بحث:

مطالعه کانی شناسی رس و نیز میکرومورفولوژی حفرات خاک‌های غرب استان گلستان

موتا لاافت، فرهاد خرمعلی، سید علی‌اکبر موحدی نائینی و اسامیل دردی پور

چکیده

مطالعات صورت گرفته در برخی خاک‌های غرب استان گلستان نشان دادند که علیرغم افزایش بارندگی و حضور کانی‌های با فریبیت تبادلی کاتیونی بالا، مقدار پتاسیم قابل عصاره‌گیری با استحصال اکسیژن افزایش یافته است. برای خاصیت‌های عامل مؤثر در کاهش این مقدار، به بررسی دقيق کانی شناسی و میکرومورفولوژی حفرات خاک‌های مورد مطالعه پرداخته شد. از هر افک خاک این مناطق ۱۰ نمونه دست‌خورده و دست‌نخورده گردید. عملیات و اندازه‌گیری‌های پیگیری‌سنجی، کانی شناسی و مطالعات میکرومورفولوژی چندین سطح ۲ خاک‌ریزی می‌باشد. بررسی‌های تحقیقی صورت گرفت و نشان داد که سطح یک خاک‌ریزی در حالت توزیعی در گروه‌های عاملی از جمله تدریجی گزارش شد.

واژه‌های کلیدی: کانی شناسی، میکرومورفولوژی، جذب چربی، تخلخل، آنالیز تصفیه
مقدمه

اساس پژوهشی تولید در تمام خاک‌های جهان، تحت تأثیر ترکیب کانال‌های خاک قرار دارد. تثبیت بعضی از کانال‌ها مانند پتاسیم و همچنین آزادسازی عناصر غذایی، به‌وسیله رس‌ها و کانال‌های رسی کنترل می‌شود. کاهش پتاسیم قابل جذب گیاه، در نتیجه تثبیت پتاسیم، یکی از عوامل تأثیرگذار در تغذیه گیاهان است.

13). نتایج تحقیقات وان لیپیگ در سال 1840، صربورت پتاسیم و برای رشد گیاه را آشکار ساخت (24). این عنصر، سومین عنصر مهم کودی بعد از نیترژن و فسفر است و به بهبود شکل مختلف در خاک و صادرات کافی از این عنصر در سال‌های گذشته نیاز داشته است. پتاسیم محلول (5). بیشتر مقدار پتاسیم خاک، در ساخته‌کننده کاهی و وابسته دارد و نه درصد کمی شکل محلول و تبدیل‌های در خاک است (6). نتایج تحقیقات زانودوملو (7) در بررسی تأثیر پتاسیم محلول بر رشد گیاه‌ها در آزمایشات استان‌های مختلف نشان داد که خاک‌های محلول و آفلیت‌های بیشتر میزان پتاسیم نیازی را دارند. این دسته‌گروه در ساخته‌کننده پتاسیم محلول و تبدیل‌های به بهبود دسترسی گیاهان می‌باشد (8)، و پتاسیم غیربادی، به کننده قابل استفاده گیاهان و تثبیت ساخته‌کننده‌های غیرقابل استفاده برای گیاهان است. پتاسیم محلول خاک، مستقیماً و تغذیه گیاهان جذب می‌شود و مقدار این تاثیر محلول گیاه کاهی است (31).

14. بدر یا تاثیر پتاسیم کانی یک مکانیسم بادی است که تاثیر پتاسیم محلول در خاک تغییر است. که سبب تغییر تأثیر محلول پتاسیم در خاک است. همچنین نسبت آزاد پتاسیم خاک و تغییر تأثیر محلول پتاسیم در خاک تغییر نسبت محلول کانی‌های آزاد پتاسیم، پتاسیم محلول کانی‌های آزاد دارد و نه درصد کمی از شکل محلول و تبدیل‌های در خاک است.

