مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از نظریه ظواهراستیستیک

1- کریجینگ

چهانگرد محمدی

چکیده

در این بررسی روش مناسبی جهت مطالعه تغییرات مکانی شوری خاک ارائه می‌گردد. بین‌دست منظور اطلاعات حاصل از مطالعات تفسیری اراضی منطقه رامهرمز خوزستان که در پایه این روش مصارف آزاد استوار بوده و مورد استفاده قرار گرفته، بررسی تغییرات میزان شوری، با استفاده از حدود 200 نمونه به فاصله تقریبی 500 متر و در سه عمق 50، 100 و 200 توپوگرافی انجام شد. برای تعیین تغییرات مکانی شوری در اعماق مختلف خاک از روش آماری کریجینگ معمولی برای قطعات به ابعاد 500×500 متر در سطح منطقه مطالعاتی استفاده شد. مقایسه بین مختلف خاک از روش آماری کریجینگ معمولی و بهره‌برداری از شوری حاصل از سطح منطقه مطالعاتی با استفاده از داده‌های عبوری صورت گرفت. نتایج شناسی می‌کند که همانند در سایر موارد و تأثیر کریجینگ حدود 40٪ برهم در حالت که برای تحقیق شوری حاصل از سطح آزاد حدود 27.6٪ می‌باشد. علاوه بر این، نتایج حاصله مورد این بیان است که نتایج ریزه‌آرا و روش کریجینگ ریزه‌آرا مبتنی بر روش کریجینگ آزمایش گردید که در حالت کنونی از سطح S1 و S2 بهره‌برداری شده و در حالت کادمیو از سطح S1 و S2 بهره‌برداری شده. نتایج حاصله مورد این بیان است که می‌توان در کار روش‌های معمول ریزه‌آرا بهترین نتایج داشت. تغییرات شوری خاک از روش‌های آماری ارائه شده در تئوری ظواهراستیستیک نیز پژوهش جست.

واژه‌های کلیدی – شوری، هدایت الکتریکی (EC)، مساحت آزاد، تغییرات مکانی، ظواهراستیستیک، نظریه تغییرات مکانی، سیم واریانس، واریوگرام، برادر پیوسته، کریجینگ

مقدمه

یکی از خصوصیات مشترک عوامل و ویژگی‌های محیطی تغییرات پوسته مکانی آنها می‌باشد. به چنین تغییرات بیشتری می‌تواند به نقاط دیگر، به گونه‌ای است که مطالعه آنها به وسیله هدایت الکتریکی معمول تجزیه و تحلیل آماری

- استفاده خاکشناسی، داشتمکت، کشاورزی، دانشگاه شهید چراغی.
شیروها هیچ گونه ارتباطی برای تغییرات مکانی داده‌ها به علت رفت‌آمد برقرار نمی‌شود.

نیازمند نظریه کمی‌گویی برای کنترل چینین متغیرهای محیطی، علاوه بر مقدار تغییرات شده خصوصیت مورد نظر برای موقعیت جغرافیایی مشاهدات نیز به طور همزمان در نظر گرفته شود.

عوامل تاثیری حاصل از مساحت خاک‌ها به محدودیت‌های از خاک‌ها و به گونه‌ای نمودن نور در اشاره می‌کند. حالت در شرایط که پیدا می‌نماید تغییرات مکانی قبل تغییرات رؤیی بهورتر و تغییرات نارسا و اعمال دسته‌ای چنین نمودن نور در این روش عمده‌تر که با پایه اطلاعاتی و تجربه خاک‌شناسی استواره و عموماً تاثیری حاصله به علت کمی‌پایان‌گرایی و اعمال مصرفی‌های خاک اجتناب ناپذیر است. بیشینه متغیر استفاده از تغییرات آماری جهت تعیین اطلاعات حاصل از نقاط نمودن‌داری به کلسی متغیرهای مورد مطالعه ضروری به نظر می‌رسد.

