td>کل</td>
<td>-</td>
<td>۳۵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل ۲: تأثیر سطوح مختلف کادمیم و روي بر غلظت روي دانه

بر میزان روي در دانه شدیدتر است، به طوری که کادمیم جوهردار است، نتایج نشان می‌دهد که تفاوت کاربرد روي در میزان روي در دانه ۲۶ درصد است. این نتایج نشان می‌دهد که رفتار تیمارهای کادمیم در جلوگیری از جذب روي از اثر بیان‌دارنگی روي نيز شدیدتر است. به همین دلیل در خلاصهی کل آگاهی آنها به کادمیم بیش از حد باشد با افزایش مصرف روي نیز می‌توان میزان آن در گياه را به حد قابل توجهی کاهش داد.

همچنین اثر مقابل معنی‌داری بین میزان مصرف کادمیم و روي بر غلظت روي دانه وجود دارد (جدول ۴). در این آزمایش بیشترین غلظت روي دانه با مصرف ۱۰۰ میلی گرم در کیلوگرم روي و سطح صفر کادمیم با میانگین ۷۸/۹ میلی گرم.
اثر تيمرهای کادیم و روي بر غلتک‌انها در کاگندم
تحلیل آماری داده‌ها نشان داد که میان سطح مختلف کادیم در لحاظ آثر بر غلتک‌کادیم که تفاوت معنی‌داری وجود دارد (جدول ۵). در این آزمایش تیمار کادیم ۱۰۰۰/۳ میلی‌گرم در کیلوگرم و کادیم صفر با میانگین ۱۸۴/۰۳ میلی‌گرم در کیلوگرم به ترتیب دریای بیشترین و کمترین غلتک کادیم که می‌باشد. در این آزمایش تیمار کادیم ۱۰۰۰/۳ میلی‌گرم در کیلوگرم به ترتیب دریای بیشترین و کمترین غلتک کادیم خاک و جذب بیشتر آن توسط گیاه و غلتک کادیم در غیرفعال سازی بسیاری از فعالیت‌های گیاه ان جمله اختلاط در رشد، رشد نسبت داد. کادیم با کاهش طول و حجم رشد از جاده‌بی‌گی به کم شده است. مقایسه میانگین‌های کادیم که داده ۲/۴۴ (با کادیم کاه ۴/۹۹ میلی‌گرم در کیلوگرم) نشان می‌ده که غلتک‌کادیم که داده ۲/۹۱ ترای کادیم در دامنه است. در این آزمایش اثر عوامل مورد آزمایش نبود انتقال نشان می‌ده که تأثیر روی آن دارد. مقادیر کادیم در کاه و دانه کاهش می‌دهد بلکه از اندازه‌گیری به داده نیز جلوگیری می‌کند. به توجه به افزایش حمایتی دانه در اثر کادیم روا، این کاهش انتقال را تا حدی می‌توان تا ناشی از اثر نقاط کادیم در کرومودنیا از نظر شده در دانه در ریشه می‌شود. افزایش سریع غلتک‌کادیم در کاه به احتمال زیاد به شکستند سد اکتفیولیزیک کنترل کننده جذب متانولیک این عنصر مربوط می‌شود. این انتقال نشان می‌دهد که حتی در خاک‌های کادیم، جذب کادیم نیاز کافی که غلتک‌کادیم موجود در خاک است و آنها بودن خاک اثر کمی بر جذب آن توسط گیاه می‌باشد. ویو و همکاران (۲۴) و پیلیمالو و همکاران (۵۵) نیز در خاک‌های اکثر نتایج مشابهی را گزارش نمودند. به سطح مختلف کادیم در لحاظ آثر بر غلتک‌کادیم در هدست آماده از این آزمایش، تیمار کادیم صفر با میانگین ۷۲/۷ میلی‌گرم در کیلوگرم و کادیم ۱۰۰۰/۳ میلی‌گرم در کیلوگرم روي ۷۲/۲ میلی‌گرم در کیلوگرم رOi بر غلتک‌کادیم
جدول ۵ تحلیل آماری اثر تیمارهای آفراشی کادمیم و روي بر میزان روی در کاه (ارزش‌های مربوط به میانگین و مجموع مربوطات