مواد و روش‌ها

با بررسی نقش‌های زمین‌شناسی و خاک‌شناسی منطقه، محل دفن 4 خاک‌های مورد مطالعه شناسایی و نسبت به حفر آنها اقدام گرایش معنی‌داری.
نتایج و بحث
بررسی ویژگی‌های فیزیکی-شیمیایی

خصوصیات فیزیکی و شیمیایی خاک‌های مورد مطالعه، در جدول 2 آورده شده است. با توجه به توزیع اندازه‌گیری در جدول 1، دیده می‌شود که خاک‌های واقع در مناطق مرطوبتر (جدول 1) مانند خاک‌های 4 و خاک‌های 2 دارای مقدار رس پیش‌تر نسبت به سایر خاک‌ها می‌باشند. که می‌تواند ناشی از دمای‌های پیش‌تر صورت گرفته در این خاک‌ها باشد. این حال مقدار مکث رس خاک‌های 2 نسبت به خاک‌های 4 ناشی از عملیات گردشی، تلفات موادهای و تخریب خاک‌های دیگر و به علت بهبود نیافتن ذرات کوچک‌تر است. که آن را به دلیل بهبود رزم‌های رطوبتی زیرک و پودریکی، شرایط اقلیمی و پوشش گیاهی مناسب، کربن آلی زاید دارند (جدول 2). با افزایش ریزش‌های جوی، ذرات کربن آلی خاک را افزایش می‌یابد (16). اقلیم‌های نیمه خشک و مدیرتهای خاک‌های 1 و 2 سبب نامناسب بودن پوشش گیاهی و در نتیجه کاهش مقدار کربن آلی در این خاک‌ها شده است (جدول 2). عملیات خاک‌زی در خاک‌های 2 نسبت به تلفات کربن آلی خاک کم‌می‌کند (22).
نتیجه‌گیری‌های مهارتهای موفقیت خاک رعایه‌مند

جدول ۱. مشخصات عمومی خاک‌های قاره‌ای

<table>
<thead>
<tr>
<th>شیب</th>
<th>نظام غذایی</th>
<th>رطوبت زیرین</th>
<th>اقلیم</th>
<th>ارتفاع</th>
<th>نام علمی</th>
<th>شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیاد</td>
<td>اریک-تریک</td>
<td>نیمه شکن</td>
<td>مولی</td>
<td>۶۰۰ متر</td>
<td>Gypsic Aequilands</td>
<td>۱:۰۰ کیلومتری</td>
</tr>
<tr>
<td>کم</td>
<td>اریک-تریک</td>
<td>نیمه شکن</td>
<td>مولی</td>
<td>۱۲۰۰ متر</td>
<td>Typic Haploxerepts</td>
<td>۲:۵۰ کیلومتری</td>
</tr>
<tr>
<td>کم</td>
<td>تریک-تریک</td>
<td>میدان‌دار</td>
<td>کوهی</td>
<td>۱۵۰۰ متر</td>
<td>Typic Calcixerolls</td>
<td>۳:۱۰ کیلومتری</td>
</tr>
<tr>
<td>زیاد</td>
<td>تریک-تریک</td>
<td>لس</td>
<td>کوهی</td>
<td>۱۸۰۰ متر</td>
<td>Typic Hapcludalfs</td>
<td>۴:۱۰ کیلومتری</td>
</tr>
</tbody>
</table>

جدول ۲. ویژگی‌های فیزیکی-شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>K (ppm)</th>
<th>CEC (Cmol+) Kg</th>
<th>OC (%)</th>
<th>pH</th>
<th>شیب</th>
<th>کلاس</th>
<th>توزیع اندازه‌ها</th>
<th>عملکرد</th>
<th>نام خاک‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۹/۵</td>
<td>۳۲/۸</td>
<td>۴/۷/۲</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>A</td>
</tr>
<tr>
<td>۲۸/۵</td>
<td>۱۶/۵</td>
<td>۴/۷/۲</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Bzy</td>
</tr>
<tr>
<td>۱۲/۵</td>
<td>۱۲/۵</td>
<td>۴/۷/۲</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>BCz</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۵/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Ap</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۶/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Bw۱</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۹/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Bw۲</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Bw۳</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>Bw۴</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>TYPIC HAPCLUDALFS</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>TYPIC HAPCLUDALFS</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>TYPIC HAPCLUDALFS</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>TYPIC HAPCLUDALFS</td>
</tr>
<tr>
<td>۱۰/۵</td>
<td>۲/۷</td>
<td>۱/۹/۱</td>
<td>۱/۸</td>
<td>V/A</td>
<td>SiL</td>
<td>۲۷ ۶۲ ۱۴ ۹</td>
<td>۲۵۰-۴۲۰</td>
<td>TYPIC HAPCLUDALFS</td>
</tr>
</tbody>
</table>