شناخته‌ای از علم کاربردی به نام ظواستاتیستیک 1 قدر به ارائه مجموعه وسیعی از تخمین‌گنگ‌های آماری به منظور بروز خصوصیت مورد نظر در مکانی که نمودن‌داری نشده است، با استفاده از اطلاعات حاصل از نقاط نمودن‌داری شده می‌باشد. در این بررسی از روشهای آماری ظواستاتیستیکی که بیان کننده‌ای متغیرات و مختصات تجزیه و تحلیل متغیرهای دارای تغییرات مستمر جغرافیایی بوده و در علوم ماهیت جهت تغییرات مکانی‌کارکنانی در تصمین‌گیری مبتنی به کار مورد استفاده گردید. تغییرات کمی‌پایانی جهت به کارگیری روشهای آماری متعدد بر ظواستاتیستیک در علوم خاک، با توجه به تحلیل ساختار‌های خاک با استفاده از ناحیه واریوگرام، توسط کمپیوتر (9 آغاز گردد.) بعدها از آن مطالعات مورد و روشهای منطقه مطالعاتی

1- Geostatistics
نیزیپارسی و خاکها

شکل 1- نقشه نقشه نیزیپارسی، منطقه مطالعاتی را که توسط نویسنده و با استفاده از گزارش نیمه‌تفصیلی منطقه (1) استخراج شده است، نشان می‌دهد. همان‌گونه که در نقشه می‌شود به طور کلی 2 واحد نیزیپارسی واحد در منطقه قابل تشخیص بوده که شامل خاکهای پاپانیانداند؛ دشت‌های آبیاری‌های داخلی 4، دشت‌های آبیاری‌های داخلی 3 و اراضی پست 2 است. علاوه بر آن به دلیل واقع شدن از سطح منطقه مورد مطالعه توسط رسوبات بادی 5 روشن‌کردن حاشیه شده است. بقیه منطقه شامل مناطق مسکونی، بستر نوردخانه و دیگر قطعات این منطقه می‌باشد.

شکل 2- نقشه واحدهای نیزیپارسی منطقه مطالعاتی به میزان واحدهای آن

دشت‌های آبیاری‌های داخلی 4، دشت‌های آبیاری‌های داخلی 3 و اراضی پست 2 از رسوبات و درون‌خانه‌ای تشکیل یافته و از بخش‌های خاک نسبتاً کم است. اراضی فوق عمدها به کشت محصولات زمستانی مانند جنگل و جوجه‌گی سبزی سبزیجات اختصاص یافته‌اند.

با بودن سطح اراضی یکی از مهم‌ترین خصوصیات اراضی واقع در منطقه پست می‌باشد. در منطقه‌ای که اراضی در این مناطق شدیداً فعال بوده و تعداد زیادی سطح خاکها با لایه‌ای از نمک پوشیده شده است. مشاهده شده که اکسیداسیون و املاح در سیل‌سازی و دریافت‌های حفر شده در این اراضی پیانگ شرایط زلزله‌گذاری ناامن‌تر و نوسانات شدید سطح اراضی است. در این منطقه دو قطعه داشته‌اند که به هم بستگی دارند.

1- Remnant plateau 2- River alluvial plain 3- Piedmont plain 4- Lowland 5- Wind deposit
شکنجه پراکنش واحدهای فیزیوگرافی گروههای این واقعیت است که پراکنش مکانی ویژه‌های شورآب ارتباط مستقیم با لناسکمک منطقه مطالعاتی دارد. همان طوری که بر روی نقشه شوری ملاحفله می‌گردد کلاس‌های شوری S_1 و S_2 عمدتاً در پرگیرنده دشتهای رسوبی رودخانه‌ای بوده و حالی که اراضی یست شامل کلاس‌های شوری S_3 و S_4 هم‌اکنون.

