مطالعه تغییرات مکانی شوری خاک در منطقه راه‌مرز (خوزستان)
با استفاده از نظریه ظرفیت‌انیستیسیک
۱- کریجیگن

چهانگرد محمودی

چکیده

در این بررسی روش مناسبی جهت مطالعه تغییرات مکانی شوری خاک ارائه می‌گردد. به‌دین متغیر واحدها حاصل از مطالعات تفسیری اراضی منطقه راه‌مرز خوزستان که بر آن روش‌های آزاد استفاده بوده، مورد استفاده قرار گرفت. بررسی تغییرات قیز از سوی شوری خاک با استفاده از منطقه‌ای ۵۰۰ نمونه، به‌فراز تقسیم ۲۰۰ متری و در سه عمق ۵۰،۱۵۰ و ۵۰۰-۱۰۰ متر استاتیسک نشان داد. برای میانگین تغییرات شوری خاک در اعماق مختلف خاک از روش آماری کریجیگن معمولی برای تعیین نقاطی به‌فراز ۵۰۰ نمونه، در سه عمق منطقه مطالعاتی استفاده شد. مطالعات منطقه مطالعاتی با استفاده از نظریه ظرفیت‌انیستیسیک کریجیگن و تشخیص شوری حاصل از منطقه محلی مطالعاتی با استفاده از داده‌های معمولی بعد از کاربردن روش‌های تعیین نقاطی کریجیگن، جهت تشخیص هر یک از نمونه‌های آزمایشی میزان شوری خاک در منطقه منطقه‌ای مورد نظر خواهد شد.

واژه‌های کلیدی - شوری، هدایت الکتریکی (EC)، مساحت آزاد، تغییرات مکانی، ظرفیت‌انیستیسیک، نظریه ظرفیت‌انیستیسیک، سمت واریانس

مقدمه

یکی از خصوصیات مشترک عوامل و ویژگی‌های محیطی

تغییرات پوسته مکانی آنها می‌باشد. معادلاً، چنین تغییرات

متغیران محیطی از نقطه‌بین دقیق، به‌گونه‌ای است که

مطالعه آنها به وسیله تغییرات معمولی می‌تواند تجزیه و تحلیل آماری

استفاده خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمکند.
شناختیکی ایران و موقعیت منطقه مطالعاتی را نشان می‌دهد.

1- Geostatistics
مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از...
شکل 3- نتایج حاصل از مطالعات نیمه تفاضلی بهره‌برداری
ازدای کلاس‌های شوری (مسی زیمنس برومت) عبارت است از:

\[S_{1.5} = 0.5 - 18 \text{ dS/m, } S_2 = 2 - 4 \text{ dS/m, } S_3 = 4 - 20 \text{ dS/m, } S_4 = 20 - 32 \text{ dS/m} \]

مطالعات نیمه تفاضلی

به منظور تعیین تناسب نسبی اراضی واقع در منطقه مورد نظر برای کشاورزان، از مطالعات نیمه تفاضلی این منطقه توسط مؤسسه تحقیقات خاک و آب اصفهان در طی سال‌های

1364 و 1365 صورت گرفته است (1). شکل 3 نشان دهنده منطقه مطالعاتی راکه در طی مطالعات نیمه تفاضلی بیشتر به شما می‌دهد. این نقشه معرف چندگانه پراکنش کلاس‌های مختلف شوری در منطقه مورد مطالعه است. مفایه نقشه

روش آماری

به طور کلی روشهای آماری زویرستانی‌سکی بر پایه تفاضلی متنگیر مکانی یکتا (15 و 17) یک منطقه مکانی است. با استفاده از طرحی محیطی که در فضای دو بعدی و برای استفاده از سه بعدی توزیع شده باشند. تغییرات این دسته از متنگیرها از نقطه بین دیگر مشخص و دارای پوسته‌های آشکاری می‌باشند. مشخصه‌های مربوط به خاک، میزان منعطف شیب منطقه و شیب‌های مختلف در خاک و با شوری خاک مالاها به منظور کلاس‌های مختلف شوری مکانی هستند. تفاوت اساسی بین آمار کلاس‌های

1- Test data set
2- Regionalized variable

52
مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از...

