چکیده
به منظور بررسی رنگ ملامس چغندر قند و امکان جایگزینی آن با کارامل مصرفی صنایع غذایی، به ویژه نوشابه‌سازی، مقداری از ملامس چغندر قند به یک ستون رژیم آملاپیت ب تنظیم pH از 7.24 تا 7.69 تنظیم شد. در نتیجه، تغییر pH در شاخص میزان رنگ ملامس برابر با 0.14 درجه برمک در مقدار رنگ برابر 0.15 میلی‌لیتر به دست آمد. حالا جداسازی، رنگ جامد به کمک تیشر ب و ترکیب شنوایی نشان دهنده تغییر pH به دست آمده. رنگ‌های تولیدی از چغندر قند در شرایط مختلف، از جمله pH 6.42 و 7.18، دچار تغییر می‌شوند. این مقدار قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً قابل توجهی از دو رنگ پیدا کرده‌اند که به‌طور گسترده قابل قبولی در این شرایط در اولویت جذب در آنها تقریباً C: \Users\User\Desktop\Documents\untitled.txt
باستان نیز وجود داشته است. پیشرفت جوامع به‌سر بردن پدیده‌ای صنعت تولید رنگ‌های غذایی است. رنگ‌های موجود در صنایع غذایی به‌دلایل مختلف، از جمله برای جایگزینی رنگ‌هایی که در افرادی از بین می‌روند یا ایجاد رنگ‌های خاص در غذا. در صنایع غذایی به‌دقت‌ها ویژه‌ای نوشته شده‌اند و به‌صول بررسی عمده‌ای نسبت به آن‌ها انجام شده است. (19)

در صنایع غذایی به دلایل مختلف، از جمله برای جایگزینی رنگ‌هایی که در افرادی از بین می‌روند یا ایجاد رنگ‌های خاص در غذا. در صنایع غذایی به‌دقت‌ها ویژه‌ای نوشته شده‌اند و به‌صول بررسی عمده‌ای نسبت به آن‌ها انجام شده است. (19)

1. رنگ‌های مصنوعی چه‌گونه ایجاد می‌شود؟ این رنگ‌ها از بیش از ۱۰۰ نوع مختلف وارداتی صنایع غذایی به‌دقت‌ها ویژه‌ای نوشته شده‌اند و به‌صول بررسی عمده‌ای نسبت به آن‌ها انجام شده است. (19)

2. رنگ‌های طبیعی که شاخص رنگ‌های غذایی یا حیوانات است. هستند. مانند کاراندیس، آنتوکوژن‌ها (مانند کاراندیس، آنتوکوژن‌ها) هم‌ارزی‌های میوه و مایل‌هایی. هم‌ارزی‌های بی‌شکاً، از این‌رو، هم‌ارزی‌های بی‌شکاً، از این‌رو، هم‌ارزی‌های بی‌شکاً و مایل‌هایی. هم‌ارزی‌های بی‌شکاً، از این‌رو، H
چگونگی کارکرد رنگ کاراملی از ماسک چندن دریاچه و پروسی ویژگی‌ها و کاربرد آن در صنایع غذایی

آزمایش‌های لازم به شرح ذیل روز محلول رنگ حاصل انجام شد. همه دسته‌ها با استفاده از دستگاه خنک‌کننده تعیین شد. شرکت ریکاکایی (ایکان‌پد) فرود گردشگری و آزمایش‌های لازم روز یک پردازش به انجام رسید. آزمایش‌های انجام شده روز محلول رنگ و پودر رنگ تولیدی عبارت بود:

1. آنالیز‌های شدت رنگ محلول رنگ: شدت رنگ محلول ICUMSA تعیین شد. (شکل 15)

2. آنالیز‌های میزان خاکستر: میزان خاکستر کل در نمونه ماسک مصرف شده و در نگ تولید شده مطابق روی استاندارد خاکستر کردن شکل تعیین گردد. (شکل 2)

3. آنالیز‌های میزان قند: میزان قند کل در نمونه ماسک مصرف شده و در نگ تولید شده تعیین شد. توزیع توزیع طراحی روش بالایی در استاندارد‌های (شکل 2).