در خلال مطالعات نیمه حضیری که به مبدأ پرداخته و به منظور تعیین نسبی اراضی واقع در منطقه مورد نظر برای کشاورزان قارچاب، مطالعات نیمه حضیری این منطقه توسط موسسه تحصیلات خاک و آب اصفهان در طی سال‌های ۱۳۶۴ و ۱۳۶۵ صورت گرفته است (۱). شکل ۳ نقشه شوری منطقه مطالعاتی که در طی مطالعات نیمه حضیری تهیه شده شناخته می‌شود. این نقشه برای کشاورزان قارچاب، کلاس‌های مختلف شوری در منطقه مورد مطالعه است. مراحل تهیه نقشه

شکل ۳- نقشه حاصل از مطالعات نیمه حضیری به‌دست می‌آید:

آزاد کلاس‌های شوری (سمی زیمنس بوستی) عبارت است از: S_1, S_2, S_3, S_4.

روش آماری

به طور کلی، روشهای آماری تجزیه و تحلیل‌های آماری، حدود ده درصد از تعداد 0.5 برای صورت گرفته از این نوع می‌باشد. یک منظور مناسبی دارد از جمله تجزیه و S_1, S_2, S_3, S_4.

مطالعات نیمه حضیری

به مبانی منظور تعیین نسبی اراضی واقع در منطقه مورد نظر برای کشاورزان قارچاب، مطالعات نیمه حضیری این منطقه

$1 \cdot$ Test data set

$2 \cdot$ Regionalized variable
نقطه ای از اختلاف را می‌توان به صورت
$|Z(x_i) - Z(x_i + h)|$
مد نظیر و تحلیل قرار داد. در عمل این اختلاف که باید با توجه به کاهش مدل مورد نظر در نقطه x کلیه نقاط دیگر به فاصله h از آن قرار گرفته‌اند مورد نظر می‌باشد. بنابراین این مدل موضعی به دست می‌آید که با توجه به این که متوسط این کمیت صفر و یا نزدیک به صفر خواهد بود در محاسبات مجدداً اختلاف را در نظر می‌گیرد که توسط معادله زیر مشخص می‌گردد:

$$\gamma(h) = \text{AVE} \left[|Z(x_i) - Z(x_i + h)| \right]$$

[1]

این رابطه در حقیقت بایانگر واریانس اختلاف بین دو مقدار $Z(x+h)$ و $Z(x)$ می‌باشد. در عمل رابطه فوق با استفاده از آماره‌های موجود اختلافی که جمعاً بدست آمده $N(h)$ جمع نمونه‌هایی که به فاصله h یکدیگر واقع در دست باشند، با تصحیح نمونه طرفین معادله [1] بر عدد دو رابطه زیر حاصل می‌شود:

$$\hat{\gamma}(h) = \frac{1}{N(h)} \sum_{i=1}^{N(h)} |Z(x_i) - Z(x_i + h)|$$

[2]

در رابطه فوق $\gamma(h)$ را سمت چپ واریانس γ نامیده‌ایم. در عمل این تابع مشخص نبرد و می‌باشد بر اساس نمونه‌های موجود مقدار تجربی آن به دست آید. بنابراین به ارزی مقدار مختلف h باید مقادیر برای $\hat{\gamma}(h)$ به دست آورد. بدین ترتیب باستی مدلی را با این مقادیر تجربی وقید داد. در عمل با رسم مقادیر سمت چپ واریانس بر روی محور عمودی به ازای فاصله مختلف h سعی می‌شود که بهترین مدل منطقی بر داده‌ها انتخاب و استفاده شود. منحنی به دست آمده را اصطلاحاً

\text{واریوگرام}

به طور کلی می‌توان در دو نقطه به فاصله مشخص $\gamma(h)$ بررسی اختلاف مقداری که مورد نظر در آن دو نقطه $\left[Z(x_i) - Z(x_i + h)\right]$ این اختلاف مورد نظر بوده بلکه قدر مطلق آن اهمیت دارد.

