بررسی توان پروراری گوسفندان ناپایین با استفاده از جیره‌های حاوی سطوح مختلف انرژی و پروتئین

چکیده
نرد بر اساس یک تحقیق روزانه در میدان تصادفی به روش ماکوریل، با 1 جیره غذایی به مدت 24 روز تغذیه شده‌اند. جیره‌شامل، سه سطح درصد 17/2% 17/1% 17/0% پروتئینی دارند که به ترتیب 17/2%, 17/1%, 17/0% پروتئینی بودند. نتایج آزمایش نشان داد که برای هر نوع تغذیه داشته باشیم گوسفندان‌ها و دارای انرژی متوسط، نسبت به گوسفندان تغذیه شده با جیره‌های کم انرژی، خوراک بخشی مصرف نمودند. میانگین وزن زندگی این اتوپیش وزن روزانه برخورداری بر این تغذیه شده با جیره‌های پرآتریزی، متوسط انرژی و کم انرژی، به ترتیب 0/34, 0/33 و 0/32 کیلوگرم‌تر به‌عنوان ۱۶۰، ۱۴۴ و ۱۲۲ کیلوگرم در روز بود. که بین سه سطح انرژی جیره‌های اختلاف معنی‌دار (P<0/05) دیده شد، گر درصد مصرف کننده غذای پرآتریزی از ضریب نهایی تبدیل خوراک به‌قرار (8/27) نسبت به گردهای مصرف کننده متوسط انرژی و کم انرژی به ترتیب 0/15 و 0/16 کیلوگرم در روز، آنها شاید باعث بهبود معنی‌دار (P<0/05) از نظر انرژی و گروه پرآتریزی به‌قرار، بهبود گروه، افزایش وزن زندگی و درصد گروه استفاده داشت. درصد لاغری این اتوپیش بر اثر جیره بهبود یافت، اما افزایش درصد دندان‌های این اتوپیش درصد جیره بهبود یافت، اما افزایش درصد دندان‌های این اتوپیش چریلی‌اش به دنبال داشت. درصد استخوان و خاکستر نشان داد که این اتوپیش نتیجه تأثیر انرژی بیشتر گروه، افزایش پروتئین جیره باعث بهبود اثر بهبود باره دارد. پروتئین و افزایش درصد گروه استفاده لاغری که در این اتوپیش نشان داد.

واژه‌های کلیدی: انرژی و پروتئین، جدا، افزایش وزن روزانه، ضریب تبدیل خوراک، مصرف خوراک

مقدمه
پروتئین گوسفند در ایران به عنوان شرایط آماده‌سازی منابع طبیعی و فرهنگ و دارای دمرد از جایگاه‌های برخورداری است. ولی پیشینه به روش‌های که‌کدامیک و به کار گرفتن روش‌های

1. دانشجوی دکتری علوم دامی، دانشکده کشاورزی، دانشگاه تهران
2. استادار علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

149
مواد و روش‌ها
برای انجام این آزمایش از نزدیک آرزه برای نویسنده قبلی با مسئولین ون در روی نیز داشته بوده و در نهایت از حیوانات زنده استفاده گردیده است. با این حال، برای حیوانات زنده استفاده گردیده است. برای این منظور از دستگاه‌های بیولوژیکی و روش‌های آزمایش‌گری استفاده گردیده است.

سطح انرژی و پروتئین جیره اثر مقاول بر یکدهی داشته و در اندازه‌گیری ویژگی‌های لازم تأثیر می‌گزارد. نتایج بارهای از پروتئین‌های مختلف مصرف ماده خشک و میزان کربوهیدرات به قسمت‌های پایین‌تر دستگاه‌ها و آزمایش‌گری‌های مصرف خواهد شد. در این واحد، میزان تولید غذایی نیز برای مواد غذایی تزریق شده در خون‌های حیوانات به‌طور تکمیلی‌شده در روی نیز گردیده است. برای این منظور، مواد غذایی تزریق شده در آزمایش‌های مختلف به‌طور تکمیلی‌شده در روی نیز گردیده است.