نتیجه‌گیری‌های مهارتهای موفقیت خاک رعایه‌مند

تشییع ۱/۸/۲۰۰۳

نفس کانه‌های رسی خاک اریکی-سولز در درجه‌ی فراهمی

بنابراین، رسی-سولز خاک‌های پاکی و نسبت بیشتری قابل استفاده گیاهی و شرایط اقلیمی-رطوبتی اریکی-سولز به سبب کاهش هواهایی و درصد کمتر رس در مقایسه با درصد رطوبتی خاک‌های گیاه (اعلاین)，ساختمان رس در درجه‌ی سولز است (جدول ۲) مطابق.
جدول 3: همبستگی بین داده‌های خاک و مقدار پتانسیم قابل استفاده

<table>
<thead>
<tr>
<th></th>
<th>رس</th>
<th>پتانسیم</th>
<th>مواد آهن</th>
<th>ابلیت</th>
<th>اسمکتیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>پتانسیم</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>مواد آهن</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>ابلیت</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>اسمکتیت</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

**: در سطح 1%
***: در سطح 5%
رابطه غیرمعنی‌دار

شکل 2: ارتباط بین درصد رس و مقدار پتانسیم قابل استفاده

شکل 3: الگوی پر راز اشعه X کانی‌های مقطع کنترل رفوی خاک اریدی‌سوژ

در مطالعات صورت گرفته توسط اشعه ایکس، مطالعات شکل 3 مشاهده می‌شد که نمونه رس، ابلیت اشباع با مینزیم، بی‌کهای 10،5 و 3 الکترولت را نشان می‌داد. مطالعه جدول 3 نیز که میزان حاصل ضرب مقدار نیمه کمی کانی رس در مقدار رس خاک بیان شود و میثوب بودن شبپ رگرسیون در این شکل بیانگر این است که با کاهش درصد رس، مقدار پتانسیم قابل استفاده نیز کاهش می‌یابد. شکل 3 دیی‌توکرام پر با اشعه ایکس کانی‌های رس مقطع کنترل رفوی این خاک را نشان می‌دهد.
جدول ۴: میانگین درصد رس، میزان حاصل ضرب مقدار نیمه کمی کالی کاه در مقدار درصد رس هر خاک و پتانسیم قابل استفاده در مقطع کنترل رطوبتی

<table>
<thead>
<tr>
<th>K_{n_k}</th>
<th>HIV%</th>
<th>HIS%</th>
<th>IV%</th>
<th>IS%</th>
<th>V%</th>
<th>Sm%</th>
<th>I%</th>
<th>clay%</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>121/12</td>
<td></td>
<td>11/1</td>
<td>95</td>
<td></td>
<td>5/7</td>
<td></td>
<td>61</td>
<td>33</td>
</tr>
<tr>
<td>24/29</td>
<td></td>
<td>96</td>
<td>44</td>
<td></td>
<td>11</td>
<td>9/4</td>
<td>21</td>
<td>5/4</td>
</tr>
<tr>
<td>161/42</td>
<td></td>
<td>106</td>
<td>106</td>
<td></td>
<td>5/1</td>
<td>9/2</td>
<td>3/1</td>
<td>25/4</td>
</tr>
</tbody>
</table>

 Collegiateل (هیروکسی سانی یک: وریدوکولین ۷ و وریدیل \(\text{ سمیت: } \) هیدروکسی سانی یک: وریدوکولین ۷ و وریدیل

درصد رس هر خاک را نشان می‌دهد. مشاهده می‌شود که جوان

بودن و عدم کامل خاک صورت نمی‌دهد. در این خاک کانی این تانسیبا توانایی غلب شده بناه. توجه به شیب مفتی به‌دست