1- Variogram 2- Semi-variance
تشخیص بهینه‌ای را می‌توان توسط مجموعه تخمین‌گرهاي آماده کردن و یادآوری کردن تطبیق
کریجینگ

اصول کریجینگ یک از تعمیم پایه‌ای برای کلیه روش‌های آماری تخمین و برآورد متغیرهای مکانی بوده و به عنوان یک تابع خلاصه از مجموعه مشاهدات توزیع شده واقع در همسایگی نقاط یک می‌خواهیم تخمین بین زمین شاخص می‌شود. (15 و 16)

\[
\hat{Z}(x_i) = \sum_{i=1}^{N} \lambda_i Z(x_i)
\]

که در آن \(\lambda_i\) مشخصه تخمین‌دهنده در نقطه \(x_i\) مقدار تعیین مشخصه مورد بررسی در نقطه \(x_i\) با نرمال آماری است که به نمونه \(Z(x_i)\) واقع در همسایگی نقطه \(x_i\) می‌باشد. در این رابطه \(n\) بیانگر تعداد مشاهداتی است که در همسایگی نقاطی که می‌خواهیم بین زمین گرفته‌ایم است. در حکایت هدف از کریجینگ یافتن و وزنه‌های آماری نیز می‌توانیم به گونه‌ای است که واریانس‌های تصویبی گردیده‌ها باید نسبت کردن بین نقاطی که می‌توان به گونه‌ای وزن آماری از می‌توان به فرض که تکریک خلاصه آنها نیز با تاپش شود بیشتر در سایر تخمین‌گرها خصی

\[
\sum_{i=1}^{N} \lambda_i = 1
\]

از طرف دیگر به حداکثر سادگی و واریانس تخمین‌های را یک مشکل بهینه سازی است می‌توان با استفاده از ضریب‌های آگرازد ر، در نهایت با نظریه گراف بیان شده. (15)

1- Sill
2- Spherical
3- Gaussian
4- Range
5- Nugget effect
6- Optimal estimation
7- Kriging
8- Generic
9- Lagrange multiplier

چه تخمین‌هایی؟ مقدار خصوصیت مورد مطالعه بر اساس داده‌های حاصل از نمونه‌های موجود استفاده نمود. چنین

از پارامترهای مدل انتخاب‌شده برای واریوگرام می‌توان

1377
نمودار یافته‌های نوارهای داده‌های شوری درعمق (a) 0-50 سانتی‌متر، (b) 50-100 سانتی‌متر و (c) 100-150 سانتی‌متر

سیستم معادلات کریجینگ را که با استفاده از محاسبات
ماتریسی حل می‌گردد، می‌توان به شکل زیر نوشت:

\[\sum_{j=1}^{n} \lambda_j y_j(x_j, x_i) + \mu = y(x_i) \]

در معادله فوق (5)\(y(x_j, x_i) \) می‌تواند پایان‌گر سمی واریانس بین نمونه‌ها و\(y(x_i) \) سمی واریانس بین نقطه‌های مورد تخمین و نمونه‌های واقع در همسایگی آن نقطه‌ها باشد. دستگاه معادلات کریجینگ را می‌توان به‌طور پراورد نقطه‌ای و یا پراورده قطعه‌ای انجام داد. در این پرسن پراورده آماری برای پراورده

1- Point Kriging
2- Block kriging
3- Skewness
جدول 1- خلاصه آماری داده‌های شویی (ds/m) در اعماق مختلف خاک، قبل و بعد از تبدیل گازه‌پروری

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>دامنه‌های قبل از تبدیل</th>
<th>دامنه‌های بعد از تبدیل</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 سانتی‌متر</td>
<td>616-616 میلیگرم</td>
<td>2/2-2/3 میلیگرم</td>
</tr>
<tr>
<td>5-10 سانتی‌متر</td>
<td>139-139 میلیگرم</td>
<td>8/7-8/7 میلیگرم</td>
</tr>
<tr>
<td>10-15 سانتی‌متر</td>
<td>7/4-7/4 میلیگرم</td>
<td>9/7-9/7 میلیگرم</td>
</tr>
<tr>
<td>15-20 سانتی‌متر</td>
<td>375-375 میلیگرم</td>
<td>1/2-1/2 میلیگرم</td>
</tr>
<tr>
<td>20-25 سانتی‌متر</td>
<td>100-100 میلیگرم</td>
<td>10/10 میلیگرم</td>
</tr>
<tr>
<td>25-30 سانتی‌متر</td>
<td>119-119 میلیگرم</td>
<td>15/15 میلیگرم</td>
</tr>
</tbody>
</table>

تعداد روغن‌های 580-0 متداول می‌باشد.