اگر این اختلاف را می‌توان به صورت
می‌تواند برای تحلیل قرار داد‌، در
عمل، این اختلاف که بهتر نامیده می‌شود، می‌تواند به‌کمک احکام مقدار متغیر نظر در نقطه x کلیه نقاط دیگر، به فاصله د ها، در نظر گرفته، با توجه به این که متوسط این کمیت صفر و یا زدیک به صفر خواهد بود در محاسبات مجدار اختلاف را در نظر گرفته که توسط میانگین زیبر مشخص می‌گردد:

\[\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right] \]

این رابطه در حقیقت، تابع دلتا اقلیم اختلاف بین دو مقادیر Z(x+h) و Z(x) می‌باشد. در عمل، رابطه فوق با این طریق اطلاعات حاصل از تیپ‌های موجود مورد تخمین زده شود. هر گاه فرض کنیم که جمعاً عدد N زوج نمونه که به فاصله د ها، یک بانک را واقع دارد به دست باشد، با تقسم نمودن طرفین معادله

\[\hat{\gamma}(h) = \frac{1}{N} \sum_{i=1}^{N} \left[Z(x_i) - Z(x_i + h) \right] \]

در رابطه فوق h را سمت واریانس/2 می‌نماید. در عمل این تابع مشخص تیپ‌ها و می‌بایست بر اساس تیپ‌های موجود مقدار تقسیم آن به دست آید. به این ترتیب برای h به دست آمده، باید ترکیب بین متفاوتی باشد که به ترتیب پایداری مدلی را با ایین مقدار تنها برای تخمین داشت. در عمل با رسم مقادیر سمت واریانس بر روی نحوه عملیات به ایین واریانس مختلف h، می‌تواند به‌طور مناسب بر داده‌ها استخوان و مرسم شود، منحنی به دست آمده را اصطلاحاً

\[Z(x_i) - Z(x_i + h) \]

مانند شکل 2 واریوگرام ایجاد با ممره پارامترهای آن

زیستاتیستیک در این حقيقة تهیه‌های است که در آمار کلاسیک
فرض بر آن است که نمونه‌های که از گروه‌گیری نظر به مستقل از یکدیگر بوده و پیشین پیشنهاد یک نمونه هیچ گونه اطلاعاتی درباره نمونه بودی که در فاصله منعی از آن واقع شده است به دست نمی‌دهد. لیکن نظره متغیرهای مکانی بر
این پایه استوار است که خصوصیات مختلف محیطی دارای
ویژگی‌های مشخص است. بنابراین ترتیب به مقدار یک متغیر
محیطی در فواصل تحدیدی دارای تشابه بر راهکاری به بازده
فاصله این همبستگی مکانی بین دو نمونه مورد نظر کاهش
می‌یابد. بنابراین ویژگی‌های مکانی بین نمونه را می‌توان به صورت
یک مدل ریاضی تحت عنوان واریوگرام 1 توصیف نمود.

واریوگرام

به طور کلی، طبعی دارای روش برای مقایسه خصوصیت
معیاره از شکل (Z) در دو نقطه به فاصله مشخص a بررسی
اختلاف مقادیر خصوصیت مورد نظر در آن دو نقطه
\[Z(x_i) - Z(x_i + h) \]

این اختلاف مورد نظر نبوده بلهکه قدر مطلق آن اهمیت دارد،

1- Variogram 2- Semi-variance
در تخمین بهینه را می‌توان توسعه مجموعه تخمین‌گرها آماری که اصطلاحاً کریجینگ 2 نامیده می‌شود، انجام داد.

