بررسی توان پروراری گوسفندان نایینی با استفاده از چیره‌های حاوی سطوح مختلف انرژی و پروتون‌های

امیرهوردار فروزاده، عباسحسین سعیدی و غلامرضا قربانی

چکیده
نورد برده نائینی با مانگنیوز زن اولیه/0.82/2 کیلوگرم در کد طرح بلوندهای کامل تصادفی به روش ناکوربیل، با 9 جیره غنایی به مدت 24 روز تغذیه شده. چیره‌های مثالی سطح 20/0.75/10/0.75/0.5/0.5/0.75/0.75 کیلوگرم کربناته بیئو پسید، چربی و چربی کریستال، و سطح انرژی شامل سطح 7/1/1/0.75/14/0.75 درصد پروتون خام بود.

نتایج آزمایش نشان داد که برده‌های تغذیه شده با چیره‌های پروتونی و دارای انرژی متوسط، نسبت به گروه‌هایی که تغذیه شده با چیره‌های کم انرژی، حکایت بیشتری مصرف جعبه دارند. مانگنیوز زن زده در انتهای دوره، و افزایش وزن روزانه برده‌های تغذیه شده با چیره‌های پروتونی، متوسط انرژی و کم انرژی، به ترتیب/1/0.75/0.75/0.75/0.75/0.75/0.75/0.75 کیلوگرم در روز بوده که قبل سطح انرژی بوده که پیش از شروع به علاوه به مصرف خوراک، مصرف خوراک

مقدمه
پورش گوسفندان در ایران به علت شرایط اقتصادی، منابع طبیعی و فرهنگ و داشته مردم از جایگاه ویژه‌ای برخوردار است. ولی پایه‌بندی به روش‌های کهن دامداری و به کار تغییرات روش‌های

1. داشجویی کرتی علوم دامی، دانشکده کشاورزی، دانشگاه تهران
2. استادیار علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

143
مواد و روش‌ها
برای انجام این آزمایش از نورد قابل تاییدی با سیانگین و در آلیه 9/1982 نمونه چک کرده و در سن حدود 4 ماهگی استفاده گردید. در این ازمایش نمونه به روشی در حال زینه در دو بلک کمپرس مصنوعی در رطوبت 38% تور کردن که در هر بلک پنج نمونه به صورت صافیه به مرکز تیمار غلیظ‌کننده شده شد. نمونه‌ها در فضاهای انفرادی نگهداری و تغذیه می‌شده‌اند. جیره‌های غذایی شامل سطح انرژی قابل متابولیسم ۲۵۲/۵ و ۲۱۲/۵ گیلریکسی در هر کیلوگرم ماده خشک و سطح پروتئینی ۷۱/۲ و ۶۷/۳ درصد بودند. مقدار انرژی جیره توسط معادله گزارش شده خیلی و همکاران (۱۹۱۹) محاسبه گردید، که ارزیابی قابل تولیدی قابل متابولیسم را با توجه به انرژی قابل هضم و در پایه مقدار دیوئدر سلولی بدون همی سلولی، طبق معادله‌ی به یادداشت پرآورد می‌نماید. میزان پروتئین خام، تغذیه ماده خشک و خاکستر موجود در مواد غذایی نیز در آزمایش‌های اندام‌گذاری گردید. ترکیب و اجزای جیره‌های استفاده شده در جدول ۱ نشان داده‌اند. است.

برای تهیه جیره‌های مواد غذایی، توسط خرمن کرب کردن شاهد تهیه جیره، مواد غذایی در واحد سازمان‌های به صورت بلند در آمد. تمام مواد براساس فرمول‌های موجود، به طور منظم عادت به نیازهایی که تصمیم داده‌اند. به

در ایران حدود ۱۶ کیلوگرم، و سین کشتار بین ۱۵ ماه تا سال است (۱۰ و ۳۰). در برخی از مردم وابسته‌های چربی مصرف رو به رو در تحقیق که به مورا زبان بیشترین استفاده گردیده‌است. به‌طور گسترده‌ای را شاخص منطقه خود بی‌پیاکنی و به‌طور گسترشده را نسبت به سایر دوازده می‌توانند داشته باشند، شاخص بهتر یافته‌اند.

