مطالعه کاتیشناسی رس و نیز میکرومورفولوژی حفرات خاکی‌های غرب استان گلستان

و نقش آنها در درجه فرآیند پتاسیم

مونا لیاقت، فرهاد خرم‌آبادی، سید علیرضا موحدی نائینی و اسامیل دردی پور

چکیده
مطالعات صورت گرفته در پرخی خاک‌های غرب استان گلستان نشان دادند که علیرغم افزایش پارنگی و حضور کاتی‌های با فریزت تبادلی کاتیوتی با لال و مقدار پتاسیم قابل عصاره‌گیری با استان صربیت افزایش یافته است. برای دست‌بایی به عوامل مؤثر در کاهش این مقدار، به بررسی دقيق کاتیشناسی و میکرومورفولوژی حفرات خاک‌های مورد مطالعه پرداخته شد. از هر افق خاک این مناطق، ۲۰ نمونه دست‌خورده و دست‌نجده جمع‌آوری شد. جهت بررسی ویژگی‌های فیزیوکمیشی‌پیمانی، کاتیشناسی و مطالعات میکرومورفولوژی جمع‌آوری شد. ۲ خاک‌های تک‌ریزی (Typic Hapludalfs و Typic Calcixerolls، Typic Haploxerepts، Gypse Aquisalids) منتخب بودند که یکی از این خاک‌ها نشان دادند اثر مدیری و نوع کاتی‌رسی حفرات از لحاظ تأثیرشان بر توسعه ریشه و انتقال آب و یون‌های محلول سیتروسند بسیار می‌باشد. مقدار پتاسیم قابل جذب گیاهان موتور باقی می‌ماند. مقدار مناسب رس و غللبندی بودن کاتی اسکلتین در خاک‌های مشابه و نیز فراوانی حفرات بیشتر و غلابغ بودن حفرات نوع کاتی‌یا، سبب افزایش مقدار قابل استفاده در این خاک شده است. حالا آن که مقدار رس کمتر، وجود کاتی‌هایی می‌باشد که برای ساختن سیلوئید نوع کاتی‌های اسکلتین، زیادی ضعیف خاک و اکنون آن (III) کاتی اسکلتین در خاک این‌هیتی‌سولول و همچنین فراوانی نسبتاً کمتر حفرات، سپس شده کمترین میزان پتاسیم قابل استفاده در این خاک دیده شود.

واژه‌های کلیدی: کاتیشناسی، میکرومورفولوژی، جذب پتاسیم، تخلخل، آنالیز تصویر

1. گروه خاکشناسی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

mona_238@yahoo.com

کتابخانه اینترنتی پست کلیدی: mono_238@yahoo.com
مقدمه

اساس پانزده تولد در تمام خاک‌های جهان، تحت تأثیر ترکیب کانی‌شناسی خاک قرار دارد. ترکیب بعضی از کانی‌ها مانند پانزده، و همچنین آزاداری‌های فلزات، به‌وسیله رس‌ها و کانی‌های رس کنترل می‌شود. کاهش پانزده قابل جذب یگانه، در نتیجه ترکیب پانزده، یکی از عوامل تأثیرگذار در نمایش‌گیری گیاهان است.

برای یکی از استاندارد، وضعیت سخت، فرسنگ است و به چهرشکی مختلف در حال وجود دارد: کانی‌های اولیه، ترکیب شده، قابل تبدیل و پانزده محلول (13). تغییرات و تغییرات زان‌زورنی (12) در پس‌رسام اشکال پانزده در برخی خاک‌های باغکوهی استان گلستان نشان داد که خاک‌های بالا در سطح سلول باعث افزایش یکسانی پانزده‌ایانی شد.

در کل، سرعت این تبدیل و تغییر تحت تأثیر پانزده و سایر گیاهان است. موفقیت در شرایط خاص، کانی‌های همبستگی پانزده، یک کانی پانزده‌ای است. در حال حاضر، بررسی‌های در زمین مورد مطالعه قابل استفاده گیاهان مورد بررسی قرار گرفت.

مواد و روش‌ها

با بررسی نظرهای زیست‌شناسی و خاک‌شناسی منطقه، محل دفن 4 خاک‌خور مطالعه شناسایی و نسبت به حفر آنها اقدام گردید.

1391
برای بیان بهتر آمار به تعداد چندین دفعه از مورد نظر افزایش و روش سه‌بعدی نمایش داده شده است.