امدی در شکل ۴ رابطه مفتی بین درصد کانی ایلیت و مقدار

پتانسیم قابل استفاده بسیار می‌باشد. توجه به

بین درصد کانی ایلیت و مقدار

یک: هیدروکسی سانی یک: وریدوکولین ۷ و وریدیل

استفاده به این خاک سه این (جدول ۴). درحالی که این

خاک را در انتهای مقدار نیمه کمی کالی کاه در مقدار درصد رس هر خاک و پتانسیم قابل استفاده در مقطع کنترل رطوبتی

را برای تانسیبا دارد (۷۱ و ۵۶). هیروکسی سانی یک: وریدوکولین ۷ و وریدیل

داده‌های پتانسیم قابل استفاده در این خاک مطلوب نمی‌باشد.

دارای بودن کمترین درصد رس و غلب بودن کانی ایلیت، سبب

نظیر خاک نسبت به سایر خاک‌ها، میزان متوسطی پتانسیم قابل

استفاده گیاه داشته‌باشد.

مشکل کنترل رطوبتی (مقطع) این خاک مقدار نسبتاً زیادی رس

نتیجه با خاک اردن دارد و وجود داشته باشد. ولی با این

وجود، این خاک پتانسیم قابل استفاده در مقطع مقدار

(جدول ۴). این تاپن، آمار منتشر گردیده است که در این خاک

رنگرزی مقدار بین لایهای یک: هیدروکسی سانی یک: وریدوکولین ۷ و وریدیل

پتانسیم ایلیتیت است. در واقع افزایش تاپن‌سیم، معمولاً است. امکان استفاده در طیف شیب مفتی به‌دست

پت‌کار افراش ناشی از افزایش

سره‌ی رطوبتی آلومینیوم بین لایهای کانی و رای خاک

الکترونات(۱۷). مطلقین

شکل ۵ بناه به مربوط به‌بینی بیماری نمونه رس توضیح لیم

و گلیسپر، امکانات این خاک از نوع مونت مربوطیت

است. امکانات ها در مerate مقدار قابل ملاحظه‌ای آهن ساخته‌ن

پتانسیم می‌باشد. در شیب خاک (زکنه شروع

در این امکانات به آهن (۲) تبدیل شده و سبب ایجاد بار

منفی و نیروهای بین لایهای قوی شده که می‌تواند سبب تثبیت

پتانسیم کرده (۲). کومادم و همکاران (۲۵) نیز گزارش نمودند

موفقیت فیزیوگرافی و کشت غرافی پرنیج، سبب شده‌تا در
نمایش کانالهای محقق کنترل رطوبتی خاک ایمنسی سولز

همچنین احتمال می‌رود تغییر پتاسیم صورت گرفته در منطقه، می‌تواند شرایط را جهت تثبیت این کانال‌ها فراهم کند.

لایه‌های شیب تهیه می‌شود. (III) طی تحقیقات خود روی خاک‌های استان فارس، گزارش نمود که احیای آهن (II) در ساختمان اسکلرتیک‌ها، در نتیجه اشباع آب، عامل تثبیت مقدار زیاد پتاسیم در خاک‌های هیستوسولز است.

همچنین کاهش پتاسیم قابل استفاده و تثبیت پتاسیم در خاک‌های حاوی اسکلتیت می‌تواند به دلیل حضور سالرنگ‌های مانند بکرف اکسپلود اسکلتیت باشد. حضور کانال‌های هیدروکسی‌کسی‌های در خاک‌های سولز، می‌تواند باعث تثبیت پتاسیم و مشاهده کمترین میزان

پتاسیم قابل استفاده گیاه در این خاک شود (جدول 2).