کریجینگ

اصولتاً کریجینگ بیک اتمام تعمیم پاتن‌های ۴ تا ۲۰ کلیه رویه‌های آماری را برای بروز مشتری‌های محلی و به عنوان یک تابع خطی از مجموعه مشاهدات توزیع شده واقع در همسایگان نقطه‌ی که می‌خواهیم تخمین بزنیم بازیابی می‌شود. (۱۵ و ۱۶)

\[
\hat{Z}(x_i) = \sum_{i=1}^{N} \lambda_i Z(x_i)
\]

که در آن \(\hat{Z}(x_i)\) مشخصه تخمین دیده‌شده در نقطه‌ی \(x_i\) مقدار تعداد مشخصه‌ی مورد بررسی در نقطه‌ی \(x_i\) و \(\lambda_i\) وزن آماری است که به نمونه‌ی \(Z(x_i)\) مربوط در همسایگان نقطه‌ی که در حقیقت هدف از کریجینگ یافته و وزن‌های آماری نمونه‌ها به گونه‌ای است که واریانس تخمین حداکثر گردد. بدین ترتیب کریجینگ را می‌توان روشی دانست که طی آن به مجموعه نمونه‌ها به‌طور جامعه‌ای آماری داده می‌شود که تاکید خصیت آنها هنگام تخمین شود بلکه در بین سایر تخمین‌گرهای خطی حداکثر واریانس را نیز داشته باشد.

برای اینکه تخمین \(\hat{Z}(x_i)\) تاپی از بیان مجموع ضرایب یا وزن‌های آماری باشد، مجموع ضرایب

\[
\sum_{i=1}^{n} \lambda_i = 1
\]

از طرف دیگر به حداکثر رساندن واریانس تخمین را راه یک مسئله بهینه‌سازی است می‌توان با استفاده از ضرایب لگاریتمی بود با در نظر گرفتن شرط ناریب بودن انجام داد. در نتیجه

\begin{itemize}
 \item ۱- Sill
 \item ۱۶- Optimal estimation
 \item ۱۷- Spherical
 \item ۱۸- Gaussian
 \item ۱۹- Range
 \item ۲۰- Kriging
 \item ۲۱- Nugget effect
 \item ۲۲- Generic
 \item ۲۳- Lagrange multiplier
\end{itemize}
شکل 5- منحنی‌های فراوانی داده‌های شوری در اعماق (a) 0-50 سانتی‌متر، (b) 50-100 سانتی‌متر و (c) 100-150 سانتی‌متر

درایای ابعاد 500×500 متر صورت گرفت.

نتایج و بحث
خلاصه آماری داده‌های شوری در سه عمق مختلف خاک در جدول 1 آمده است. نتایج حاصل از این جدول و همچنین شکل منحنی‌های فراوانی داده‌ها (شکل 5) بیانگر توزیع داده‌ها با چولگی 3 پیوستگی در جهت مثبت است، به گونه‌ای که مقدار میانگین هدایت الکتریکی در عمق اول سه برابر متانداز می‌باشد و در عمق دوم برابر دقیقه مورد تعیین نموده و نمونه‌های موجود در همسایگی آن نقطه می‌باشد. است. از آن جایی که زیاد بودن میزان انحراف از توزیع عموال ممکن است در تجزیه و تحلیل‌های آماری بعیدی، به ویژه محاسبه واریوگرام (16)، اثرات تامپاراملی بر جای گذاشته، لذا

\[
\sum_{j=1}^{n} \lambda_j y(x_i, x_j) + \mu = y(x_i, x_i) \tag{5}
\]

در معادله فوق y(x_i, x_j) بیانگر سرمایه افرادین بین نمونه‌ها و y(x_i, x_i) بیانگر سرمایه افرادین بین نقطه مورد تعیین و نمونه‌های موجود در همسایگی آن نقطه می‌باشد. دستگاه معادلات کریجینگ را می‌توان به مظاهر پراورد نقطه‌ای و یا پراورده قطعه‌ای انجام داد. در این پرسپری پراورد آماری برای پراک‌های

1- Point Kriging 2- Block kriging 3- Skewness
<table>
<thead>
<tr>
<th>عمق (m)</th>
<th>داده‌های دیجیتال</th>
<th>نرخ خاک</th>
<th>نرخ خاک</th>
<th>نرخ خاک</th>
<th>نرخ خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>123</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>2-5</td>
<td>213</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>5-10</td>
<td>345</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>10-15</td>
<td>456</td>
<td>3.2</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>15-20</td>
<td>567</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

