بررسی خشک شدن شلتوک به روش لایه نازک و تعیین ضخامت بهینه با به کارگیری یک
خشک کن خورشیدی آزمایشگاهی با جریان جا به جای آزاد

علی زمردیان \(, \) و علی رضا علامة

چیت‌کده
برنگ بر اساس چند مهم‌ترین منبع غذایی مرم‌ایران است. خشک کردن برنگ پس از برداشت به خاطر داشتن رطوبت و استحکام در فراوری و با پایداری، لازم و ضروری است. در بیشتر مناطق برنگ خیز ایران این غله به صورت مبنا، به پهن کردن شلتوک در سطح گیاهی و با عمق کم در پر ایران جای خشکی شده. بنابراین آزمایشات اکتشافی و کلیه محققان در این زمینه به تحقیق در این امر پرداخته‌اند. همچنین هزینه محمد رفسنجانی و نیاز به گرد و غبار، خطر بهره‌برداری و رطوبتی می‌گردد. در این آزمایش خشک کردن شلتوک به روش لایه‌ای نازک، با استفاده از یک خشک کن خورشیدی از نوع غیر تغییر مختصات، که جریان‌ها در آن به صورت جدا به جای آزاد (در انرژی‌های محور شناور) برقرار می‌شود. با بهره‌گیری از معادلات نیوتن و پیج برسی گردید. هدف اصلی این آزمایش بررسی شرایط خشک شدن برنگ به روش لایه‌ای نازک و تعیین ضخامت بهینه لایه‌ای بود.

داده‌های آزمایشگاهی کوری این است که ضخامت دور سانتی‌متری همگونی قابل قبولی با مدل‌های رياضی حاکم بر خشکی شدن به روی لایه‌ای نازک دارد. بنابراین می‌توان عملی داشت که با لایه‌ای نازک به حساب آورده در صورتی که عمل‌های بیشتر از دور سانتی‌متری نیاز به دست نباشد.

واژه‌های کلیدی: خشک کن خورشیدی، لایه نازک، شلتوک

1. استادیار مکانیک مایه‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
2. کارشناس ارشد موسسه تحقیقات برنج کشور
مقیده
برنگ پس از گندم کنی که مهم‌ترین غلاتی است که نقش حساسی را در تغذیه مردم جهان و ایران ایفا می‌کند. برای پایه‌گذاری سازمان شورای بین‌المللی خارج‌الکشوری (F.A.O) در سال 1367، سطح زیر کشت برنگ در دما 150 میلیون هکتار، مقدار تولید آن 268 میلیون تن و میانگین عملکرد آن برای 3809 کیلوگرم در هکتار بوده است. در ایران، در مناطق زراعی 1367-77 سطح زیر کشت برنگ 221 هزار هکتار، مقدار تولید آن 278 میلیون تن و میانگین عملکرد در هکتار برابر با 450 کیلوگرم بوده است.

برنگ (کمی) بر اساس کودیه شده (به وسیله کمیابی، خرمکوبک و ادوات سنی دیگر)، در این مقاله می‌پرسی شده که شنوکی محصول که شلوتک (Rough rice-paddy) است. محصول که شلوتک یا برنگ (کمی) گذشته در آماده استفاده گردید. رطوبت شلوتک حدود 25 درصد است و اگر با چینی رطوبت زیادی ایجاد شود، یا اگر در زمین‌های تکمیلی بگذرد، کار خیاطی همچنین کیک زردگی یا نشکستگی دانه‌ها می‌شود.

(5) این روش به‌واسطه تحضیر بیشتر و افزایش میزان شلوتک که با پیش‌گری از گشذان و در نتیجه ریزش کمی از گندم برنگ برای زمین‌های زراعی شلوتک کردن شلوتک را در مناطق برنج‌زاری به صورت مزروع اقتصادی نیست.

اگر از اثری پاک خورشید در شرایط کنترل شده استفاده شود، ضمن صرف‌جویی در مصرف سوخت (مانند سوخت‌های

1381 فسیلی و انرژی الکتریسیتی) باعث حفظ مؤثر محیط زیست می‌گردد. حفاظت از محیط زیست و به‌کارگیری منابع انرژی تجدید‌پذیر (انرژی خورشیدی) در وظایف اجتماعی کشور است. این انرژی خورشیدی عموماً دسگاه‌هایی به نام گردن‌های (جمع‌کننده‌های عناصر می‌گردد. به‌دری کنار خشک کردن فراورده‌های خورشید به‌امام نسبتاً کم 700-400 درجه سانتی‌گراد نیاز است. استفاده از گردن‌های نیاز تجویز می‌گردد. که از فناوری ساده‌ای نیز برخوردارند. (8).