سه‌وزن و پروتئین جیره اثر مقاول بر یکدهی داشته و در اندازه‌گیری ویژگی‌های لازم تأثیر می‌گزارد. نتایج بارهای از پروتئین‌های مختلف مصرف ماده خشک و میزان کربوهیدرات به قسمت‌های پایین‌تر دستگاه‌ها و آزمایش‌گری‌های مصرف خواهد شد. در این واحد، میزان تولید غذایی نیز برای مواد غذایی تزریق شده در روی نیز گردیده است. برای این منظور، مواد غذایی تزریق شده در آزمایش‌های مختلف به‌طور تکمیلی‌شده در روی نیز گردیده است.
جدول 1. ترکیب مواد خوراکی مصرف شده توسط مردم آزماشی بر حسب ماده خشک

نیم	جیره	اجزاء		
LL	55	22	22	22
LM	21	22	22	22
LH	22	22	22	22
ML	22	22	22	22
MM	22	22	22	22
MH	22	22	22	22
HL	22	22	22	22
HM	22	22	22	22
HH	22	22	22	22

1. حرف اول هر نیم از سمت چپ نشان دهنده سطح انرژی و حرف دوم نشان دهنده متعلقات پروتئین می‌باشد.

بیان: M به نشان می‌دهد که این مقدار در حداقل و حداکثر خطای 2.5% قرار دارد.

گرم، بیای گذراندن دوره جسمانی نمی‌شود، لذا به حداکثر به مدت 18 ساعت در جریان حرارت هدود چهار درجه سانتی‌گراد نگهداری شرایط. بعد از اندازه گیری وزن لازمه سرد، این به این می‌رسد که برای یک طوله به دو نیمه و هر نیمه به قطعات مختلف تقسیم شده و وزن یک درصد قطعه به طور جدایی از اندازه‌گیری گردد (1).

برای تعبیر درصد پروتئین، چربی، رطوبت، و حاکم‌تر، از این قطعات مختلف نمونه‌گیری گرفته و به وسیله چرخ گشوت دوبار چرخ شده، پس از مخلوط کردن کامل نمونه‌ها، از هر نیمه لازم به کنترل 50 گرمی تهیه و به آزمایشگاه ارسال گردید. سطح مقطع راست با استفاده از کاغذ شامل (استنات) و سپس در آزمایشگاه با استفاده از سنسی تلای متر اندازه‌گیری گردید.

جایگیرین جیره‌های تبلیغاتی، و سپس برای مدت 92 روز و هر روز در سه گروه در اختیار بوده افراد کنار قرار گرفته. غذای باقی مانده از روز قبل، همراه با جمع‌آوری و توزیع می‌گشت، تا مصرف غذای روزانه اندام‌گیری شود. آزمون در تمام دوره به طور آزاد در اختیار بیمار قرار داشت.

امیری علی‌اکبر، رضائی "مسیر انتخابی هوایی به صورت هفته‌ای، و وزن هر گوسفند در هفته یک بار با رعایت 14-16 ساعت گروه‌گیری اندام‌گیری می‌شود.

در پایان آزمایش و پس از آن روند و نشان کشیده، با رعایت حداکثر 15 ساعت محرکت از آم و غذا از هر تیم‌های ۳ پس در هر گروه وزنی (در مجموع شش بار برای هر تیمار) به طور تصادفی انتخاب و کشتار گردید. پس از اندازه‌گیری وزن لاش‌ه
اطلاعات حاصله با استفاده از روش GLM در برنامه آماری SAS نیز از طریق آزمون چند دامنه دانک (25) انجام شد.

نتایج وبحث
خصوصیات پرواری اثر انرژی

میانگین خصوصیات پرواری برای سطوح مختلف انرژی در جدول 2 آورده شده است. همان طور که در این جدول می‌شود، ماده خشک مصرفی روزانه افرازیان انرژی جنین بیشتر شده، به طوری که در گروه این انرژی بیشترین مصرف بهره‌ها داشته است. این لزوم استفاده راحت بودنها، اگر کنترل اکثر خوراکیان این گروه نسبت داده، در این زمینه افتتاح مشابهی با سایر آزمایش‌ها به دست آمده است (4) (% 91.3 و 11.2).

در جدول 2. عدم تأثیر سطح پروتئین جنین بر میانگین خصوصیات

از سمت پایین، بیانگر است که سطح پروتئین 11 درصد در کاهش تأثیر بر

بنابراین در این سیستم گوشت و افرازیهای پیشگیرنی بهره‌های پراورندی خواهد شد.

اثر متقابل انرژی و پروتئین
میانگین خصوصیات رشد پرهای کی‌هفته بر اثر انرژی مختلف پروتئین استفاده کرده بودند در جدول 3 نشان داده شد است. اثر متقابل انرژی و پروتئین به گونه‌ای تأثیر معنی‌دار بر خصوصیات رشد پرهایی نداشت که این اثر در اثر انرژی مختلف پروتئین مطالعه بوده در سطح ثابت اثری است. این تحقیق با تأثیر سایر آزمایش‌ها مطابقت دارد (2 و 7).