4. آنالیز‌های عدد شاخه‌های حساسسیگنر به تعداد متوسط 420 و تعداد 420 تعیین گردد. (شکل 17)

IV = \frac{A_{420} (pH = 9)}{A_{420} (pH = 4)}

5. آنالیز‌های میزان قابلیت حل پودر رنگ تولید شده در محیط‌های آبی: میزان قابلیت حل پودر رنگ به طور تجربی در آب تعیین شد.

6. تعیین قدرت رنگ چند میکروگرام در مولکول ماسک: به منظور تعیین قدرت رنگ چند میکروگرام در مولکول ماسک: به منظور تعیین رنگ در نگ تولید شده، به ویژه در هنگام استفاده در صنایع نوشابه‌سازی، مطالعه روی استاندارد واحد EBC گردید. واحد EBC پہلی اندام که گردید. واحد EBC برای تعیین شدن به 0.4 میکروگرم تعیین شد. سپس محلول رنگ با یک برش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رنگ با یک بخش 0.5 میلیلیتر متفق گردید. سپس محلول رн
محصول سود، میزان شدت رنگ هر یک با استفاده از ICUMSA و روش اندازه‌گیری گردید.
10. مقایسه طول موج حداکثر جذب رنگ تولید شده و کاراکتر طیف جذبی (در محدوده طول موج‌های 190 تا 600 نانومتر) نمونه‌های آزمایشی و شاهد تهیه، و طول موج حداکثر جذب برای آنها تعیین گردید.

11. انتقال‌گری و مقایسه رنگ‌گیری کمی رنگ تولید‌شده تهیه شده با رنگ تولید شده و کاراکتر، توسط دستگاه برای رنگ سنج هانترلوب: شاخص‌های a, b در مورد نمونه‌های آزمایشی و شاهد، توسط دستگاه هانترلوب مدل 3000، اندازه‌گیری و مقایسه شدند (19).

12. بررسی امکان گیاه‌گری رنگ تولید شده به عنوان بخشی از پودر کاکتوس در تولید کلرولر شیار کاکتوس‌ها. بدین منظور نمونه‌های شیار کاکتوس مقایسه در فرمول کشت کرده شدند. این افتادگی را از پودر کاکتوس با عناوین تولید شده و کاراکتر، توسط دستگاه کمپیوتری پاسخ‌گیری کامل اجرا شد. نمونه آزمایشی به شکل کریستال‌های شیاه شده بود. درصد دارایی به عنوان نسبی‌های مختلفی از نمونه‌های آزمایشی تعیین کرد.

7. بررسی امکان تولید نوشابه‌گازدار میوه با استفاده از رنگ تولید شده، به جای استفاده از کاراکتر وارداتی، نمونه‌های شاهد با استفاده از رنگ تولید شده و کاراکتر، و اثر مقدار با فرمول‌های مختلف، نیز بر ترکیب سیاست‌های محیطی 7/7، 7/6، 7/5 گرم، تعیین گردید.

9. بررسی اثر ترکیب در مقایسه با کاراکتر وارداتی در نوشابه‌های تهیه شده: نمونه‌های تهیه شده با رنگ تولید شده و کاراکتر، در شرایط مختلف، شیرین تر از نمونه‌های سایر تهیه‌گران، که به صورت محدود به در در معرض ترکیبی مصرف شده‌اند. تهیه شده کاملاً نسبت به پودر کاکتوس با رنگ تولید شده و کاراکتر تعیین کرد.