گوشت‌های نانی نیز موج جیره‌ای مصرف ایران‌بوده و در گروه‌های جزو نژادهای سبک کشور شیر می‌شود. این نمود در درجه اول به حالت تولید یافته نماد مصرف قابلیتی مورد تویار قرار گرفته و لازم به همین مقدار تعداد زیادی آن، از نظر تولید گوشت نیز حیز اهمیت است. سطح انرژی و پروتئین جیره اثر متقابل پیک‌بندی داشته و در انرژی خشک و رو به روی یا جیره‌های مشابه تأثیر می‌گذارند. نتایج برگرفته از پژوهش‌ها نشان می‌دهد که سطح بالاتر پروتئین در جیره‌های مواد احتقانی مصرف می‌خشد و میزان عبور پروتئین به‌عنوان یکی از دستگاه‌های جیره شده (۲۱ و ۲۸ و میزان تئورژن افتقا به‌نام شده در بدن را بالا پربرد (۱۱ و ۸۱).

از افزایش خشک و موجب افزایش مصرف ماده خشک و نیتروژن افزایش داده (۱۱) و میزان افزایش میزان اضافه وزن روزانه (۱۱) به نهایی پدیده‌ای بی‌پیاکنی قابلیت دارد (۲۵ و ۲۸ و افزایش سطح انرژی جیره نیز موجب افزایش مصرف خروک شده (۲۴ و ۶) و با افزایش قابلیت هضم مواد غذایی، به‌اصلاح ضرپی تبدیل خروک (۳۷ و ۴ و ۴ و ۷) و در نتیجه افزایش اضافه وزن روزانه می‌شود (۳۷ و ۴ و ۴ و ۷).

چربی‌های پروتئین و کم پروتئین موجب افزایش ذخایر (۷) چربی می‌شوند و از این نظر لازم بوده و کاهش انرژی جیره نیز از تغییر گوشت و در نتیجه کلیفیته آن

١۵٠
جدول 1. ترکیب مواد خوراکی مصرف شده توسط پروتئن مربوط هم‌زمان با استفاده از چوب‌های حاوی

<table>
<thead>
<tr>
<th>نیم‌های</th>
<th>۱۴/۶/۳۴</th>
<th>۲۰/۴/۷۵</th>
<th>۲۰/۵/۷۵</th>
<th>۱۴/۶/۳۴</th>
<th>۱۴/۶/۳۴</th>
<th>۲۰/۴/۷۵</th>
<th>۲۰/۴/۷۵</th>
<th>۱۴/۶/۳۴</th>
<th>۲۰/۵/۷۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰/۴/۷۵</td>
</tr>
<tr>
<td>۲۰/۵/۷۵</td>
</tr>
<tr>
<td>۱۴/۶/۳۴</td>
</tr>
<tr>
<td>۲۰/۴/۷۵</td>
</tr>
</tbody>
</table>

جدایی چوب‌های قبیلی شدن، و سپس برای مدت ۹۲ روز، و هر روز در سه نتیجه انجام پروتئین را قرار دهند. عللی ناشده نه گردد. بعد از اندازه‌گیری وزن از آن به صورت طولی به دو نیمه و هر نیمه به مقدار مختلف تقسیم شد و وزن هر فریم از قطعات به طور جداگانه اندازه‌گیری گردد (۱).

پر پر نسبت دارد و برخی، پیوسته و واکنش‌های
از قطعات مختلف نمونه‌های گرفته و به وسیله چرخ گوشت
دوار چرخ شد و از محلول درون کامین محلول می‌باشد. از هر نیمه
درون ۳۵ می‌توان ۵۰‌کیلو یک واحد که به آزمایشگاه ارسال گردید.
سطح مقطع راسته با استفاده از کاغذ شفاف (استاندارد) در ۳۵ سپس از آزمایشگاه با استفاده از دستگاه پلاسی مترا اندازه‌گیری
گردد.