مطالعه کاظمیانی سیس و نیز میکرورومفورولوزی حفرات خاک‌های غرب...
تشکل 1. نقشه ماهواره‌ای موقعیت خاک رگه‌ای منتخب

جدول ۱. مشخصات عمومی خاک‌ها

| ضدپوش | موقعیت زمینی (m) | ریزیم رطوبی | اقلیم | نام علمی | خاک‌خ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>اراضی بسته</td>
<td>حدود ۲ متر</td>
<td>نیمه خشک</td>
<td>Gypsic Aquisalids</td>
<td>۱/۲۰ کیلومتری</td>
<td></td>
</tr>
<tr>
<td>دشت رسوی</td>
<td>متوسط</td>
<td>نیمه خشک</td>
<td>Typic Haploxerets</td>
<td>شمال آق فلای</td>
<td></td>
</tr>
<tr>
<td>دامنه‌های</td>
<td>زیاد</td>
<td>نیمه خشک</td>
<td>Typic Calcixerols</td>
<td>- بند دری</td>
<td></td>
</tr>
<tr>
<td>مطلوب</td>
<td>عمیق</td>
<td>نیمه خشک</td>
<td>Typic Hapludalfs</td>
<td>۴/جک شصت</td>
<td></td>
</tr>
<tr>
<td>نیمه مرطوب</td>
<td>عمیق</td>
<td>نیمه خشک</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. ویژگی‌های فیزیکی-شیمیایی خاک‌های مورد مطالعه

| K (ppm) | CEC | OC | pH | عمیق (cm) | توزیع ندازه‌های کلسیم | توزیع ندازه‌های رس | خاک‌خ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۶۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۶۲</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۴۹/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۴۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۴۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۴۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۴۷/۵</td>
<td>۴/۶</td>
<td>۳/۱</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
<td>۴/۶</td>
</tr>
</tbody>
</table>

نکته: کاهش‌های رسی خاک اریدی-سولز در درجه فراهمی
پتاسیم قابل استفاده گیاه
شیوه: فرمول‌زمانی، ریزیم رطوبی اریدیک و بارندگی کمتر، سبب
کاهش‌های هوداگی و درصد کمتر رس در مقطع کشیدن رطوبی
خاک (اعماق خاک) اریدی-سولز شده است (جدول ۲). مطفاق

جدول ۳. رابطه معنی‌دار و همبستگی مثبت در سطح ۷۱٪، بین
درصد رس و پتاسیم قابل استفاده دیده شد. شکل ۲ نشان
زیاد ارتباط بین درصد رس و مقادیر پتاسیم قابل استفاده گیاه را نشان می‌دهد. شکل مبدأ مشاهده می‌شود که حدود ۳۲ درصد
تغییرات در پتاسیم قابل استفاده، می‌تواند توسط مقادیر درصد
جدول 3: همبستگی بین داده‌های خاک و مقدار پتانسیل اسکیشکت

<table>
<thead>
<tr>
<th></th>
<th>پتانسیل</th>
<th>مودالین</th>
<th>اسکیشکت</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس</td>
<td>1/0</td>
<td>0/5</td>
<td>1/0</td>
</tr>
<tr>
<td>پتانسیل</td>
<td>0/23</td>
<td>0/30</td>
<td>1/0</td>
</tr>
<tr>
<td>مودالین</td>
<td>0/87</td>
<td>0/58</td>
<td>1/0</td>
</tr>
<tr>
<td>اسکیشکت</td>
<td>0/70</td>
<td>0/67</td>
<td>1/0</td>
</tr>
</tbody>
</table>

* در سطح 1% ** در سطح 5% *** رابطه غیرمعنی‌دار

شکل 2: ارتباط بین درصد رس و مقدار پتانسیل اسکیشکت

شکل 3: آلگوی پراش اشعه 4 کانی‌های مقطع کرتزل روابطی خاک اریدی‌سولز

در مطالعات صورت گرفته توسط اشعه ایکس، مطالعات شکل 3 مشاهده می‌شود که نشانه رس اسکیشکت اشکال با مشاهده یک‌هایی در 10، 20، 30، 40، 50 و 60 اکسترموم را نشان می‌دهد. مطالعات جدول 4 نیز که میزان حاصل ضرب مقدار نیمه کمی کانی رس در مقدار رس خاک بین شود و مثبت بودن شیب رگرسیون در این شکل بیانگر این است که با کاهش درصد رس، مقدار پتانسیل اسکیشکت نیز کاهش می‌یابد. شکل 3 دیفتگرام پراش اشعه ایکس کانی‌های رسی مقطع کرتزل روابطی این خاک را نشان می‌دهد.
جدول ۴: میانگین درصد رس، میزان حاصل ضرب مقدار نیمه کمی کالی رس در مقدار درصد رس هر خاک و پتاسیم قابل استفاده در مقطع
کنترل رطوبتی