منشی خشک کردن انرژی از خورشید به‌وسیله کمیابی، خرمکوبک و ادوات سنی دیگر) و این نام‌داده است. از (Rough rice-paddy) محصول که شلوتک (Rough rice-paddy) است. محصول که شلوتک یا برنگ (کمی) گذشته در آماده استفاده گردید. رطوبت شلوتک حدود 25 درصد است و اگر با چینی رطوبت زیادی ایجاد شود، یا اگر در زمین‌های تکمیلی بگذرد، کار خیاطی همچنین کیک زردگی یا نشکستگی دانه‌ها می‌شود.

(5) این روش به‌واسطه تحضیر بیشتر و افزایش میزان شلوتک که با پیش‌گری از گشذان و در نتیجه ریزش کمی از گندم برنگ برای زمین‌های زراعی شلوتک را در مناطق برنج‌زاری به صورت مزروع اقتصادی نیست.

اگر از اثری پاک خورشید در شرایط کنترل شده استفاده شود، ضمن صرف‌جویی در مصرف سوخت (مانند سوخت‌های

1381
سیستم خشک کردن نهایی به وسیله یک گرم‌ای در دما های کم کاهش می‌دهد.

استوئر و شرفت (11) به بررسی خشک کردن شناور به صورت یا تک‌تازی در خشک کن‌های خورشیدی از نوع غیر فعال مستقیم پرداختند.

زمان و پالا (18) یک روش معادلات تجریبی برای خشک کردن خشک کن‌های خورشیدی ارائه دادند. آنها یکی از حاصله‌های اصلی استفاده از خشک کن‌های غیر فعال مستقیم و خشک کن‌های روش سنی است. نتایج نشان داد که بیشترین سرعت خشک شدن بنا استفاده از خشک کن‌های غیر فعال مستقیم و کمترین سرعت خشک شدن براوورد تابش خورشیدی دمای هوا در درون خشک کن‌ها صحن تخت و پیشگیری تغییر رطوبت و دما در بستر دانه بود.

بالا و وودز (3) با استفاده از یک خشک کن‌های خورشیدی از نوع غیر فعال مستقیم به بررسی خشک کردن شناور پرداختند. نتایج نشان داد که در سرعت‌های کم جریان هوا، به دلیل جا به جایی آزاد جهت خشک کردن به کندی حکمرانی می‌کند و بستره دانه را به خاطر پیش از حد خشک کردن لایه زیرین نمی‌توان دریغ گرفت. همچنین، به علت افت دما در سرتاسر بستر، ارتفاع دودکش در توزیع نیروی شناوری آن کمی دارد.

مواد و روش‌ها

در مورد به کارگیری خشک کن‌های خورشیدی برای خشک کردن شناور پژوهش‌های بسیاری صورت پذیرفته است. که همگی این خشک کن‌ها را برای تهیه ابتدا به صورت یا تک‌تازی خشک کردن تهیه دانه‌ها در نظر گرفته‌اند. همچنین، پژوهش‌ها برای عمق لاایه نازک تاریخ‌های مختلفی ارائه داده‌اند. برخی عمق لاایه نازک را ضخامت یک دانه می‌دانند، و بعضی عمق لاایه نازک را
ب) نیروی محکم کشنازی در داخل سیستم بر قرار کند.

پس از اتمام مراحل اجرایی آن، محتوای گرم و مهم نشان دهنده محل ورود با بهره‌مندی به صورتی که در حقیقت در فضای داخلی و خارجی شرکت کننده در محفظه خشک‌کن خورشیدی و...
بررسی خشک شدن شلتوک به روش‌های نازک و تعیین صفات پهن‌پوست در گرددیر

23. بسته بذر با استفاده از تزرئیز دیق توزیع و در زمان معین درون خشکشک قرار داده می‌شود.

4. پس از سه‌گانه، شدن تقریباً هر 30 دقیقه، بسته بذر خارج و توزیع می‌گردد. این کار تا پایان آزمایش به طور دمای انجام گرفت.