واقعی، پرواری پراورندی در همان طوری که، در این میانگین (P<0.05) دیده شد. در این میان، جنین بیشترین پرورش بوده را داشته و در اثر انرژی بیدر پرورش داشته. در این میانگین، پرورش با تأثیر معنی‌داری در اثر انرژی بیدر پرورش داشته. در این میانگین، پرورش با تأثیر معنی‌داری در

152

Downloaded from isthar.iut.ac.ir at 14:33 IRDT on Saturday July 20th 2019
جدول 2. سطوح مختلف آنزیم و پروتئین بر خصوصیات رشد وردها

<table>
<thead>
<tr>
<th>پروتئین خام (درصد)</th>
<th>انزیم قابل متابولیسم (مگاکالیوری بر کیلوگرم)</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/7</td>
<td>28/2</td>
<td>28/3</td>
</tr>
<tr>
<td>12/7</td>
<td>38/2</td>
<td>38/3</td>
</tr>
<tr>
<td>11/7</td>
<td>38/2</td>
<td>38/3</td>
</tr>
<tr>
<td>25/9</td>
<td>1/6a</td>
<td>1/6a</td>
</tr>
<tr>
<td>25/9</td>
<td>25/6</td>
<td>25/6</td>
</tr>
<tr>
<td>20/3</td>
<td>1/3c</td>
<td>1/3c</td>
</tr>
<tr>
<td>57/3</td>
<td>1/2a</td>
<td>1/2a</td>
</tr>
<tr>
<td>9/8</td>
<td>1/2a</td>
<td>1/2a</td>
</tr>
<tr>
<td>49/3a</td>
<td>35/4b</td>
<td>35/4b</td>
</tr>
<tr>
<td>3/1</td>
<td>32/8b</td>
<td>32/8b</td>
</tr>
<tr>
<td>15/9</td>
<td>3/5c</td>
<td>3/5c</td>
</tr>
<tr>
<td>15/9</td>
<td>4/3b</td>
<td>4/3b</td>
</tr>
<tr>
<td>6/5b</td>
<td>46/5b</td>
<td>46/5b</td>
</tr>
<tr>
<td>1/2a</td>
<td>26/5b</td>
<td>26/5b</td>
</tr>
<tr>
<td>15/3</td>
<td>28/5b</td>
<td>28/5b</td>
</tr>
<tr>
<td>54/8</td>
<td>6/5a</td>
<td>6/5a</td>
</tr>
<tr>
<td>31/5</td>
<td>1/2a</td>
<td>1/2a</td>
</tr>
<tr>
<td>6/5b</td>
<td>27/5b</td>
<td>27/5b</td>
</tr>
<tr>
<td>27/7</td>
<td>28/3a</td>
<td>28/3a</td>
</tr>
</tbody>
</table>

1. در هر روز اندازه‌گیری شده با حریف متفاوت مشخص شده‌اند با یکدیگر اختلاف معنی‌داری دارند (P<0.05).
2. ماده‌های مختلف فیزیولوژیک مرده به آن‌ها هر کیلوگرم انزیم وزن زنده درصد نسبت به وزن لاشه سرد.
3. فیزیکی استگنا گزارش محدودی می‌شود (20 و 20).

با این حال، جیره‌ها پراتری با سطوح مختلف پروتئین، بیشتر مصرف خوراک و اضافه وزن روزانه را نسبت به جیره‌ها کم انرژی به خود اختصاص دادند. انزیم مصرف خوراک در اثر انزیم انرژی جیره، بیانگر آن است که حاصل در سطح کمتر از 1/5 مگاکالیوری انرژی قابل متابولیسم در هر کیلوگرم ماده خشک، مقدار مصرف خوراک بیشتر با پر شدن...
جدول 3 میانگین آنرژی و پروتئین جیره بر قطعات مختلف لاشه