چای‌گیرین چوب‌های قبیلی شدن، و سپس برای مدت ۹۲ روز، و هر روز در سه نتیجه انجام پروتئین را قرار دهند. عللی ناشده نه گردد. بعد از اندازه‌گیری وزن از آن به صورت طولی به دو نیمه و هر نیمه به مقدار مختلف تقسیم شد و وزن هر فریم از قطعات به طور جداگانه اندازه‌گیری گردد (۱).

در پایان آزمایش و پس از آخرین وزن‌گیری، با رعایت
حدود ۱۵ ساعت محرمیت از آب و غذا، از هر نیمه ۳ پسر در
هر گروه و همزمان در مجموع شش پسر برای هر نیمه به مصرف
تصادفی انتخاب و کشتن گردید. پس از اندازه‌گیری وزن لاشه

۱۵۱
نیاز از طریق آزمون پنجم دانشگاه جنوبی استان کرمان در برنامه آموزشی GLM مورد تجزیه و تحلیل قرار گرفت. مقایسه میانگین‌ها با آزمون‌های SAS نیز صورت گرفت.

نتایج و بحث

خصوصیات پرواری اثر انرژی

میانگین خصوصیات پرواری برای سطوح مختلف انرژی در جدول 2 آورده شده است. با توجه به بلوری در سایر آزمایش‌ها نیز مشاهده شده است (16 و 17)، ابتدا وجود جهانی حاوی سطح پایین پرواری آغاز در سطح را نسبت به پرواری یا دارای پرواری متوسط نشان دادند. دقیقاً از این نتیجه می‌توان به خاتمه پروازی‌ها پیش‌بینی کرد که در حال حاضر نیز با این نتیجه شکفه اجرا تازه‌ترین پروازی‌ها پروازی‌ها انجام شده است. این نتیجه می‌توان با حجم بودن دو مرحله شتاب ایجاد انجام داد. در این زمینه، نتایج مشابه در سایر آزمایش‌ها به دست آمده است (3، 13، 19 و 22).

گروه‌گردهم است (جدول 2).

پرواری میانگین خصوصیات پرواری‌ها نسبت به پرواری‌ها برای بخش پرواری‌ها در این مطالعه نشان داده شد که در سطح پایین پرواری‌ها در این سطح، کاهش اضافه و زون این گروه‌بندی است (جدول 2).

اثر مقیاس انرژی و پرواری

میانگین خصوصیات پرواری‌ها که از سطوح مختلف انرژی و پروازی‌ها استفاده کرد به‌طور ممکن تعیین گردید، به طوری که اختلاف گروه‌بندی‌ها از سطوح مختلف پروازی‌ها در سطح ثابت اثری از انرژی استفاده کرد. به‌طوری که این نتیجه با تجربه‌ی سایر آزمایش‌ها مطابقت دارد (2 و 7).

پروازی‌های ضربت تبدیل خوراک در سطح انرژی اختلاف متن دار (P<0.05) دیده شد. در این میان، پروازی‌های پوستی غیر ضریب تبدیل خوراک در جهانی حاوی انجام شد. کمیت تبدیل خوراک و پروازی‌های کم انرژی بازه را داشتند. کمیت تبدیل خوراک و پروازی‌های کم انرژی، احتمالاً در اثر تبدیل خوراک در پروازی‌های کم انرژی به‌طور ممکن تعیین گردید. به‌طوری که این نتیجه با تجربه‌ی سایر آزمایش‌ها مطابقت دارد (2 و 7).
جدول 2. اثر سطوح مختلف انرژی و پرتوپنا بر خصوصیات رشد پرتوپنا1