تعداد میانگین می‌باشد.

روغن‌های 0 و 0 تعداد میانگین و میانه در هر عمیق به شدت کاهش یافته است.

مقیاس میزان متوسط شویی در هر عمیق خاک مشابه است که میزان خاک کاریکاتوری عصاره اشاع خاک با افزایش عمیق خاک کاهش می‌یابد. روغن مشابه برای تغییرات واریانس با عمیق نیز مشاهده شده است.

عمیق افزوده شده که افزایش احتمالاً تحت تأثیر مسکن‌های سطحی است، باعث تغییرات می‌شود که مقدار دقیقاً مشاهده شده است.

1- Trend
شکل ۶- نقشه پراکنش داده‌های شوری در اعماق (a) ۰-۵ سانتی‌متر، (b) ۵-۱۰۰ سانتی‌متر و (c) ۱۰۰-۱۵۰ سانتی‌متر
شکل 7- واریوگرام‌های تجربی \((\text{Ln}(dS/m^2)) \) (نقاط) و مدل‌های برآشتر داده شده (منحنی‌ها) داده‌های شوری در اعماق

1- 5- 500 سانتی‌متر، (b) 500- 1000 سانتی‌متر و (c) 1000- 1500 سانتی‌متر

دو مقياس منطقه‌ای و محلی نمی‌باشد. علاوه بر آن، از نظریه واریوگرام‌ها میزان اثر قطعه‌ای نسبی یکسان و حدود 28% حد آستانه را تشکیل می‌دهد. این امر را می‌توان ناشی از تغییرات تصادفی نتیجه گرفت که در هر عمق ثابت که در فواصل کمتر از فاصله نمونه‌برداری بروز می‌نماید. زیاد بودن نسبت اثر قطعه‌ای به حد آستانه، باعث کاهش دقت پراوارود آماری توسط کریجنگ می‌شود (12). هر سه واریوگرام دارای دامنه نظری یکسان

۵۸
جدول ۲- ضرایب مدل‌های پرآورش داده شده بر روی گرامای ترجیحی شوری در اعماق مختلف خاک

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>مدل</th>
<th>اثر قطعه‌ای</th>
<th>اثر تأثیر</th>
<th>دامنه تأثیر</th>
<th>حد آستانه</th>
<th>(Ln(dS/m))</th>
<th>(Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۱/۵۹۱</td>
<td>۵/۵۹۱</td>
<td>۱۲/۰۳</td>
<td>کروی</td>
<td>۵۰-۵۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱/۳۸۷</td>
<td>۵/۳۸۷</td>
<td>۱۲/۱۰</td>
<td>کروی</td>
<td>۵۰۰-۱۰۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱/۱۵۶</td>
<td>۵/۲۳۸</td>
<td>۱۳/۶۰</td>
<td>کروی</td>
<td>۱۰۰۰-۱۵۰۰</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۸ - نقشه‌های کروی‌گانگ شوری (dS/m) در اعماق (a) ۱-۰-۵ سانتی‌متر، (b) ۵-۰-۵۰ سانتی‌متر و (c) ۵۰-۰-۱۵۰ سانتی‌متر
آزمایش‌های کروی-چربی بر ابعاد مختلف گویای این واقيت است که میزان شوری در لایه سطحی بیشتر از لایه‌های عمیق بهره، به‌جز دیگر دلایل غالب بودن فرآیند صعود موادی از محلول در نیتروخ خاک است.