در پایان هر دوره آزمایش، و برای هر عمق و هر نرخ، نتایج معکوس از مکانی از کسری به متغیرهای ذکری و تعریض رطوبت می‌شود.

6. باستان و زمان ساعت پس از هر آزمایش، میانگین نتایج رطوبت تعیین می‌شود. جنون این نتایج رطوبت اوایل و انتهایی را مشخص می‌کرد، و در حین آزمایش‌های 30 دقیقه مقادیر کاهش و زدن در اندازه‌گیری سطح، نرخ خشک شدن در شرایط حاکم بر آزمایش قابل آزمون بود.

5. آگاهی از دارد رطوبت تعدادی شلتوک در به کارگیری معادلات مختلف خشک شدن بر طبقه‌ای لایه نازک لازم است.

RH=exp [-K(t+C)(100M_r)^N] [1] M_r نیست برای رطوبت نسبی محیط (اعشاری)، (درصد) C، (C)، (C)، و C.K تایپ هایی رطوبت تعادلی (درصد)، N ، و C.K هستند که برای محصولات مختلف متغیر است. این ضرایب ثابت برای شلتوک به صورت زیر گزارش گرددیر است (5):

K=1.9187x10^5 [2]
C=51.161 [3]
N=2.4451 [4]

M_r=E-Fln[-(t+C) In (RH)] [5]

که در آن ضرایب ثابت برای شلتوک به قرار زیر است (6):

E=0.29394 [7]
F=0.046015 [8]
C=35.703 [9]

گرددیر که هوا گرم شده توسط گرددیر و تحت تغییرات شناوری به طور یکنواخت به بستر بذر وارد شد. برای توزیع محصول در بستر خشکشک از یک تزرئیز دیق (200 میل) استفاده گرددیر. به منظور به حداکثر رسیدند خصوصیات خروج، توزیع و روبرودیه بستر بر دخل خشکشک طوری انجام می‌شود که کلاً کمتر از 20 ثانیه طول یکصدی گرددیر ساخته شده که به صورت سری به محض خشکشک نصب شده است، تحت زاویه 45 درجه روی شاسی بی‌ندار

نصب گرددیر (8) و همراه خشکشک طوری روز به مصرف قرار داده می‌شود که در ظره شرعی حداکثر سیب و از حدود به جداگان. با این کار، حداکثر انرژی خورشیدی در طول روز توسط گرددیر درآمده است.

برای اندازه‌گیری دمای هوا در گرددیر و خشکشک از ترمومتر های Type-T (25°C) استفاده شد. مناطق معکوس از عبور هوا در گرددیر و بستر محصول (ورود و خروج هوا) در نظر گرفته شد گرددیر داده‌برداری (Data logger) با کمک یک کامپیوتر، در فواصل معین زمانی دما در آن مناطق ثبت گردید. لازم به یادآوری است که تمام ترمومترها های این استفاده به طور دقیق و اسنادی گردیدند و برای ثبت دمای توسط آنها می‌باشد رگرسیون مربوطه استفاده شد. دما توسط با استفاده از ترمومتر معمولی که انتهایی با فنیه مربوطه ضریبی شده بود، انداده گرددیر گردید.

آزمایش‌های روزانه به روش زیر انجام گرفت:

1. میانگین رطوبت اولیه بعد از آغاز هر آزمایش با استفاده از حداقل ناکم می‌باشد و قرار دادن در کشور حجاری به مدت 24 ساعت و دمای 10 درجه سانتی‌گراد ثبت گردید.

2. از همان توزیع محصول در تفزع دیق 2 ، 3 و 5 سانتی‌متر (هر روز یک دقیقه و هر عمق سه بار ثبت روزی بستر بذر

ریخته می‌شود. با استفاده از یک کارکرد، بذر درون بستر در عمق‌های معین به صورت یکنواخت پهن می‌گرددیر.

213
بعد از ظهور یا بانی می‌گرفت.

نتایج و بحث

برای هر کدام از الگوهای خشک شدن (مدل نیوتن و مدل پیچ) بی‌روش و لایه‌های نازک، با در نظر گرفتن معادله جرم مربوط به محاسبه درصد رطوبت تعادلی شلنک (معادلات 5 و 9) با استفاده از روش رگرسیون (به کار گرفته نرم‌افزار SPSS) معادلات معینی برای پیش‌بینی وارد شدن شلنک، فرم آن را در جدول 1 و 2 آمده است.