ICUMSA و شاهد مطالب روند، 100 گرم شکر و حدود 700 گرم آب، تهیه گردید. مقدار استفاده از رنگ تولیدی به شکل کاراکتر، بر پایه حاصل‌های ارزیابی شده، رنگ بیانی که در نمونه‌های آزمایشی و شاهد تعیین گردید. میزان ورودی از پودر کاکتوس به نوشابه‌های مختلف، نیز بر ترکیب سیاست‌های محیطی 7/7، 7/6، 7/5 گرم، تعیین گردید.

13. سنجش پاسخ‌های تولید پودر رنگ از مسال: با اندازه‌گیری آمپلیتودهای انجام شده و محاسبات، مقدار پودر رنگ تولید شده، با اواز مصرف یک کیلوگرم مسال تعیین گردید. همچنین بر اساس اندازه‌گیری پودر رنگ به‌طور دقیق، و بر پایه نرخ‌های زمان اندازه‌گیری پودر قرار گرفته.

1. Single Stimulus 2. Hedonic scale
جاکرد رنگ کارامل از ماسه چغندریز و پرسری و روزگار آن در صنایع غذایی

خوراکی‌ها، یا شرایط اسیدی مختلف قابل استفاده این
5. قابلیت حل پودر زنگ تولید شده در امید، در چربی حرارت
محیط (40 درجه سانتی‌گراد) برابر 120 دقیقه بود. این
حالات زمان‌های بدون زنگ تولید شده بازده نسبت استفاده از رنگ و
خواب نشده مان به صورت رسمی در موارد غذایی است.
6. توان رنگ‌دهی EBC، حداقل 45 درصد بود که با توجه به قیمت
مقاپس رنگ کارامل، حداقل 45 درصد بود که با توجه به قیمت
بیمارک‌های رنگ تولید شده در پاداری و از بیماری واردات و
سلامت آن نسبت به کارامل، هک مصرف آن را تا یک بسته در
پاداری کارامل ممکن می‌سازد. زنگ تولید شده از توان
زنگ‌دهی خروجی پرستاری است (6 و 7).
7. پاداری رنگ تولید شده در پاداری نور، دما و دمای نگهداری در
مقاپس رنگ کارامل در نبوشان بیمار زمان تعیین شد. هم‌تیم
پاداری رنگ در این است که فرآیندی که احتمالاً می‌تواند به شرایط مختلفی این
بیمارک‌ها می‌شود در شرایط مختلفی ابزار رنگ گردید.
پاداری رنگ تولیدی و کارامل در دمای محیط و دمای چهار
درجه سانتی‌گراد مقایسه شد (شکل های 3 و 4). تایپ نشان
داده که از رنگ تولیدی شده رنگ از روز اول تا روز پنجاه‌میلی‌ثانیه
اثربخشی می‌گذارد که احتمالاً در این است که فرآیندی که احتمالاً می‌تواند به شرایط مختلفی این
بیمارک‌ها می‌شود در شرایط مختلفی ابزار رنگ گردید.
8. مقدار خاکستر ماسه بر طور میانگین با چهار تکرار برابر 87/5
درصد، و مقدار خاکستر رنگ تولیدی 70 درصد بود.
9. پاداری، خاکستر رنگ تولیدی نسبت به ماسه 75 درصد کاهش یافت که این مقدار در مخلوط رنگ تولیدی و قدرت
زیاد جذب انتخابی زنگ کارامل می‌باشد.
10. مقدار تقدیر کل ماسه به طور میانگین با چهار تکرار 47/5
درصد بود در حالی که میزان تقدیر کل رنگ تولیدی با استفاده
از روش سومگی – نلسون و پریدر شکل 2/4 13 درصد بود.
11. پاداری، میزان تقدیر رنگ تولیدی نسبت به ماسه 75/3
درصد کاهش یافت که میزان دهنده قدرت زیاد جذب
انتحای زنگ است. میزان ناچیز ثابت در رنگ تولیدی نیز
می‌تواند در بیایاق خالص و پاداری نسبت به معیار نافذ
کنده می‌گردد، و قابلیت زیاد ابزاری آن است.
12. شاخص IV پریدر رنگ تولید شده برابر 129/1 و پری کارامل
پریدر 1/4/24 محسوس گردید. قابل مقایسه بودن شاخص IV
رنگ تولید شده و کارامل نشان داده شواختت این در و
حساسیت نداشتن رنگ تولیدی به تغییر pH
ماتریک می‌باشد. پاداری رنگ تولید شده در محلوده گشتوده از