به‌منظور پایبندی به این پرسش که کدام یک از نتایج شوری حاصل از مصالح خاک و کروی-چربی درای دقت قبل قبول می‌شود از دانه‌های محاسباتی جهت مقایسه آنها استفاده شد. بدین ترتیب، انتسا کلاس‌های مدرج شوری نیم‌متر خاک (0 - 15 سانتی‌متر) با توجه به جدول ارائه شده در نشریه 20 ماهه تشخیصات خاک و آب (2) برای مکان‌ها که دارای دامنه‌ای معیار بوده تعمیم و عادل آن تزویج برای تحلیل طبقه‌بندی خاک‌های منطقه مشخص گردید. مقایسه بین تغییرات هر دو روش با محاسبه جدول در طبقه‌بندی اثر گرفت. (5).

در این جدول دامنه‌های معیار به وسیله سنتونهای جدول می‌باشد. نمایش داده شده است، با تغییرات حاصل از روشهای مختلف کروی-چربی و کروی-چربی برای کلاس‌های مختلف شوری مقایسه گردید. به طور کلی در جداول دو طرفه تشخیص اعداد که بر روی قطعات واقع شدند میزان تغییرات بین روشهای تناول و واقيت روشنی را نشان می‌دهد. علاوه بر آن، در صفت دقت کلیر بین دو دسته از میزان را می‌توان از اندازه‌گیری کل ابعاد کل ابعاد مورد پیروی کرده است. در نتیجه توافق کلی می‌توان به صحت و دقت کلیر هرکدام از روشهای پیاده‌سازی میزان تغییرات و تفسیر نمود. همان طوری که در جدول میزان میزان دو گروه روشنی کروی-چربی منجر به تشخیص شوری خاک که دارای دقت بالاتری نسبت به تشخیص شوری حاصل از روشهای آزاد می‌باشد. میزان در نظر کاربردی دقت دقیق نسبی ابزار محلول شوری خاک. دلایل دو طرفه تشخیص را می‌توان به دو دسته دیگر مدرج تفسیر و پیروی از داده‌های که درون دو دسته اشکال مختلف شوری را به طور جدایی تشخیص نموده، به‌دنبال ترمیمی شدند. در هنری این توزیع درجه تشخیص به میزان کلاس‌های مختلف را نشان می‌دهد. به‌این ترتیب شرایط نابرابری میان تغییرات در دو دسته دیگر معنی ندارد.

1- Back-transformation 2- Two-sided similarity table 3- Overall accuracy
جدول ۳- جداول تشابه در طریق مدل‌های معیاری (ستونها) و (b) برآوردهای طبقه‌بندی شده توسط کرجینگ

(a) تفاوت مشاهده‌ای از مساوح آزاد (پریدنها)

<table>
<thead>
<tr>
<th>کرجینگ/داههای معیار</th>
<th>جمع دریفت</th>
<th>خطای/</th>
<th>S۴</th>
<th>S۳</th>
<th>S۲</th>
<th>S۱</th>
<th>S۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>طیف به‌سازی</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>53</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>طیف توسعه</td>
<td>100</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>S۱</td>
</tr>
<tr>
<td>طیف گسترش</td>
<td>70</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>S۳</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>55</td>
<td>-</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>S۴</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>60</td>
<td>15</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>S۵</td>
</tr>
<tr>
<td>جمع دریفت</td>
<td>66</td>
<td>13</td>
<td>25</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>خطای/</td>
<td>32</td>
<td>10</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>80/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) مساوح آزاد/داههای معیار

<table>
<thead>
<tr>
<th>مساوح آزاد/داههای معیار</th>
<th>جمع دریفت</th>
<th>خطای/</th>
<th>S۴</th>
<th>S۳</th>
<th>S۲</th>
<th>S۱</th>
<th>S۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>طیف به‌سازی</td>
<td>50</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>S۱</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>76</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>S۲</td>
</tr>
<tr>
<td>طیف توسعه</td>
<td>40</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>S۳</td>
</tr>
<tr>
<td>طیف افزایش</td>
<td>50</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>S۴</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>64</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>S۵</td>
</tr>
<tr>
<td>طیف نوسان</td>
<td>55</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>45</td>
<td>S۶</td>
</tr>
<tr>
<td>جمع دریفت</td>
<td>66</td>
<td>13</td>
<td>25</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>خطای/</td>
<td>32</td>
<td>10</td>
<td>25</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>80/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- Omission error 2- Commission error