شکل 6: انگور پرده‌ای در خاک ایمنسی سولز و نیز میکروفرآوردهای خاک‌های گربه‌وار...
شکل ۶ آگری پراش اشعه X کالی‌های مقطع کنترل رطوبتی خاک مالی سولز

رس است. شکل ۶ نیز دیگر گرایش پردازش اشعه ایکس کانی‌های این خاک را در مقایسه نیز افزایش می‌یابد. در واقع
با افزایش کانی اسکستینت، مرقی مقدار نفوذی نسبی کانی‌های خاک (جدول ۲) در نتیجه میزان پتانسیم تبادلی خاک افزوده می‌شود و چون قسمت اعظم پتانسیم که به طور مستقیم قابل استفاده گیاه است، پتانسیم تبادلی تحقیق می‌دهد. در نتیجه این کانی، میزان پتانسیم قابل استفاده بیشتری نسبت به سایر کانی‌های مورد مطالعه دارد (۲) (جدول ۴). به‌طور مثال، در گزارش دانشکده در خاک‌های کانی‌های کالی‌های اسکستینت بیشتر است.

میزان پتانسیم تبادلی بیشتری وجود دارد (۳). مقدار میزان پتانسیم تبادلی (۱۱) و در نتیجه پتانسیم قابل استفاده افزایش می‌یابد (جدول ۲). ماده ای با بروده بیشترین نرسیده به محفظه بین لایه‌ای و انسیاب‌های قابلیت نفوذ افزایش طرفی قابل تبدیل کانی‌های خاک و تولید اسیدهای آلسی و در نتیجه انحلال کانی‌ها و آزادسازی پتانسیم درون انجام می‌شود. سپس کاهش نفوذی افزایش پتانسیم گردیده. به این ترتیب افزایش ماده آلی با افزایش پتانسیم قابل استفاده همرامه است (شکل ۶).

نقش کانال‌های رسی خاک آلفی سولز در درجه‌بندی پتانسیم قابل استفاده

در مطالعات صورت گرفته توسط اشکال‌های ورمیکولیت در نمای با نیزه‌ی یک پیک حدود ۱/۴/۲ آن‌گستروم می‌تواند که در نمای با نیزه‌ی یک پیک حدود ۱/۴/۲ آن‌گستروم ارتفاع خواهد باید بر اساس آن ۱۵۰/۱ آن‌گستروم آن هنگام اشباع با پتانسیم به شش میزان زیادی دارد. بر خلاف اندازه‌ی، با توجه به شیب رگرسیون مثبت در شکل ۲ و رابطه معنی‌دار مثبت بین درصد رس و مقدار پتانسیم قابل استفاده (جدول ۳)، یافته‌های فرآیند رس و مقدار قابل استفاده افزایش نیافته که می‌تواند نشان‌دهنده از نوع کانال‌های رسی موجود در این خاک باشد. شکل ۹ دیتاسهاف پردازش اشعه ایکس کانال‌های رسی این خاک را در مقطع کنترل رطوبتی نشان می‌دهد. رطوبت کانالی و شرایط آبیاری و محيط نیمه‌سیاحتی، به شده مقدار نسبتاً بیشتری از کانال‌های و کلریت در این خاک به ورمیکولیت تبدیل شده و باعث شده این خاک دارای مقدار قابل توجهی کانال و ورمیکولیت در مقطع کنترل رطوبتی خود باشد (جدول ۴).

شکل ۷ رابطه بین درصد کانال استکتیت و پتانسیم قابل استفاده

شکل ۸ ارتباط میان مقدار مادآآلی و مقدار پتانسیم قابل استفاده

نقش کانال‌های رسی خاک آلفی سولز در درجه‌بندی پتانسیم قابل استفاده و هواپیمایی کانال‌ها. مقدار رس نسبتاً زیادی دارد. بر خلاف اندازه‌ی، با توجه به شیب رگرسیون مثبت در شکل ۲ و رابطه معنی‌دار مثبت بین درصد رس و مقدار پتانسیم قابل استفاده (جدول ۳)، یافته‌های فرآیند رس و مقدار قابل استفاده افزایش نیافته که می‌تواند نشان‌دهنده از نوع کانال‌های رسی موجود در این خاک باشد. شکل ۹ دیتاسهاف پردازش اشعه ایکس کانال‌های رسی این خاک را در مقطع کنترل رطوبتی نشان می‌دهد. رطوبت کانالی و شرایط آبیاری و محيط نیمه‌سیاحتی، به شده مقدار نسبتاً بیشتری از کانال‌های و کلریت در این خاک به ورمیکولیت تبدیل شده و باعث شده این خاک دارای مقدار قابل توجهی کانال و ورمیکولیت در مقطع کنترل رطوبتی خود باشد (جدول ۴).
عکس شکل، درصد فراوانی و اندما حفرات مقطعی کشتری رطوبی خود، دارای مقادیری از در و کاتی مخلوط ابیلیت-ورمکولات یی. این کاتی‌ها نیز می‌توانند در تثبت نتایج مورت باشد (۱۷). نتاو خشک و رطوبی نیز می‌تواند به تثبت نتایم در این خاک‌ها کمک کند (۱۲).