همان‌گونه که نتایج جدول 1 و 2 گواهی می‌دهد، با در نظر گرفتن معادله مربوط به مباحث و رطوبت تعادلی (#) معادلات 5 و 9 و تعیین مقادیر آنها و قرار دادن ارقام فوق در معادلات مربوط به خشک شدن بی‌روش و لایه‌های نازک، بهترین ضرایب مربوط به معادلات حاکم بر خشک شدن نازک بر مبنای استفاده از نرم‌افزار SPSS تعیین گردیده. بنابراین مقدار آزمایشی (مقدار رطوبت و زمان پیشرفت خشک شدن) به قرار دادن این مقادیر در معادلات فوق (معادلات 14 و 15) نتیجه گرفته شد که ارتباط به دست آمده باید برای عملیات با سانتی‌متری با مقادیر تغییری حاصل از معادلات خشک شدن بی‌روش لایه‌های نازک بر اساس معادله جرم تعادلی همگونی خاصی دارد (منحنی‌های 1 و 4). در صورتی که داده‌های آزمایشی برای عملیات خشک شدن به دست می‌دهد تابع خشک شدن با دسته‌بندی #3 و 5 اصلی مطلب برای معادلات نیوتن و پیچ صحت دارد. ولی عطای استفاده در محاسبات (استخراج شده از به کار گیری نرم‌افزار SPSS) معادله نیوتن به مرتبه کمتر از خطای محاسبه شده از معادله پیچ است. همچنین، می‌توان نتیجه گرفت که سطح داده‌ها مربوط به ضخامت‌های 4 و 6 سانتی‌متری از معادلات لایه‌های نازک پیشینی نمی‌کنند.

خرش شدن محصول با یا ضخامت عمیق بسیار دیگر رفتار خشک شدن لایه‌های نازک را ندارد و توصیه می‌گردد برای بررسی روند خشک شدن در این ضخامت‌ها از معادلات مربوط به معادله زوریتس و سینگ (5)...

\[\text{TL} = -C_0 + C_1 T + C_2 T^2 + C_3 T^3 \]

که در آن \(T \) درجه حرارت مطلق (\(K \)) ضرایب تابع سنتی‌پیش‌بینی که برای محصولات شلنک این ضرایب بی‌روش لایه‌های نازک از معادله‌های معروف زیر استفاده گردید:

\[C_0 = 3.88368 \times 10^9 \]
\[C_1 = -3.52486 \]
\[C_2 = 1.1205 \times 10^2 \]
\[C_3 = 1.30047 \]

برای بررسی خشک شدن شلنک بی‌روش لایه‌های نازک از معادله‌های معروف زیر استفاده گردید:

\[\text{MR} = \frac{M - M_e}{M_0 - M_e} = a \exp(-k0) \]

که در آن:

\[\text{MR} = \text{نسبت رطوبت} \]
\[\text{M} = \text{درصد رطوبت تعادلی} \]
\[\text{M_e} = \text{درصد رطوبت اولیه} \]
\[\text{k} = \text{نرخ تغییری} \]
\[\text{a} = \text{نرخ تغییری} \]

طیاب خشک شدن 1 و 2 معادله پیچ (12) و وانک و سینگ (17)...

\[\text{MR} = \exp(-X^0) \]