گرفته شود عدد حاصل را اصطلاحاً خطاهای ناشی از حذف کار تعداد عناصری راک در هر کلاس شوری به درستی تخمین زده و تمودن؛ نامیده و چنانچه تعداد جمله موجود در ریفها طیفیبندی شده‌اند، (عناصر موجود بر روی فرض اصلی) با پایشی بر تعداد کل عناصر موجود در ستون و یا ریفبر مربوطه تفسیر مورد نظر باشد، نتیجه‌ای از خطاهای ناشی از اصل ملاح‌دهاشتی می‌نامند. از نظر عملي، یک کاربر محاسبه‌ای حداکثر پرودن
ناتیج تشابه می‌دهد که از تشابه‌های کریجینگ به راحتی می‌توان به منظور تعیین ساختار پراکنش مقایسه شوری در منطقه مورد مطالعه استفاده نمود. این امر را می‌توان ناشی از اثرات پیوسته یا ناپایدار در روش کریجینگ دانست (14). از سوی دیگر، با توجه به ماهمت کمی این گونه تشبه‌ها، از آنجا می‌توان به عنوان لایه‌ای مختلف اطلاعاتی در سیستمهای اطلاعات جغرافیایی، جهت تجزیه و تحلیل‌های کمی بهره جست. بنابراین، می‌توان در کنار روش‌های معمول بهره‌برداری از تشابه‌های شوری خاک، از روشهای آماری ارائه شده در نظریه تئوری‌سنجی‌های بزرگ، بررسی کرد.

ساسگزای
بدین وسیله از آن الگوسیستم فردی درون نریخته عضو هیئت علمی بخش تحقیقات خاک و آب اصفهان، به خاطر انتشار نهاد اطلاعات و تنش‌های مربوط تکمیل و قدردانی می‌شود.

خطاهای نوع اخیر است. در حقیقت این نوع خطای نهایی درجه قابلیت اعتبار یک نوع تکثیر می‌باشد (20). هم‌اکنون، که تا تا حدود ۳ تشابه می‌دهد، میزان اعتبار تشبه‌های طبقه‌بندی شده کریجینگ برای کلاس‌های شوری ۵ و ۱ به مرتبه پیشتر از تشبه شوری متعلق از مساحی خاک‌است. به دیگر سخن، درجه قابلیت اعتبار و انتظار تشبه‌های کریجینگ در شاندن کلاس‌های شوری ۵ و ۱ حدود ۷۵/۸% است. در حالی که تنش شوری حاصل از مساحی خاک‌ها با قابلیت اعتبار حدود ۵۰/۰% قدر به شناسنامه‌ای این دو کلاس شوری می‌باشد. تفسیر عملی این تشابه بدون گونه است که احتمال متعاقب بودن نقاط تخمین زده شد، شوری به کلاس‌های مزبور واقع در طبیعت، در روش کریجینگ خیلی بیشتر از روش مساحی آزاد است. از طرف دیگر هر دو روش با میزان قابلیت اعتبار تقریباً مشابه کلاس‌های ۵۲ و ۴۰ مشخص ساخته‌اند. این در حالی است که هر دو روش در نهایت داده صحیح کلاس ۲۷ ناموفق برده‌اند.

مراجع
1- وزارت کشاورزی، ۱۳۴۷. مطالعات خاک کشاورزی. تفصیلی دقیق منطقه رامهرمز استان خوزستان. مؤسسه تحقیقات خاک و آب، نشریه شماره ۱۳۶۰ صفحه ۱۲۳.
2- وزارت کشاورزی، ۱۳۵۸. راهنمای طبقه‌بندی آراضی برای کشور آی. مؤسسه تحقیقات خاک و آب، نشریه شماره ۱۰۴۰ صفحه ۱۰۴.

1- Reliability 2- Smoothing effect 3- Geographical Information System (GIS)