<table>
<thead>
<tr>
<th></th>
<th>ارزش</th>
<th>میانگین مربوطات</th>
<th>مجموع مربوطات</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۵۱</td>
<td>۱۵۳۳</td>
<td>۱۵۳.۳</td>
<td>۳</td>
<td>۲</td>
</tr>
<tr>
<td>۲۳۶/۴</td>
<td>۵۰۴/۴</td>
<td>۳۰۴/۲</td>
<td>۱۹۸/۴</td>
<td>۱۰۴/۴</td>
<td>۸۳/۱</td>
</tr>
<tr>
<td>کادمیم</td>
<td>کادمیم</td>
<td>روی</td>
<td>کادمیم</td>
<td>روی</td>
<td>کادمیم</td>
</tr>
<tr>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
</tr>
<tr>
<td>۱۵۳۳</td>
<td>۱۵۳۳</td>
<td>۱۵۳۳</td>
<td>۱۵۳۳</td>
<td>۱۵۳۳</td>
<td>۱۵۳۳</td>
</tr>
<tr>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
</tr>
<tr>
<td>۷۶/۶</td>
<td>۷۶/۶</td>
<td>۷۶/۶</td>
<td>۷۶/۶</td>
<td>۷۶/۶</td>
<td>۷۶/۶</td>
</tr>
<tr>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
<td>۵۱</td>
</tr>
<tr>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
</tr>
<tr>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
<td>۱۰۴/۴</td>
</tr>
<tr>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>خطا</td>
<td>۲۴</td>
<td>خطا</td>
</tr>
<tr>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>چاپی</td>
<td>چاپی</td>
<td>چاپی</td>
<td>چاپی</td>
<td>چاپی</td>
<td>چاپی</td>
</tr>
<tr>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

** مطالعه‌های دیگر به‌طور گسترده‌تر (۵) در سطح پنج درصد منفی‌دار شده‌اند.

ارزش تقویتی گیاه حتی از اثر مصرف روی بر میزان روی در کاه نیز ثانی‌تراست. به‌طوری‌که تفاوت اثر کادمیم بر میزان روی در کاه ۲/۴ درصد، درحالی که اثر روی بر میزان روی در کاه ۱۷۰ درصد می‌باشد. این نتیجه نشان می‌دهد که آفراشی کادمیم در خاک با کاهش رشد ریشه در خاک، از جذب سایر عناصر از جمله روی جلوگیری می‌کند.

اثر متقابل معنی‌داری بین مصرف کادمیم و روی بر غلظت روی کاه وجود دارد (جدول ۶). در این آزمایش بیشترین غلظت روی کاه در تیمار ۱۰۰ و سطح صفر کادمیم با میانگین ۴۹/۱ میلی گرم در گیاه به‌دست آمد. کمترین غلظت روی کاه با مصرف ۱۰۰ میلی گرم در کیلوگرم کادمیم و سطح صفر صفر روی با میانگین ۳۸/۱ میلی گرم در گیاه به‌دست آمد. اثر کادمیم بر روی کاه در جدول‌های دیگر نشان داده شده است.
نیتیجه‌گیری
نتایج تحقیق نشان داده که با افزایش روی سطوح بالای یک درصد می‌آید. بنابراین مصرف روي برای افزایش عملکرد اقتصادی به نظر می‌رسد. روزی به رشد توزیع سلول‌های گیاهی را تسریع نموده و به‌هم‌کنش منفی بین کایدم و روزی سبب کاهش در جذب این فلز می‌شود که با تابع گیاهی می‌گردد. این امر علاوه بر سود اقتصادی از نظر انسانی جامعه نیز ارزش زیادی است. همچنین نتایج این آزمایش حاکی از آن است که کایدم در کاه و کلس نسبت به دانه به میزان بیشتری ذخیره می‌شود. برعکس، روزی در دانه نسبت به کاه و کلس به میزان بیشتری ذخیره می‌شود. بنابراین توجه به استفاده از قبایل کاه و کلس گندم به‌عنوان علف‌های در خاک‌های آلوده به کایدم و آثار آن بر روی عصاره آلاینده به خریده حیاتی به‌پایان حائز اهمیت است. به نظر می‌رسد که مصرف کود‌های

منابع مورد استفاده
1. ابوطالبی، ع. و غ. نسیمی. 1384. اثر شوری بر غلظت عصاره کم مصرف در شاخ‌سازههای مختلف مراکز. مجله علوم و فنون کشاورزی و منابع طبیعی، شماره هفتم و یکم. 1391.
2. کشاورزی و منابع طبیعی (مجله علمی و فنون کشاورزی و منابع طبیعی)، 1391، شماره 6، صفحات 239-243.
3. توانی، غ. و م. ملکی. 1382. اثر سولفات روي روزی بر غلظت عصاره مثلثه گیاه گندم در خاکات. مجله علوم کشاورزی ایران، 1391، شماره 34-2، صفحات 223-227.
4. توانی، غ. و م. ملکی. 1382. برهمکنش پناسیمو و روزی بر غلظت و جذب عصاره غذایی در گندم. تغذیه متعادل، 1382، شماره 1379، صفحات 223-227.
5. عدلزاده، ع. و م. اهدی. 1381. کیوپولر گیاهی (ترجمه). جا، اول سالی آرشیار، گرگان.