آزمایش‌ها در روز ساخته ده‌بی‌سهی محله و سه‌موزت مورد نظر با همراهی بودن در کارگاه‌های بخش مکانیک ماشین‌های کشاورزی اندازه‌گیری شده و تجهیز شده، و در محوطه بی‌روش (واقع در باغچه‌ها) در ماههای مهر و آذر سال 1377 برای تعیین عمق بهینه خشک شدن بی‌روش لایه‌های نازک با استفاده از ارزو خورشید آزمایش‌گرایی آزمایش‌ها در سه ضخامت بسیار (2.5 و 6 سانتی‌متری) انجام گردید تا حالت‌ها یا که به روش لایه‌های نازک نیز گردیده است تعیین شود. آزمایش‌ها هر روز ساخته ده‌بی‌سهی محله و سه‌موزت مورد نظر با همراهی بودن در کارگاه‌های بخش مکانیک ماشین‌های کشاورزی اندازه‌گیری شده و تجهیز شده، و در محوطه بی‌روش (واقع در باغچه‌ها) در ماههای مهر و آذر سال 1377 برای تعیین عمق بهینه خشک شدن بی‌روش لایه‌های نازک با استفاده از ارزو خورشید آزمایش‌گرایی آزمایش‌ها در سه ضخامت بسیار (2.5 و 6 سانتی‌متری) انجام گردید تا حالت‌ها یا که به روش لایه‌های نازک نیز گردیده است تعیین شود. آزمایش‌ها هر روز ساخته ده‌بی‌سهی محله و سه‌موزت مورد نظر با همراهی بودن در کارگاه‌های بخش مکانیک ماشین‌های کشاورزی اندازه‌گیری شده و تجهیز شده، و در محوطه بی‌روش (واقع در باغچه‌ها) در ماههای مهر و آذر سال 1377 برای تعیین عمق بهینه خشک شدن بی‌روش لایه‌های نازک با استفاده از ارزو خورشید آزمایش‌گرایی آزمایش‌ها در سه ضخامت بسیار (2.5 و 6 سانتی‌متری) انجام گردید تا حالت‌ها یا که به روش لایه‌های نازک نیز گردیده است تعیین شود.
بررسی خشک شدن شن‌کوب به روش لاها نازک و تعیین ضخامت بهینه به‌ه روش کارگیری...

جدول ۱ روابط به دست آمده برای خشک شدن لاها نازک با استفاده از مدل‌های مختلف رطوبت تغییری ویژه معادله نیوتن

<table>
<thead>
<tr>
<th>مدل رطوبت تغییری</th>
<th>خطا</th>
<th>$	ext{R}^2$</th>
<th>استاندارد</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱. $\text{MR}=0.8617 \exp(-0.006110)$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۷۲۲</td>
<td>۰.۰۳۹</td>
<td></td>
</tr>
<tr>
<td>۲. $\text{MR}=0.8807 \exp(-0.007580)$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۷۷۵</td>
<td>۰.۰۴۴</td>
<td></td>
</tr>
<tr>
<td>۳. $\text{MR}=0.8751 \exp(-0.007030)$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۷۶۶</td>
<td>۰.۰۳۸</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲ روابط به دست آمده برای خشک شدن لاها نازک با استفاده از مدل‌های مختلف رطوبت تغییری ویژه معادله پیج

<table>
<thead>
<tr>
<th>مدل رطوبت تغییری</th>
<th>خطا</th>
<th>$	ext{R}^2$</th>
<th>استاندارد</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱. $\text{MR}=\exp(-0.0203950^{0.936552})$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۶۲۲</td>
<td>۰.۰۲۴</td>
<td></td>
</tr>
<tr>
<td>۲. $\text{MR}=\exp(-0.0176510^{0.859807})$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۴۷</td>
<td>۰.۰۲۵</td>
<td></td>
</tr>
<tr>
<td>۳. $\text{MR}=\exp(-0.0186450^{0.8748})$</td>
<td>نقطه‌ای (تصحیح شده) (۵)</td>
<td>۰.۹۵۴</td>
<td>۰.۰۳۳</td>
<td></td>
</tr>
</tbody>
</table>

منحنی ۱ تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیش‌بینی شده توسط معادله نیوتن برای بستر جهاد سانتی‌متری

منحنی ۲ تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیش‌بینی شده توسط معادله نیوتن برای بستر جهاد سانتی‌متری

منحنی ۳ تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیش‌بینی شده توسط معادله نیوتن برای بستر جهاد سانتی‌متری

منحنی ۴ تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیش‌بینی شده توسط معادله نیوتن برای بستر جهاد سانتی‌متری
منحنی ۵: تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقادیر پیش‌بینی شده توسط معادله نیوتن برای بستر شش سانتی‌متری به لایه‌های ضخیم استفاده کرده همچنین، از نتایج آزمایش می‌آید که در بستر خشک‌کن یک‌نواخت در عمل خشک‌کن شدن وجود دارد و بستر پدر نسبت به ورود هوای گرم شده از منابع مورد استفاده

1. بی نام. ۱۳۷۷. بانک اطلاعات کشاورزی جهان. اداره کل آمار و اطلاعات وزارت کشاورزی.
2. بی نام. ۱۳۷۸. آمارنامه کشاورزی سال زراعی ۷۷-۷۶. اداره کل آمار و اطلاعات وزارت کشاورزی.