۱- Trend
شکل 6- نقشه پراکنش داده‌های شوری در اعماق (a) 0-5 سانتی‌متر، (b) 5-100 سانتی‌متر و (c) 100-150 سانتی‌متر
شکل 7- واریوگرام‌های تجربی \(\ln(dS/m^2) \) (نقاط) و مدل‌های پرازش داده شده (منحنی) داده‌های شوری در اعماق 100-5 و 5-0 سانتی‌متر (c) 0-5 و 5-100 سانتی‌متر

12 کیلومتر هستند که بطور وضوح الگوی پراکنش جغرافیایی مواد مادی و واحد‌های فیزیوگرافی را نشان می‌دهد. در حقيقة دامنه واریوگرام‌های هر سه منطقه بر مبنای فاصله این است که واحد‌های فیزیوگرافی به طور منتک در سطح منطقه تغییر می‌نمایند. به طور کلی، شاهد عمومی واریوگرام‌ها یا یک‌دیگر پیانگرافیکه بودن ساختار مکانی شوری در اعماق مختلف خاک می‌باشد. به دیگر سخن، فاصله‌هایی را که منجر به پیدا شوری در
جدول ۲ - ضرایب مدل‌های پرازش داده شده بر پایه نمودارهای تجربی شوری در اعماق مختلف خاک

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>اثر قطع‌های</th>
<th>دامنه تأثیر</th>
<th>دامنه آستانه</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰۰-۱۵۰ سانتی‌متر</td>
<td>۰.۱۸۷</td>
<td>۱۲</td>
<td>۱/۸۱۵</td>
<td>کروی</td>
</tr>
<tr>
<td>۵۰۰-۲۰۰ سانتی‌متر</td>
<td>۰.۳۸۲</td>
<td>۱۲/۱۰</td>
<td>۱/۳۸۲</td>
<td>کروی</td>
</tr>
<tr>
<td>۶۰۰-۳۰۰ سانتی‌متر</td>
<td>۰.۳۸۲</td>
<td>۱۲/۶۰</td>
<td>۱/۱۵۲</td>
<td>کروی</td>
</tr>
</tbody>
</table>