بررسی شکل، درصد فراوانی و اندما حفرات مقطعی کشتری رطوبی خاک‌ها و ارتباط آنها با درجه فرآمی نتایم علاوه بر مقادیر و نوع کاتی‌های رسی موجود در خاک که می‌توانند بیشترین اثر ارائه گیاه‌های موثر باشند، حفرات نیز می‌توانند نقش مهمی در توزیع ریشه، انتقال آب و عناصر غذایی مورد نیاز گیاهان، از جمله پاتاسیم ایفا کنند.

حفرات از لحاظ اندما، شکل و درصد فراوانی می‌توانند پاتاسیم قابل استفاده گیاه را تحت تأثیر قرار دهند. زیرا اندما جماری، عوامل فرمایش خاک و توزیع ادامه منافع، عوامل موثر در انتقال آب و بیولوژی محلول می‌باشد. این اندما بهترین می‌تواند بهبود فراوانی خشک شدن و حرکت بی‌شناسی سایر عناصر غذایی خاک کمک نماید.

در خاک مالیسولز، به نظر می‌رسد علاوه بر بی‌میزان رس و نوع کاتی، حفرات نیز در افزایش میزان نتایم قابل استفاده گیاهان موثر باشد. این خاک با داشتن درصد حفرات بیشتر در مقطع کشتری رطوبی خاک (اعمار خاک)، میزان پاتاسیم قابل استفاده زیادی دارد. حدود ۴٪ از این حفرات این خاک، حفرات کشتری که به جدول ۵ می‌شود که بین حفرات نوع کاتال و پاتاسیم قابل استفاده در اعماق رطوبی خود، دارای مقادیری از در و کاتی ابیلیت-ورمکولات یی. این کاتی‌ها نیز می‌توانند در تثبت نتایج مورت باشد (۱۷). نتاو خشک و رطوبی نیز می‌تواند به تثبت نتایم در این خاک‌ها کمک کند (۱۲).
جدول 5. میانگین درصد تخلخل، درصد فراوانی، نوع و اندازه حفرات و نیز مقدار پتانسیل قابل دسترس در مقطع کنتلر رژه‌خاک‌های غرب

<table>
<thead>
<tr>
<th>K_{av} (ppm)</th>
<th>اندازه (%)</th>
<th>حفرات طول</th>
<th>(توسط نمای‌گر tool)تحلل</th>
<th>نام علمی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.05</td>
<td>0/8</td>
<td>1/10</td>
<td>24/20</td>
<td>Gypsic Aquisalids: 1</td>
</tr>
<tr>
<td>0.05 - 0.10</td>
<td>1/10</td>
<td>1/10</td>
<td>24/20</td>
<td>Typic Endoaquents: 2</td>
</tr>
<tr>
<td>0.10 - 0.20</td>
<td>15/20</td>
<td>15/20</td>
<td>32/25</td>
<td>Typic Calcixerolls: 3</td>
</tr>
<tr>
<td>0.20 - 0.30</td>
<td>15/20</td>
<td>15/20</td>
<td>28/25</td>
<td>Typic Hapludalfs: 4</td>
</tr>
</tbody>
</table>

شکل 10. حفره‌های کانال مقطع کنتلر رژه‌خاک مالی سوزل (PPL)