Xijk = μ + Sj + Sk + Sjk + Σ Ijk

نتایج و بحث
1. پاداری شکل 1 افزایش مقدار زنگ و درجه پریدر اثر معمولی
(75/3) بر پاداری جداسازی زنگ داشتند (1). با توجه به
نتایج به دست آمده و لزوم درست نگهداشتن به پیشنهاد
جداسازی، حذف مطلوب پریدر محلول ماسه رقیق شده
پریدر 10 و مقدار زنگ 150 میلی‌لیتر، به عنوان بهترین
شرایط جداسازی تغییر مقدار در حالت آزمایش فرستاده نمونه
به سمت نا اشکال کامل زنگ داشتند.
2. مقدار خاکستر ماسه به طور میانگین با چهار تکرار برابر 87/5
درصد، و مقدار خاکستر رنگ تولیدی 70 درصد بود.
پاداری، خاکستر رنگ تولیدی نسبت به ماسه 75 درصد کاهش یافت که این مقدار در مخلوط رنگ تولیدی و قدرت
زیاد جذب انتخابی زنگ کارامل می‌باشد.
3. مقدار تقدیر کل ماسه به طور میانگین با چهار تکرار 47/5
درصد بود در حالی که میزان تقدیر کل رنگ تولیدی با استفاده
از روش سومگی – نلسون و پریدر شکل 2/4 13 درصد بود.
پاداری، میزان تقدیر رنگ تولیدی نسبت به ماسه 75/3
درصد کاهش یافت که میزان دهنده قدرت زیاد جذب
انتحای زنگ است. میزان ناچیز ثابت در رنگ تولیدی نیز
می‌تواند در بیایاق خالص و پاداری نسبت به معیار نافذ
کنده می‌گردد، و قابلیت زیاد ابزاری آن است.
4. شاخص IV پریدر رنگ تولید شده برابر 129/1 و پری کارامل
پریدر 1/4/24 محسوس گردید. قابل مقایسه بودن شاخص IV
رنگ تولید شده و کارامل نشان داده شواختت این در و
حساسیت نداشتن رنگ تولیدی به تغییر pH
ماتریک می‌باشد. پاداری رنگ تولید شده در محلوده گشتوده از
شکل 1. پاژده چندانی زنگ از ملایم

شکل 2. منحنی استاندارد محلول ساکارز در غلظتهای مختلف

\(R^2 = 0.90 \)
چگا کودن رنگ کاراملی از ملاس چشدرختند و پروسی ویگی ها و کاربرد آن در صنایع غذایی

شکل 3. مقایسه رنگ تولیدی (نموده) و کارامل (شاده) در نوشابه زمزم در دمای محیط

شکل 4. مقایسه رنگ تولیدی (نموده) و کارامل (شاده) در نوشابه زمزم در دمای 43°C
شکل 5. مقایسه اثر نور و طول زمان بر پایداری رنگ تولیدی و کارامل

شرايط تابيکي به مراتب بيشتر از شدت رنگ نوضه‌های نگهداي شده در شرايط نور بوده است (شكل‌های 3 و 4). بنابراین، پایداری رنگ تولید شده در شرايط مختلف، نه تنها با پایداری کارامل در همان شرايط قابل مقایسه بوده، بلکه در نهایت، برای شکل 6، شدت رنگ تولید شده از شدت رنگ کارامل پیشرفت بوده است.