<table>
<thead>
<tr>
<th>پرتوپنا خام (میلیمتر)</th>
<th>انرژی قابل متابولیسم (مگاکالری بر کیلوگرم)</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/7</td>
<td>13/2</td>
<td>2</td>
</tr>
<tr>
<td>28/7</td>
<td>28/4</td>
<td>28/3</td>
</tr>
<tr>
<td>38/2</td>
<td>37/4</td>
<td>34/a</td>
</tr>
<tr>
<td>123/9</td>
<td>121</td>
<td>120c</td>
</tr>
<tr>
<td>119</td>
<td>116</td>
<td>124b</td>
</tr>
<tr>
<td>10/8</td>
<td>10/9</td>
<td>8/3c</td>
</tr>
<tr>
<td>25/9</td>
<td>25/7</td>
<td>24/6</td>
</tr>
<tr>
<td>1/8b</td>
<td>1/5b</td>
<td>1/3c</td>
</tr>
<tr>
<td>20/7</td>
<td>19/9</td>
<td>16/4</td>
</tr>
<tr>
<td>52/3</td>
<td>52/4</td>
<td>52/3</td>
</tr>
<tr>
<td>9/8</td>
<td>9/5</td>
<td>9/6a</td>
</tr>
<tr>
<td>49/9b</td>
<td>49/6b</td>
<td>49/9c</td>
</tr>
<tr>
<td>3/1</td>
<td>3/2</td>
<td>3/3a</td>
</tr>
<tr>
<td>15/9</td>
<td>15/7</td>
<td>15/5</td>
</tr>
<tr>
<td>13/3</td>
<td>13/4</td>
<td>13/5ab</td>
</tr>
<tr>
<td>42/5</td>
<td>42/3</td>
<td>42/5c</td>
</tr>
<tr>
<td>14/5</td>
<td>15/6</td>
<td>14/5b</td>
</tr>
<tr>
<td>41/0</td>
<td>41/5</td>
<td>41/5a</td>
</tr>
<tr>
<td>9/8</td>
<td>9/7</td>
<td>9/7c</td>
</tr>
<tr>
<td>عموم متوسط (میلیمتر)</td>
<td>26/3c</td>
<td></td>
</tr>
</tbody>
</table>

1 در حرف امتدادی که به آن در متن مورد اشاره قرار گرفته، تفاوت مشخص شده‌است.
2 مقدار متوسط خصوصیات فعلی هر کیلوگرم انرژی و وزن پرتوپنا برابر می‌باشد.
3 برای طولانی‌تر به وزن پرتوپنا نسبت می‌دهیم.

فیزیکی دستگاه‌گارش محدود می‌شود (افزایش انرژی)

با این حال، جیوهای پراتزی با سطوح مختلف پرتوپنا، به‌طور متوسط پرتوپنا در بودن، تعداد انرژی و
پرتوپنا مکنی دار بود و لیل جیوهای پراتزی با سطوح پایین و
پرتوپنا دار به‌طور میانگین بین انرژی و
پرتوپنا مکنی دار بودن، ارگه‌های مکنی نرم بود. باید از
قابل متابولیسم و پرتوپنا خام هم عمده‌تر تحت تأثیر انرژی
کیلوگرم ماده خشک، مقدار مصرف خوراک بیشتر با پر شدن
<table>
<thead>
<tr>
<th>پروتين خام (درصد)</th>
<th>انرژي قابل متاحليسم (مگاکالرول برمیکروگرم)</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/7</td>
<td>1/00ab</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/32</td>
<td>0/88a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/72</td>
<td>0/89a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/32</td>
<td>0/87a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/25</td>
<td>0/88a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/75</td>
<td>0/87a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/52</td>
<td>0/87a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/75</td>
<td>0/88a</td>
<td>حوزه گردش</td>
</tr>
<tr>
<td>1/75</td>
<td>0/88a</td>
<td>حوزه گردش</td>
</tr>
</tbody>
</table>

1. در هر روش اعدادی که با حروف مختلف مشخص شده‌اند بکی می‌گیرد اختلاف معناداری دارد (P<0.05).
2. وزن قطعات بر حسب کیلوگرم و درصد آنها نسبت به وزن لاسته سرد بیان شده است.

جوره قرار داشت، به طوری که جایگاه پایین‌تری و با سطح مختلف پروتئن بهترین بازده را در این مورد نشان دادند.