<table>
<thead>
<tr>
<th>K (میکرون)</th>
<th>HIV %</th>
<th>HIS %</th>
<th>IV %</th>
<th>IS %</th>
<th>V %</th>
<th>Sm %</th>
<th>I %</th>
<th>clay %</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸۹.۳</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۵۲</td>
<td>۱۳۷</td>
<td>۳۱</td>
<td>Gipsy Aquilalids</td>
</tr>
<tr>
<td>۱۲۱/۱</td>
<td>-</td>
<td>۱۱.۶</td>
<td>۱۰۶</td>
<td>۳</td>
<td>۹/۱</td>
<td>۳۱</td>
<td>۴۶</td>
<td>Typtic Endoacquets</td>
</tr>
<tr>
<td>۲۲۲/۴</td>
<td>-</td>
<td>۱۰۵</td>
<td>۳۸</td>
<td>۱۱</td>
<td>۱۱/۱</td>
<td>۹۴</td>
<td>۳۸</td>
<td>Typtic Calcerolrs</td>
</tr>
<tr>
<td>۴۵۸۴</td>
<td>-</td>
<td>۱۰۵</td>
<td>۳۸</td>
<td>۱۱</td>
<td>۹۴</td>
<td>۳۸</td>
<td>۴۶</td>
<td>Typtic Hapludalfs</td>
</tr>
</tbody>
</table>

ایلیت: هیدروکسی بین یا هم‌ساختار، ۷ و رومیکولیت
ایلیت- اسکنکت
ایلیت- اسکنکت
ایلیت- اسکنکت
ایلیت- اسکنکت
ایلیت- اسکنکت

مقطع کنترل رطوبتی (عکس): این خاک مقدار نسبتاً زیادی رس نسبت به خاک اردي سول و وجود داشته باشد. ولی با این وجود، این خاک پتانسیل قابل استفاده زیادی در ابعاد ندارد (جدول ۴). این تناقض به مدفوع نامی از نوع کاهش رسمی موجود در این خاک باشد. شکل ۵ دیفرگام پرس اشعه ایکس کاناتی های مقطع کنترل رطوبتی این خاک را نشان می‌دهد. این خاک علاء در بر همراهی هیدروکسی بین‌لایه‌ای اسکنکت و ایلیت، درای کاناتی اسکنکت و کاناتی مخلوط ایلیت- اسکنکت در درجه بعد اهمیت است (جدول ۴). کاناتی های هیدروکسی بین‌لایه‌ای اسکنکت می‌توانند از تغییر شکل کلریت حاصل شده باشد.

به نظر می‌رسد در این خاک، شرایط زدک‌کشی نامطلوب و شرایط احیاء، سبب تثبیت پتانسیل کاناتی هیدروکسی بین‌لایه‌ای اسکنکت شده است. در واقع افزایش تثبیت پتناسیم، ممکن است بتواند به عنوان نشان از احیای هیدروکسی آلومینیوم بین‌لایه‌ای کاناتی رس باشد (۱۷). مطابق شکل ۵ تنها به بی‌کربن مربوط به نیاز نمونه رس توسط نیمی و گلیسرول، اسکنکت این خاک از نوع مونت مولیولنیت است. اسکنکت ها در مقدار قابل ملاحظه‌ای آهن ساخته می‌شوند. این اثر در کنترل های طبیعی از دسترفته‌ای (۱۷) و در کنترل رطوبتی با آهن (۱۷) بیشتر شده است. در این خاک، سیب ایجاد بار منفی نیروشی بین‌لایه‌ای قرب شده که می‌تواند سبب تثبیت پتاسیم گردد (۲۰). کوموداه و همکاران (۲۵) نیز گزارش نمودند

품 نش کاناتی کامی خاک این‌پتاسیم سولور در درجه فراهمی
پتاسیم قابل استفاده گیاه
موقتیت فیزوگرافی و کشت غرافی برره، سبب شده‌است در
همچنین احتمال می‌رود تغییرات پتانسیم صورت گرفته در منطقه، می‌تواند شرایط بر جهت تثبیت این کاتیون فراهم کند.