<table>
<thead>
<tr>
<th>پروتئین خام (درصد)</th>
<th>انرژی قابل متابولیسم (مگاکالری و بر کیلوگرم)</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/7/25</td>
<td>2</td>
</tr>
<tr>
<td>0/0/8</td>
<td>0/0/94</td>
<td>1/0/8</td>
</tr>
<tr>
<td>9/1</td>
<td>9/0</td>
<td>0/0/8</td>
</tr>
<tr>
<td>1/6/3</td>
<td>1/6/3</td>
<td>8/8</td>
</tr>
<tr>
<td>1/1/4</td>
<td>1/6/3</td>
<td>1/7/1</td>
</tr>
<tr>
<td>0/4/1</td>
<td>0/4/1</td>
<td>7/8</td>
</tr>
<tr>
<td>0/0/3</td>
<td>0/0/3</td>
<td>6/2</td>
</tr>
<tr>
<td>3/8</td>
<td>3/5</td>
<td>3/5</td>
</tr>
<tr>
<td>2/4/3</td>
<td>2/0/2</td>
<td>3/2</td>
</tr>
<tr>
<td>0/0/1</td>
<td>0/0/1</td>
<td>0/0/1</td>
</tr>
<tr>
<td>0/0/8</td>
<td>0/0/8</td>
<td>0/0/1</td>
</tr>
<tr>
<td>0/0/1</td>
<td>1/5/0</td>
<td>1/5/0</td>
</tr>
<tr>
<td>1/3/3</td>
<td>1/3/3</td>
<td>1/3/3</td>
</tr>
<tr>
<td>0/0/1</td>
<td>0/0/1</td>
<td>0/0/1</td>
</tr>
<tr>
<td>0/0/1</td>
<td>0/0/1</td>
<td>0/0/1</td>
</tr>
<tr>
<td>0/0/1</td>
<td>0/0/1</td>
<td>0/0/1</td>
</tr>
</tbody>
</table>

1. در هر رنگ اعداد که با حروف مختلف مشخص شده‌اند پیکولگر اختلاف معنی‌داری دارند (P<0.05).

2. وزن قطعات بر حسب کیلوگرم و درصد آنها نسبت به وزن لاشه سرد بین شده است.

جهش قرار داشت، به طوری که جیره‌های پرازرسی با سطوح مختلف پروتئین بهترین پیدا کرد. در این مورد نشان داده شده است که از جریان‌های انرژی و انرژی متوسط، تاییدگنده این مطلب است.

خصوصیات لاشه

میانگین خصوصیات مختلف لاشه برده در سطوح مختلف انرژی و پروتئین در سطوح 0.02 و آزمایش‌های در جداول 0.02 و 0.03 متقابل آنها در یک آزمایش‌گاه 0.02 و 0.03 تیپ 2 دیده شد. همان‌طور که در جدول 0.02 نشان داده شده است، میانگین گروه پرازرسی، با میانگین 0/1/4 کیلوگرم، بهترین پیدا کرد. جیره وزن زنده را در انتها، نسبت به گروه در 0.02 مقدار است (P<0.05) مشاهده گردد. گروه پرازرسی (4) در گروه کلاسیک (3) گیری کرده و گروه پرازرسی وزن لاشه سرد بوده، این نشان دهنده نسبت به گروه پرازرسی بیشتر بوده به طوری که اختلاف بین سطح انرژی برابر 0.02 بود.

مورد فوق معنی‌دار (P<0.05) بود.
<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(s)</th>
<th>(t)</th>
<th>(u)</th>
<th>(v)</th>
<th>(w)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>(p_2)</td>
<td>(p_3)</td>
<td>(p_4)</td>
<td>(p_5)</td>
<td>(p_6)</td>
<td>(p_7)</td>
<td>(p_8)</td>
<td>(p_9)</td>
<td>(p_{10})</td>
<td>(p_{11})</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_4)</td>
<td>(q_5)</td>
<td>(q_6)</td>
<td>(q_7)</td>
<td>(q_8)</td>
<td>(q_9)</td>
<td>(q_{10})</td>
<td>(q_{11})</td>
</tr>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
<td>(r_3)</td>
<td>(r_4)</td>
<td>(r_5)</td>
<td>(r_6)</td>
<td>(r_7)</td>
<td>(r_8)</td>
<td>(r_9)</td>
<td>(r_{10})</td>
<td>(r_{11})</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td>(s_7)</td>
<td>(s_8)</td>
<td>(s_9)</td>
<td>(s_{10})</td>
<td>(s_{11})</td>
</tr>
<tr>
<td>(t_1)</td>
<td>(t_2)</td>
<td>(t_3)</td>
<td>(t_4)</td>
<td>(t_5)</td>
<td>(t_6)</td>
<td>(t_7)</td>
<td>(t_8)</td>
<td>(t_9)</td>
<td>(t_{10})</td>
<td>(t_{11})</td>
</tr>
<tr>
<td>(u_1)</td>
<td>(u_2)</td>
<td>(u_3)</td>
<td>(u_4)</td>
<td>(u_5)</td>
<td>(u_6)</td>
<td>(u_7)</td>
<td>(u_8)</td>
<td>(u_9)</td>
<td>(u_{10})</td>
<td>(u_{11})</td>
</tr>
<tr>
<td>(v_1)</td>
<td>(v_2)</td>
<td>(v_3)</td>
<td>(v_4)</td>
<td>(v_5)</td>
<td>(v_6)</td>
<td>(v_7)</td>
<td>(v_8)</td>
<td>(v_9)</td>
<td>(v_{10})</td>
<td>(v_{11})</td>
</tr>
<tr>
<td>(w_1)</td>
<td>(w_2)</td>
<td>(w_3)</td>
<td>(w_4)</td>
<td>(w_5)</td>
<td>(w_6)</td>
<td>(w_7)</td>
<td>(w_8)</td>
<td>(w_9)</td>
<td>(w_{10})</td>
<td>(w_{11})</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>(x_6)</td>
<td>(x_7)</td>
<td>(x_8)</td>
<td>(x_9)</td>
<td>(x_{10})</td>
<td>(x_{11})</td>
</tr>
<tr>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
<td>(y_4)</td>
<td>(y_5)</td>
<td>(y_6)</td>
<td>(y_7)</td>
<td>(y_8)</td>
<td>(y_9)</td>
<td>(y_{10})</td>
<td>(y_{11})</td>
</tr>
<tr>
<td>(z_1)</td>
<td>(z_2)</td>
<td>(z_3)</td>
<td>(z_4)</td>
<td>(z_5)</td>
<td>(z_6)</td>
<td>(z_7)</td>
<td>(z_8)</td>
<td>(z_9)</td>
<td>(z_{10})</td>
<td>(z_{11})</td>
</tr>
<tr>
<td>کلمه کلیه</td>
<td>HH</td>
<td>HM</td>
<td>ML</td>
<td>MH</td>
<td>LL</td>
<td>LM</td>
<td>MM</td>
<td>MM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td>a/v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td>a/v*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td>a/v†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td>a/v‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td>a/v§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td>a/v∥</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
گرفت که اختلافات بیشتر به سطح انرژی مربوط بوده است.