شکل ۸ - نقشه‌های کریجنگ شوری (dS/m) در اعماق (a) ۰-۵ سانتی‌متر (b) ۵-۱۰ سانتی‌متر (c) ۱۰-۱۵ سانتی‌متر (d) ۱۵-۳۰ سانتی‌متر (e) ۳۰-۴۵ سانتی‌متر (f) ۴۵-۶۰ سانتی‌متر (g) ۶۰-۷۵ سانتی‌متر (h) ۷۵-۹۰ سانتی‌متر (i) ۹۰-۱۱۵ سانتی‌متر (j) ۱۱۵-۱۳۰ سانتی‌متر (k) ۱۳۰-۱۴۵ سانتی‌متر (l) ۱۴۵-۱۶۰ سانتی‌متر (m) ۱۶۰-۱۷۵ سانتی‌متر (n) ۱۷۵-۱۹۰ سانتی‌متر (o) ۱۹۰-۲۰۵ سانتی‌متر (p) ۲۰۵-۲۲۰ سانتی‌متر (q) ۲۲۰-۲۳۵ سانتی‌متر (r) ۲۳۵-۲۵۰ سانتی‌متر (s) ۲۵۰-۲۶۵ سانتی‌متر (t) ۲۶۵-۲۸۰ سانتی‌متر (u) ۲۸۰-۲۹۵ سانتی‌متر (v) ۲۹۵-۳۱۰ سانتی‌متر (w) ۳۱۰-۳۲۵ سانتی‌متر (x) ۳۲۵-۳۴۰ سانتی‌متر (y) ۳۴۰-۳۵۵ سانتی‌متر (z) ۳۵۵-۳۷۰ سانتی‌متر (aa) ۳۷۰-۳۸۵ سانتی‌متر (bb) ۳۸۵-۴۰۰ سانتی‌متر (cc) ۴۰۰-۴۱۵ سانتی‌متر (dd) ۴۱۵-۴۳۰ سانتی‌متر (ee) ۴۳۰-۴۴۵ سانتی‌متر (ff) ۴۴۵-۴۶۰ سانتی‌متر (gg) ۴۶۰-۴۷۵ سانتی‌متر (hh) ۴۷۵-۴۹۰ سانتی‌متر (ii) ۴۹۰-۵۰۵ سانتی‌متر (jj) ۵۰۵-۵۲۰ سانتی‌متر (kk) ۵۲۰-۵۳۵ سانتی‌متر (ll) ۵۳۵-۵۵۰ سانتی‌متر (mm) ۵۵۰-۵۶۵ سانتی‌متر (nn) ۵۶۵-۵۸۰ سانتی‌متر (oo) ۵۸۰-۵۹۵ سانتی‌متر (pp) ۵۹۵-۶۱۰ سانتی‌متر (qq) ۶۱۰-۶۲۵ سانتی‌متر (rr) ۶۲۵-۶۴۰ سانتی‌متر (ss) ۶۴۰-۶۵۵ سانتی‌متر (tt) ۶۵۵-۶۷۰ سانتی‌متر (uu) ۶۷۰-۶۸۵ سانتی‌متر (vv) ۶۸۵-۷۰۰ سانتی‌متر (ww) ۷۰۰-۷۱۵ سانتی‌متر (xx) ۷۱۵-۷۳۰ سانتی‌متر (yy) ۷۳۰-۷۴۵ سانتی‌متر (zz) ۷۴۵-۷۶۰ سانتی‌متر (aaa) ۷۶۰-۷۷۵ سانتی‌متر (bbb) ۷۷۵-۷۹۰ سانتی‌متر (ccc) ۷۹۰-۸۰۵ سانتی‌متر (ddd) ۸۰۵-۸۲۰ سانتی‌متر (eee) ۸۲۰-۸۳۵ سانتی‌متر (fff) ۸۳۵-۸۵۰ سانتی‌متر (ggg) ۸۵۰-۸۶۵ سانتی‌متر (hhh) ۸۶۵-۸۸۰ سانتی‌متر (iii) ۸۸۰-۸۹۵ سانتی‌متر (jjj) ۸۹۵-۹۱۰ سانتی‌متر (kkk) ۹۱۰-۹۲۵ سانتی‌متر (lll) ۹۲۵-۹۴۰ سانتی‌متر (mmm) ۹۴۰-۹۵۵ سانتی‌متر (nnn) ۹۵۵-۹۷۰ سانتی‌متر (ooo) ۹۷۰-۹۸۵ سانتی‌متر (ppp) ۹۸۵-۹۹۵ سانتی‌متر (qqq) ۹۹۵-۱۰۱۰ سانتی‌متر (rrr) ۱۰۱۰-۱۰۲۵ سانتی‌متر (sss) ۱۰۲۵-۱۰۴۰ سانتی‌متر (ttt) ۱۰۴۰-۱۰۵۵ سانتی‌متر (uuu) ۱۰۵۵-۱۰۷۰ سانتی‌متر (vvv) ۱۰۷۰-۱۰۸۵ سانتی‌متر (www) ۱۰۸۵-۱۰۹۵ سانتی‌متر (xxx) ۱۰۹۵-۱۱۱۰ سانتی‌متر (yyy) ۱۱۱۰-۱۱۲۵ سانتی‌متر (zzz) ۱۱۲۵-۱۱۴۰ سانتی‌متر (aaa) ۱۱۴۰-۱۱۵۵ سانتی‌متر (bbb) ۱۱۵۵-۱۱۷۰ سانتی‌متر (ccc) ۱۱۷۰-۱۱۸۵ سانتی‌متر (ddd) ۱۱۸۵-۱۱۹۵ سانتی‌متر (eee) ۱۱۹۵-۱۲۱۰ سانتی‌متر (fff)
مقایسه تنش‌های کریستینگ بر اساس مختلف، گویای این واقيت است که میزان شوری در سطح مساحتی بیشتر از لایه‌های عملی و گردن این تردد مساحتی در انجام واقع شده است. این واقيت در این نوع پاسخ به این پرسش که کدام یک از تنش‌های شوری حاصل از مساحتی و کریستینگ، جمع بر این واقيت قابل قبولی است؟ هم‌اکنون می‌توانیم آنها استفاده شد. باید تریبون، ابتدا کلاس عمومی شوری نیم‌خاک (150 - 300 سانتی‌متری) با توجه به جدول میانگین شاخص‌های آب و خاک در نظریه 25 میکرو‌سختی‌های خاک و آب (2، آب) به چشمه‌هایی که دارای داده‌های میانگین بالا، تعبیر و معادل آن نیز برای نتایج تفصیلی خاک‌های منطقه مشخص گردید. مقایسه بین تابع هر دو روش با محسوبی جدول در طریق تنش‌های 3- 4 کتومتر گرفت. (5) در این جدول داده‌های میانگین به سیله ستونی جدول می‌باشد. این داده‌ها، داده‌های است، با تخلف‌های حاصل از روش مساحی آزاد و کریستینگ برای کلاس‌های مختلف شوری مقایسه گردید. به طور کلی در گزینه جدول و دو طریق تنش‌های اماکن که بر روی وقت تفنن‌های میزان توانا در بین روش مورد نظر و واقيت در نتیجه تنش‌های را نشان می‌دهد. علاوه بر آن، در صورت فوری دقت 2 بین دو ستون از داده‌ها را می‌توان از تخمین جمع عبارت ماهیک کل انبار مورد استرس، متغیرت مورد شاخص را به صحت و دقت کل هرکدام از روش‌های مورد پت‌ریک خور پت‌ریک می‌باشد. تغییرات تریبون و پوتوی شوری خاک در سطح منطقه، به خوبی توط تنش‌های کریستینگ نشان داده شده است. اراضی فاقد محدودیت شوری عمداً در مجاورت رویداده واقع شدند. از سوی دیگر، نظام طراحی شوری سیپرس زیاد (انجام 22 سد زمین بر متر) را در روزهای اراضی پس و در مجاورت باتلاق‌ها قرار داده‌اند.