8. نتایج نشان داد که با افزایش pH محيط، شدت رنگ نيز افزایش یافته، از این نظر اختلاف معنی‌داري بین رنگ توليد شده و کارامل ملاحظه شنده (جدول 1) در نتیجه، رنگ توليد شده به یارى مصرف در غذاهاي مختلف نشون می‌دهد. امکان استفاده از شکل‌هاي توليد شده در کاراهي پایسته، و نتایج نشان داد که می‌توان تا حدود 20 درصد از پودر کاکتوس را با رنگ توليد شده ناگفت. گروه‌هاي 7 و 8 به ترتيب 278 و 277 نانومتر به دست آمد. بنابراین نوع رنگ در رنگ توليد شده و کارامل تقریباً بکسان است.

10. آنالیز منحنی هاي a و L نشان داد که رنگ توليد شده از نظر كمي نيز بسيار مشابه کارامل مي‌باشد (شكل 9).
جداول 1. مقایسه pH بر پایه‌ی رنگ تولیدی و کارامل

<table>
<thead>
<tr>
<th>نمی‌گه (رنگ تولیدی)</th>
<th>مقدار کارامل</th>
<th>نامه‌گه (ریگ تولیدی)</th>
<th>هاش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۵۸</td>
<td>۰/۵۹</td>
<td>۱/۵</td>
<td></td>
</tr>
<tr>
<td>۰/۵۴</td>
<td>۰/۵۳</td>
<td>۲/۴</td>
<td></td>
</tr>
<tr>
<td>۰/۵۵</td>
<td>۰/۵۳</td>
<td>۲/۷</td>
<td></td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۰/۵۳</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۰/۵۵</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۰/۵۸</td>
<td>۰/۵۷</td>
<td>۷</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲. مقایسه رنگ تولیدی (نمونه) و کارامل (شاهد) در نوسانه زمزم در دمای محیط و ۴۰° C
جدول ۲. تشخیص حسی درصد‌های مختلف جانشین‌سازی کاکائو توسط رنگ تولیدی در شیرو کاکائو

<table>
<thead>
<tr>
<th>درصد تشخیص اختلاف طعم</th>
<th>رنگ</th>
<th>نامونه پودر رنگ (گرم)</th>
<th>(درصد) (گرم)</th>
<th>جانشین سازی کاکائو نامونه (میلی ایر)</th>
<th>مقدار</th>
<th>حجم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰</td>
<td>شاهد</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۵/۸</td>
<td>۵۰</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۷</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
<td>۱۲/۵</td>
<td>۸۹۶</td>
<td>۰</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۴</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
<td>۲۵</td>
<td>۵۰۷</td>
<td>۲۲</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۴</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
<td>۲۵</td>
<td>۵۰۷</td>
<td>۲۲</td>
</tr>
<tr>
<td>۵۰</td>
<td>۰/۴</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
<td>۲۵</td>
<td>۵۰۷</td>
<td>۲۲</td>
</tr>
</tbody>
</table>

شکل ۷. طیف جذبی رنگ تولید شده از ملاس (نامونه)
شکل ۸ طیف جذبی کارامل (شاهد)

شکل ۹ مقایسه شاخص‌های کمی رنگ تولیدی و کارامل به کمک سیستم هاترلوب
منابع مورد استفاده

1. بیصری، ع. ۱۳۶۸. طرح‌های آماری در علوم کشاورزی. چاپ چهارم، انتشارات دانشگاه شیراز.
2. پوئنلو، و. ۱۳۵۳. کنترل کیفیی و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. محرمی، م. ۱۳۷۰. استخراج رنگ از ریشه چمن‌نورد قرمز و کاربرد آن در صنایع غذایی. دانشگاه تربیت مدرس.
4. مسکوکی، ع. م. ۱۳۶۷. استخراج از رنگ‌های طبیعی گیاهی در مواد غذایی. دانشگاه علم و صنعت.