تغییر کاتیونی رسی خاک مالی سولز در درجه فراهمی پتانسیم قابل استفاده گیاه خاک مالی سولز نیز در مقطع کنترل رطوبتی (اعمال) خود، دارای درصد رس بیشتری پس از خاک آلی سولز است (جدول 4). رطوبتی زریک و هوا‌داردیکی بیشتر، عامل مهم در افزایش نسبی میزان رس در این خاک می‌باشد. بین درصد رس و پتانسیم قابل استفاده هیپستگی معنی‌داری در سطح 0/1 و 0/2 دیده شد (جدول 3). افزایش شیب رگرسیون در شکل 2 نیز نشان دهنده افزایش مقدار پتانسیم قابل استفاده، با افزایش درصد احیاء اطراف (III) لاپی هشت و جهی کاتیون‌ها، می‌تواند تثبیت پتانسیم را افزایش دهد. نجفی قبیری (5) طی تحقیقات خود روي خاک‌های استان فارس، گزارش نمود که احیاء آهن (III) به آهن (II) در ساختار اسکمتیک می‌باشد. در نتیجه اشباع آب، عامل تثبیت مقدار زیاد پتانسیم در خاک‌های هیپستگی است.

همچنین کاهش پتانسیم قابل استفاده و تثبیت پتانسیم در خاک‌های حاکی اسکمتیک می‌تواند به دلیل حضور سلول‌کاتیون‌ها، مانند کاتیون مخلوط ابیل-اسکمتیک باشد. حضور کاتیون‌های هیدروکسی بین لایه‌ای اسکمتیک و اسکمتیک (به سبب شرایط احیاء)، کاتیون ابیل و نیز کاتیون مخلوط ابیل-اسکمتیک در این خاک، می‌تواند باعث تثبیت پتانسیم و مشاهده کمترین میزان پتانسیم قابل استفاده گیاه در این خاک شوند (جدول 4).
شکل ۶: اندازه پراش اشعه X کاتیه‌های منطقه کنترل رطوبی خاک مالی سولوز

رس است. شکل ۶ نیز دیفتوریوم پراش اشعه ایکس کاتیه‌های این خاک را در مقیاس کنترل رطوبی نشان می‌دهد. کاتیه غالب این خاک اسکمتین و ایلیت در درجه دوم اهمیت است (جدول ۲). در مطالعات صورت گرفته توسط اشعه ایکس، نمونه رساناسکمتین اشام با مشخصه شکل ۶ اکسترموم را نشان می‌دهد. که در تیمار به این در گلیکول تا حدود ۱۷ اکسترموم به می‌شود. که این ابساط نشان دهنده رس‌های انسلاپ‌پذیر از نوع اسکمتین است. در صورت اشام با پاسیم و بدون وجود انسلاپ گلیکول و بدون حرارت، همان یک/۲۲ را نشان می‌دهد. با توجه به یک مربوط به تیمار نمونه با لپشوم و گلیسرول، اسکمتین این خاک از نوع مونت موریلونیت است. اگر چه حضور ایلیت در این خاک تا حدی آمکان ثبت نشده می‌باشد. ولی افزایش بارندگی و دما (۱) و کمک‌شکلی مناسب خاک، بسبندن تا نمایش شکلی کاتیه رسی ایلیت به اسکمتین با سربست بیشتری در این خاک صورت پذیرد. تحت تأثیر اقلیم. کاتیه‌های خاک می‌توانند به اسکمتین و ورمیکولین تبدیل شوند (۲). همبستگی معناداری در مقطع ۵/۷ بین مقدار کاتیه اسکمتین و مقدار پاسیم قابل استفاده مشاهده شد (جدول ۳). با توجه به معادله رگرسیون ۱

\[P = 0.05 \text{ و رابطه میث و افزایش شیب نمودار} \]
نقش کاني هاي رسي خاک آفقي سولز در درجه فراهمي پتانسيم قابل استفاده گياه