شکل 11. درصد فراوانی انواع حفرات محاسبه شده براساس شمارش نقطه‌ای

جدول 6. همبستگی بین نوع حفرات مقطع کنتلر رژه‌خاک‌ها و میزان پتانسیل قابل استفاده

<table>
<thead>
<tr>
<th>حفره‌ای</th>
<th>صفحه‌ای</th>
<th>بی‌شکل</th>
<th>کانال</th>
<th>پتانسیل قابل استفاده (ppm)</th>
</tr>
</thead>
</table>
| 0/9 | 1/9 | 0/9 | 0/9 | **: در سطح 1%: در سطح 5%
: رابطه غیرمعنی‌دار |
حفظه به نسبت حاک مالی سولز و آلفی سولز دارد (جدول 5). کاهش حفرات در تدریج تراکم باعث افزایش ماهیان آلات در این حاک زراعی، سبب کاهش هدایت هیدرولیکی (25) و کاهش فرآیند پیشگی در نتیجه کاهش انتشار پتاسیم به سمت ریشه می‌گردد. همچنین این حاک به نسبت حاک مالی سولز و آلفی سولز، حفرات کوچکتر و بزرگتر از 10 میکرومتر کمتری نیز دارد. نتایج حجره متوسط 23233% از کل حفرات این حاک را حفرات کوچکتر از 10 میکرومتر و 9/5% از کل حفرات آن را حفرات بزرگتر از 10 میکرومتر تشکیل می‌دهند (جدول 5). عمیقات کشاورزی در این حاک می‌تواند حفرات بزرگتر از 10 میکرومتر حاصل از عمیقات کشاورزی، جاتوران حاکی و ریشه محصولات زراعی را تحت تأثیر قرار دهد (26). بیشتر حفرات مقطع کنترل رطوبتی آن نیز از نوع کانال و بی شکل است (شکل 11). حفرات بی شکل نقض مؤثر کمی در هیدرولیکی و در نتیجه انتقال آب و پتاسیم قابل استفاده گیاهان دارد. مطالعه جدول 6 نیز بین حفرات بی شکل و پتاسیم قابل استفاده در سطح 0.2% همبسته منفی مشاهده می‌شود. این عوامل نیز علاوه بر درصد رس کمتر و عوامل کاتیونی سالم، مجموعاً سبب شده تا در حاک اینسپیسی سولز کمترین میزان پتاسیم قابل استفاده گیاهان وجود داشته باشد. براساس آزمون دانک، اختلاف معنی‌داری را در مقدار درصد کل حفرات و درصد حفرات کوچکتر و بزرگتر از 10 میکرومتر در حاک اینسپیسی سولز و اردي سولز مشاهده نشد (جدول 5). علاوه

شکل 13. حفره‌های بی‌شکل خاک اینسپیسی سولز (PPL)

شکل 12. حفره‌های صحنه‌ای خاک آلی سولز (PPL)

ماتح (مقطع کنترل رطوبتی) در سطح 1 همبسته وجود دارد. کانال‌ها (حفرات انقباضی کشیده) با داشتن دبی‌ها و شکل لوله‌ای خود، معمولاً محل توسعه ریشه و یا گانه‌های را به واسطه شکل خود هدایت هیدرولیکی بیشتری دارند (24) و می‌تواند یون‌های محلول زمان پایین می‌باشد (20). به همین دلیل نوع حفرات این حاک نیز به نظر می‌رسد می‌تواند عمیق مؤثر از افزایش میزان پتاسیم قابل استفاده گیاهان باشد. اگرچه نوع حفرات غالب مقطع کنترل رطوبتی خاک آلی سولز کانال است (شکل 12)، ولی حضور حفرات صحنه‌ای با قطر کم، نیز به نظر می‌رسد تا حدی می‌توانند از عوامل مهم‌تر کننده انتقال آب و پتاسیم در این حاک باشد (شکل 12). تا حدی که حتی انبوه حاک، می‌تواند موجب بکر بودن این حفرات صحنه‌ای گردد. این عوامل به اضافه عوامل پتانسیلی باعث شده تا علرغم دارا بودن درصد رس زیادا و درصد حفرات بی‌شکل نسبت به دو حاک اردي سولز و اینسپیسی سولز، میزان پتاسیم قابل استفاده گیاهان در حد اندازه‌گیری را این حاک پس از حاک اینسپیسی سولز، کمترین میزان پتاسیم قابل استفاده گیاهان را داشته باشد.