درصد پروتئین خام و درصد خاکسترکمتر، نسبت به گروه‌های کم انرژی برخوردار بود (جدول 2). کاهش پروتئین خام لاش در اثر افزایش انرژی جیره احتمالاً به دلیل افزایش میزان درریختن زیر معمولی افزایش زننی پروتئین در میزان اضافه وزن رژانه کاهش و نسبت بیکر انرژی می‌یابد (23).

همان‌طور که در جدول 3 ملاحظه می‌شود، اثر سطح پروتئین جیره تناها بر درصد گذشته لحم و پروتئین خام لاش معنی‌دار (5/05 < P) بوده است. گروه‌هایی که با جیره پروتئین تنفسی که بدنتان داستند، از درصد گذشته لحم زیادتری برخوردار بودند ولی از نظر پروتئین خام در حداقل مقدار، نسبت به دو گروه دیگر قرار داشتند. در مورد سایر خصوصیات لاش، اثر پروتئین جیره در سطح آماری بالا در میزان پروتئین جیره در میزان منفی‌دار نبود. نتایج پایایی از نظر وزن‌های آن‌ها نشان داد که پروتئین جیره بر ترکیبات مورد مطالعه لاش گوسفندان می‌باشد (12).

در پروسه آیور متغیر انرژی و پروتئین لاشی، می‌توان ترتیبهای متنی این مطالعه استفاده

1. اسد مقدم، ر. ع. نیکخواه. 1375. اثر انتقای انرژی وزن صفات لاش‌های پروراها بر میزان 8-12 ماهه. نشریه دانشگاه کشاورزی و پرورش حیوانات.
2. پارسایی، س. و. ای نورکی. 1374. تأثیر تراکم انرژی قابل متابولیسم و پروتئین خام بر روی پروتئین جیره روز درصد چربی قابل تغییر بوده است. نشریه دانشگاه شریعتی. دانشگاه تهران.
3. شیرازی، ح. و. ای نورکی. 1373. اثر انرژی مختلف انرژی به پروتئین شیرینی روز درصد چربی قابل تغییر بوده است. نشریه دانشگاه شریعتی. دانشگاه تهران.
4. تقی‌پور، ا. و. ای نورکی. 1370. مطالعه تران پروراها گوسفندان آبیا (ترکمک) و گوسفندان زیا با استفاده از جیره‌های غذایی مختلف و اندازه‌گیری ضریب هضم جیره‌ها. نشریه دانشگاه شریعتی. دانشگاه تهران.
5. میش، ا. و. ای نورکی. 1370. مطالعه بررسی انرژی بر رشد جیره‌ها بر میزان سطح انرژی بر رشد جیره‌ها بر میزان سطح انرژی بر رشد. نشریه پژوهشی مؤسسه تحقیقات دامپروری، شیراز.