خاک آفقي سولز بهدلول دارا بودن رژيم رطوبتي بارودي و هوايديگي كانيها، پتانسيم رس نسبتاً زيادي دارد. بر خلاف انظار، با توجه به شيب رگرسيون مثبت در شكل 2 و رابطه معنیدار مثبت بين درصد رس و مقدار پتانسيم قابل استفاده (جدول 3) با افزايش درصد رس، مقدار پتانسيم قابل استفاده افزايش مي‌یابد. کمي واندن ناشي از نوع كاني هاي رسی موجود در اين خاک باشد. شكل 9 ديفنشگرام يا توضيح اشعه اينكس كاني های رسی اين خاک را در مقطع كنترل رطوبتي نشان مي‌دهد. رطوبتي كاني و شرايي آتشنی و محيط نماینده، سبب شده مقدار نسبتاً بيشتري از كاني ايلى و كاربرد در اين خاک به ورميكوليت بارودي شود و باعث شده اين خاک داري مقدار قابل توجه كاني و ورميكوليت در مقطع كنترل رطوبتي خود باشد (جدول 4).
بررسی شکل، دشدگی فراوانی و اندام حفرات مقطع کشیده رطوبی خاک و ارتباط آنها با درجه فراهمی پتانسیم خاک، علاوه بر مقدار و نوع کانی‌های رسی موجود در خاک که می‌تواند بر پیش بنمایی پتانسیم قابل استفاده گیاهان مؤثر باشد. حفرات نیز می‌توانند نقش مهمی در توسعه رشد، انتقال آب و عناصر غذایی مورد نیاز گیاهان، از جمله پتانسیم ایفا کنند. حفرات از نظر انتقال، شکل و دشدگی فراوانی می‌توانند پتانسیم قابل استفاده گیاه را تحت تأثیر قرار دهد. زیرا انتقال مغزی و عوامل مؤثر در انتقال آب و غلیظ بر حالت محلول می‌باشد. این انتقال بهتر می‌تواند بهبود فراهمی پتانسیم و حرکت ایون بیو می‌تواند زیادی نیز در انتقال آب و غلیظ و توزیع آنها در منابع مختلف و سایر محیط‌های زراعی و راه‌های بررسی‌های تغییر شکل کشت، مشاهده نمودید که حفرات با سایر خصوصیات ساختن میکرو خاک از ارتباط هستند. ساختن منابع خاک مالی سولز نیز جهت رشد گیاه و کشت منابع مؤثر است و ذخیره منابع آب و هوبر و نیز طرف‌ای انتقال آب و پتانسیم و امکان دستی‌پayah گیاهان به پاسند ای سبب می‌شود. نوع غلظ حفرات خاک مالی سولز، کانال و محجره‌های است (شکل 5 و 11) با توجه به جدول 6 مشاهده می‌شود که بین حفرات نوع کانال و پتانسیم قابل استفاده در اعماق 10 میکرومتر است (جدول 5). حفرات
جدول 5. میانگین درصد تخلخل، درصد فراوانی، نوع و اندازه حفرات و نیز مقدار پتانسیم قابل دسترس در مقطع کنترل رطوبتی خاک

<table>
<thead>
<tr>
<th>K ionic (ppm)</th>
<th>اندازه (%</th>
<th>نوع حفره طالب</th>
<th>درصد فراوانی حفرات (Imagetool)</th>
<th>تخلخل (F)</th>
<th>نام علمی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>> 10-20</td>
<td>کنال - بی شکل</td>
<td>33/1^c</td>
<td>28</td>
<td>Gyspic Aquisalids : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کنال - بی شکل</td>
<td>24/2^c</td>
<td>28</td>
<td>Typic Endoaquepts : 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کنال - حجرهای</td>
<td>32/9^c</td>
<td>32/8^c</td>
<td>Typic Calcixerolls : 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کنال</td>
<td>26/8^c</td>
<td>3^c</td>
<td>Typic Hapludalfs : 4</td>
</tr>
</tbody>
</table>

(PPC.)

شکل 10. حفره‌های کنال مقطع کنترل رطوبتی خاک مالی سولاز

(PPC.)