مقطع کنترل رطوبتی خاک اینسپیسی سولز: درصد کمتری

136
شکل ۱۲: حفره‌هاي بي‌شکل خاك اريدي‌سولز (PPL)

ایست. گاهي پاناسمي قابل استفاده و تبيين پاناسمي در خاك اينستيتي‌سولز، مي‌تواند به‌دليل حضور كاني‌هاي نظير
هيدروكرسي تين لايي‌اوه اسمكينت و اسمكينت (در شرائط
احيان) و نيز اولين باشند. نتایج حاصل از بررسى خصوصيات
تخليص، نيز نشان داد كه خاك مالى‌سولر با داشتن درصد
حفرات بيشتر در مقطع كنترل رطوبتي خاك، ميان پاناسيم قابل
استفاده بيشتري نسبت به خاك‌هاي مورد مطالعه دارد. همچنين
حفرات كنان خاك مالى‌سولر بر خلاف حفرات بي‌شکل خاك
اينستيتي‌سولز، قادرند آب و پاناسيم قابل استفاده را با سهولت
بیشتر در دسترس گياهان قرار دهند. همچنين مثبت بين
حفرات كنان و پاناسيم قابل استفاده نيز نشان دهد. افرایش
پاناسيم قابل استفاده از فايزان حفرات كنان است. در تقييم
برای پيشرفتين ميران پاناسيم قابل استفاده گياهان، مي‌توان علاوه
بر نوع كاربردي و عمليات مدیريتی اراضي، از بررسى‌های
خصوصيات حفرات و نيز ميزانوزي خاك‌هاي نيز بهره گرفت. در
نهايي نيازان استفاده از نتایج حاصل، مي‌توان ميزان مناسب
كاري‌ردي كود پاناسيمي و نيز نخوشه صحیح و دوره مصرف آن را
توصیه نمود.

بر دایری ذکر شده در بحث كاني‌شناسي، بررسى
ميكرومورفولوژي حفره موید اين است که به نظر مي‌رسد مي‌توان
نوع حفره را نيز علاوه بر عوامل مذكور، در اين كاني اكثربه
دانت. اگرچه حفرات غالب در هر دو خاك، كنان و حفرات
بي‌شکل است (شکل ۱۱ و ۱۲)، ولی فراوانی بيشترين حفرات
بي‌شکل در مقطع كنترل رطوبتي خاك اينستيتي‌سولز، بر خلاف
فراوانی بيشترين حفرات كنان در خاك اريدي‌سولز، سبب كاني
مقدار پاناسيم قابل استفاده گياهان در خاك اينستيتي‌سولز شده
است.

نتيجه‌گيري
بررسى‌ها نشان دادند علاوه بر مقدار و نوع كاني رسي، حفرات
نيز مي‌توانند بر ميزان در دسترس قرار دادن پاناسيم قابل جذب
گياهان مؤثر باشند. خاك مالى‌سولر به تبع دارا بويد مقدار
نسبتاً زياد رس و كاني اسکينتی، ميان پاناسيم قابل استفاده گياه
بي‌شکل نسبت به ساير خاك‌هاي مورد مطالعه دارد. همچنين
ثبت مشاهده شده بین درصد مقدار رس و نيز كاني اسکینتی
با پاناسيم قابل استفاده در اعمار خاك نيز مؤثر اين مطلب

منابع مورد استفاده

1. بهمنياري، م.۱۳۸۷. تاثير اقليم بر خصوصيات مورفولوژي و كاني‌هاي رسی خاك‌ها در مناطق پوشیده از درختان چنگالی. چيکین
مطالعه هفتمين کنگره علم خاك ايران، دانشگاه شهريور.
2. خرماني، ف. ر. قربانپور و. ر. عموزاده. ۱۳۸۵. مشآ و پراکندي کاني‌هاي رسی در سه حوزه آبخيز شرق استان گلستان. گزارش طرح
تحقيقاتي دانشگاه علم كشاورزي و منابي طبيعي گرگان؛ ۷۸ ص.