1- Back-transformation
2- Two-sided similarity similarity
3- Overall accuracy
جدول 3- جداول تشایه دو طرفه بین داده‌های معيار (ستون‌ها) و (8) برآورد شده توسط کریجینگ

(a)

<table>
<thead>
<tr>
<th>کریجینگ/داده‌های معيار</th>
<th>جمع ردیف</th>
<th>خطای%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>So</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

دقت کلی: 20%.

(b)

<table>
<thead>
<tr>
<th>مساحی آزاد/داده‌های معيار</th>
<th>جمع ردیف</th>
<th>خطای%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>So</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

دقت کلی: 60%.

گرفته شود عدد حاصل را اصطلاحاً خطاهای ناشی از حذف نمونه‌ها تا نامیده و طبقه‌بندی شده‌اند (عناصر موجود بر روی قطر اصلی) بایستی

کار تعداد عناصری راکد در هر کلاس شوری به دوستی تخمین زد و دسته‌بندی شده‌اند (عناصر موجود بر روی قطر اصلی) بایستی

مورد نظر باشد نتیجه را خطاهای ناشی از ملاحظ داشتند؟

می‌نامند. از نظر عملی، یک کاربر خواهان حداکثر برنده

1- Omission error 2- Commission error
نیک زنجیری

سپاسگزاری

 obed و سیله از آقای مهندس فریدون نوربخش عضو هیئت علمی بخش تحقیقات خاک و آب اصفهان، به خاطر انتخاب نهاد اطلاعات و نقشه‌های مربوط تشوک و قدردانی می‌شود.

منابع مورد استفاده

1 - وزارت کشاورزی. ۱۳۶۷. مطالعات خاک شناسی نیمه تفصیلی دقیق منطقه رامهرمز استان خوزستان. مؤسسه تحقیقات خاک و آب. نشر شماره ۱۳۰۵. صفحه ۱۳۱.

2 - وزارت کشاورزی. ۱۳۶۷. مراحلی طبقه‌بندی اراضی برای کشت آبی. مؤسسه تحقیقات خاک و آب. نشر شماره ۱۳۰۵. صفحه ۱۳۱.

1- Reliability 2- Smoothing effect 3- Geographical Information System (GIS)