خصوصیات لاشه

میانگین خصوصیات مختلف لاشهبها در سطح مختلف انرژی و پروتئین در جدول 1 و 2 و اثر مقایسه آنها در جدول 4 و 5 آورده شده است. همانطور که در جدول 2 دیده می‌شود، گروه پایینزد را گروه پایینزد، با میانگین 4/1 کیلوگرم، پیشترین وزن زنده را در انتهای دوره نسبت به گروه پایینزد (1/2 کیلوگرم) در جدول 2 دیده می‌شود.

میانگین انرژی پیشترین شده‌اگروه برخی خصوصیات به دست آمده را می‌توان به مقادیر کمتر چربی، مقدار کمتر بدن در این گروه، و رابطه معکوس میزان چربی و رطوبت لاشه نسبت داد.
<p>| اسم | انگلیسی | نحوه علامتگذاری | نامه | پیشنهاد | نشانه | تنها | همه | دوجا | پیشنهاد | نشانه | تنها | همه | دوجا | پیشنهاد | نشانه | تنها | همه | دوja | پیشنهاد | نشانه | تنها | همه | دوja |
|-----|---------|---------------|-----|---------|-----|-----|-----|-----|---------|-----|-----|-----|-----|---------|-----|-----|-----|-----|---------|-----|-----|-----|-----|---------|-----|-----|-----|-----|</p>
<table>
<thead>
<tr>
<th>اسم جزء</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
<th>A/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>جزء 1</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 2</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 3</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 4</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 5</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 6</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 7</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
<tr>
<td>جزء 8</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
<td>A/V</td>
</tr>
</tbody>
</table>

* A/V: نامه‌ای
لشته گروه پروریزی هم چنین از درصد توجه خام بیشتر و درصد پروتئین خام و درصد واکنش کمتری، نسبت به گروه‌های کم ارزش برخوردار بود (جدول ۲). کاهش پروتئین خام لاهک در اثر افزایش انرژی جیره احتمالاً به دلیل ذاکریتیسم سن و وزن برهنگی در یک میانگین، زیرا معمولاً با افزایش وزن، نسبت پروتئین در میزان اضافه وزن روند کاهش و نسبت بیشتر انرژی می‌یابد (۳۷) (۳).

همان‌طور که در جدول ۲ ملاحظه می‌شود، اثر سطح گروه‌های تعبیه‌ی به درصد دوستی و پروتئین خام لاهک معنی‌دار (۵/۰ تا ۰/۵) بوده است. گروه‌های که بیشتر از پروتئین تجویز نشده بودند، از درصد دوستی لاهک زیادی برخوردار بودند، ولی از نظر پروتئین خام در حداکثر مقدار، نسبت به دو گروه دیگر قرار داشتند. در مورد سایر خصوصیات لاهک، اثر پروتئین جیره در سطح آماری بین درصد معنی‌دار نبود. نتایج پارامترهای آن، سنتی تست گروه‌های غیره، تاثیر پروتئین جیره بر ترکیبات مورد مطالعه لاهک گوسفندان می‌باشد (۳۷).

در بررسی آثار منفی اثر وزن و پروتئین لاهک، می‌توان نتیجه‌ی در مورد موارد استفاده

۳. شیران، حسن‌دوستی. ۱۳۷۳. بررسی اثر نسبی اثرات مختلف انرژی به پروتئین جیره روی درصد توجه تغذیه‌ی برخورداری و پرواری الیکی بختیاری. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی تبریز، دانشگاه تربیت معلم تبریز.
۴. قره‌فریش، م. ۱۳۷۶. مطالعه پروریزی جیره پروتئین خام (ترکمکی) و گوسفندان زایمی گرفتار در استفاده از جیره‌های غذایی مختلف و اندازه‌گیری ضریب هضمی جیره. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تربیت معلم تبریز.
۵. میرزایی، غ. و. ف. فیاض. ۱۳۷۳. مقایسه اثر دو درصد انرژی بر رشد چربی پروریزی بی‌بالچی. نشریه پژوهشی مؤسسه تحقیقات دامپروری شماره ۶۲.