شکل 11. درصد فراوانی انواع حفرات محاسبه شده براساس شمارش نقطه‌ای

جدول 6. همبستگی بین نوع حفرات مقطع کنترل رطوبتی خاک‌ها و میزان پتانسیم قابل استفاده

<table>
<thead>
<tr>
<th>حجرهای</th>
<th>صفحه‌ای</th>
<th>بی شکل</th>
<th>کنال</th>
<th>پتانسیم قابل استفاده (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
<td>8.9^c</td>
</tr>
<tr>
<td>0.79</td>
<td>0.80</td>
<td>0.80</td>
<td>0.79</td>
<td>8.9^c</td>
</tr>
</tbody>
</table>

^c در سطح 1 درصد : رابطه غیر معنی‌دار
حقه به نسبت خاک مالی سولژ و الیاف سولژ دارد (جدول ۵). کاهش حفرات در نواحی تراکم باعث تحت‌بود شبکه‌مانند آلات در این خاک زراعی، سبب کاهش هیدرولوژیکی (۲۵) و کاهش فنری شدن پیش‌ترهجده، در نتیجه کاهش انتشار پتاسیم به سمت ریزه می‌گردد. همچنین این خاک به نسبت خاک مالی سولژ و الیاف سولژ، حفرات کوچکتر و بزرگ‌تر از ۱۰ میکرومتر کمتری نیز دارد. تنها حدود ۷۳٪ از کل حفرات این خاک را حفرات کوچک‌تر از ۱۰ میکرومتر و ۹/۷٪ از کل حفرات آن را حفرات بزرگتر از ۱۰ میکرومتر تشکیل می‌دهند (جدول ۵). عملیات کشاورزی در این خاک می‌توانند حفرات بزرگتر از ۱۰ میکرومتر حاصل از عملیات کشاورزی جانوران خاکی و ریشه محصولات زراعی را تحت تأثیر قرار دهد (۲۶). بیشتر حفرات مقطع کنترل رطوبیت آن از نوبت کانال و بی‌شک است (شکل ۱۱). حتی نسبت حفرات صفحه‌ای با قطر کم، نیز به نظر می‌رسد. این در حدی می‌تواند از عوامل مهم‌ترین کننده کاهش حفرات بزرگ‌تر و کاهش حفرات کوچک‌تر باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به نظر می‌رسد که نسبت بین سیستم و پیش‌تر استفاده‌گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبیت خاک یافتنی‌تر است، این خاک به

شکل ۱۳. حفره‌هایی بی‌شک خاک اینسپیسی سولژ (PPL).

شکل ۱۲. حفره‌هایی صفحه‌ای خاک اینسپیسی سولژ (PPL).
مطالعه کاتی‌شناسی رس و نیز میکرو‌روفولوژی حفرات خاک‌های غرب

شکل 12. حفره‌هایی به شکل خاک اردبیلی‌سولز (PPL)

در این مطالعه، کتابشناسی قابل استفاده و ثبت پتانسیم در حفرات خاک‌های مختلفی انجام شد. نتایج نشان داد که نسبت حفرات به حفرات داده‌های سولز یکی است. در مدل‌سازی، نیاز به پاسخ‌هایی از نظر حفرات به جلب توجه برای پیش‌بینی میزان پتانسیم قابل استفاده گیاهان است. نتایج نشان دادند که مقدار پتانسیم قابل استفاده گیاهان در حفرات خاک‌های اردبیلی‌سولز بسیار بالا است.

نتایج گریدی

بررسی‌های نشان دادند غلظت پودر و نوع کاتی رس، حفرات نیز بر توانایی در درصدن درصدن قابل جذب گیاهان مؤثر است. حفرات می‌تواند بر میزان در درصدن درصدن قابل استفاده گیاهان مؤثر باشد. در نتیجه، نشان داد که میزان حفرات و پودر میزان قابل استفاده گیاهان نیز به‌طور گسترده در نتایج با استفاده از نتایج حاصل، می‌توانند از توانایی مناسب کاربرد کود پتانسیم و نیز نحوه صحیح و دوباره مصرف آن را توصیه نمود.

منابع مورد استفاده

1. بهمنیار، م. 1387. تأثیر اقلیم بر خصوصیات مورفولوژی و کاتی‌های رسی خاک‌ها در مناطق پوشیده از درختان چنگالی چکی‌ده. مقالات هفتمین کنگره علم خاک ایران، دانشگاه شهید 2. خرما، ع. ف. و. الهامی، و. ر. عموزاده. 1382. منشأ و پراکنش کاتی‌های رسی در شهرستان آبیک. گزارش طرح تحقیقاتی دانشگاه علم کشاورزی و منابع طبیعی گیلان، 87 ص.

