فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده در برخی از مواد آلی و کانی خاک

چکیده
مواد آلی و کانی‌های رسی خاک بیشتر آنزیم‌های ریزجانداران آن را جذب و نگهداری کرده. به پایداری آن‌ها در خاک می‌افزایند. این پژوهش برای روش‌نامه‌ی سنگ مه حل که از بخش‌های آلی و کانی خاک از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده در آن انجام گردید. آنکه سلولولاز روی برش آن‌ها از نگهدارنده‌ی آلی و کانی خاک بی‌چینش شده فعالیت آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده در زمان‌های مختلف اندوزه‌گیری شد.

پایداری آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده، به نگهدارنده‌ی آن بسیار واپشته است. پس از 20 روز نگهداری در دمای چهار درجه سانتی‌گراد، کاهش فعالیت آنزیم‌هایی که روی نگهدارنده‌ی آلی مانند آویسل بی‌چینش شده شد. پذیرش بیشتر آن در بررسی آن کاهش فعالیت آنزیم‌هایی که روی خاک و کانی‌های آن بی‌چینش شده بودند نسبت به زاید یک بار کاهش دیگر، فعالیت آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده روی آویسل و مانند‌های کشاورزی به اندوزه‌گیری بستری بررسی شد. لازم به ذکر است که روی نگهدارنده‌ی کشاورزی در خاک شاید نیاز به کاهش بزرگ از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده باشد. در بررسی آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده روی آویسل و مانند‌های کشاورزی در خاک شاید نیاز به کاهش بزرگ از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده باشد. در بررسی آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده روی آویسل و مانند‌های کشاورزی در خاک شاید نیاز به کاهش بزرگ از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده باشد.

شاید پیشنهاد که بیشتر بزرگ از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده باشد. در بررسی آنزیم‌های اکزوگلکاناز و اندرگلکاناز بی‌چینش شده روی آویسل و مانند‌های کشاورزی در خاک شاید نیاز به کاهش بزرگ از فعالیت آنزیم‌های سلولولیتیک بی‌چینش شده باشد.

علی أكبر صفری سنگانی، غیبت امتبازی و حسین شریعتمداری

واژه‌های کلیدی: بی‌چینش شده، اکزوگلکاناز، اندرگلکاناز، مانند‌های کشاورزی، آویسل، کانی‌های رسی

1. دانشجوی سابق دکتری خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشیار میکروپاتی‌شناسی، گروه ریزش‌شناسی، دانشگاه صنعتی اصفهان
3. استاد دکتری خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

163
مقدمه

فراوانی بخش ماده‌های گیاهی سلول‌ساز است که تندیستی به آن تأثیر می‌یابد. ۵۰ تا ۷۰ درصد وزن خشک گیاه را می‌سازد. سلول‌ساز در دوباره یا بخش‌های جلبکی و خریزه از قارچ‌ها نمی‌تواند می‌شود. یک مولکول سلول سبز به‌طور گروه‌گونه‌ای از هم پوسته‌شده تندیستی به ریزجنداران با کمک آنزیم‌های آبکاتک رشد دارد. با این حال، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند. ۲۰۰۰ مولکول یا بیشتر سبز به‌طور می‌شود.

ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و سپس از فراورده‌های ساده آن (سلولیوز و گلکوز) به‌طور می‌گیرند. برای شکستن و فروزینگ کامل سلول‌ساز، گروه‌های از آنزیم‌ها به‌طور جداگانه از او پدید آمده‌اند.

آنزیم‌های سلولیوزیک مانند این آنزیم سلولیوزیک با ی-ΔGLUCOSIDE glycosidase (EG) از ریزجنداران با کمک آنزیم‌های آبکاتک کننده یا بی‌درالازه، سلول‌ساز لیگوسلسولژی را فروزینه کرده و S...
علایم آنتی‌بیوتیک بی‌چینش شده در برخی از مواد آلی و کاتیون شک

پیشی‌گیری، نشانات ایمنی‌سازی خاک و هم‌چنین اندازه و نوع مواد افزوده شده به خاک بسیاری در دما، نمک‌افزار، فشار اسمری، تهوره، بات، ساختمان، اندازه مواد آلی، pH، عنصر

برنیز و کمیاب‌گی، نمک‌ها، عنصر سنتیک، آلاین‌ها، هوا، آب و خاک، آفت‌کش، علف‌شکن و... هر یک از راهی

ویژه بر فعالیت و پایداری آنتی‌بیوتیک‌ها در خاک موثرند (۴، ۹، ۸، ۷، ۶، ۵، ۴ و ۳) (۱۹).

کاتیون‌های رسی خاک (به ویژه‌‌گروه‌های پتامیک‌ها)

سوماتسپوئیسون (۱/۲) و پودر گذم، جو، پرنج، سسوس پرنج،

نخود و خاک ان در آب مکرر آماده شد. با افزودن آب مکدر,

تکان دادن آن و سنتریفیوز کردن در شتاب گریز از مرکز

۱۹۰۰، هر یک از آنها شسته شد. برای جلوگیری از رشد

ورژانداز، در سوسپنژون سخت نگهدارنده‌های آلی، فضای

تولوتو (غلافت ۲/۱) به هر یک از آنها افزوده گردید.

برای یک‌چیز کردن سلولار رنگ کاتیون‌های رسی و خاک,

نخته این نگهدارنده‌ها با کاتیون‌های تانن‌یم پی کلسیم هیدرو

شده. بنابراین کار نگهدارنده آنها سه بار

سپس از تعلید با محلول‌های کلرید نپاسی بای کلرید کلسیم پیک

نرمایش شده، و برای رزیدن نمک‌های اضافه به بار دیگر با

اتلاف ۱۲۵٪ شستشو شد. سرانجام برای جلوگیری از رشد

ورژانداز در آنها، به سوسپنژون (۱/۲) نگهدارنده پتامیک

تولوتو (غلافت ۲/۱) افزوده گردید. با افزودن دیلی‌لیر از

محلول پک کلرید آلومینیم به ۵۰ میلی‌لیر از سوسپنژون

۱/۲ رسها، که دارای ۴/۵ گرم رس هیدرو شد است، و بیه

دانیان خنثی نمودن آنها با هیدروکсид بنا پاسیب ۵۰ مولار و

مسی شستشوی آنها با یک میلی‌لیر در دستگاه سنتریفیوز،

کمپلکس‌های نگهدارنده-هیدروکسید آلومینیم، که دارای نتیجه

به چهار میلی‌متر آلومینیم بر گرم آن یک بود (ش این)

مواد و روش‌ها

که کدمن، جو، پرنج، نخود، سسوس پرنج، تراش چوب و آویس

از نگهدارنده‌های آلی، که ۱-های موش مولی‌ولیتیت‌ها

پالیمر‌سیستم، کاتیون‌های رسی خاک از

نگهدارنده‌های کاتیون آزمایش شده هستند. آویس، سولونیتا بر

خیدریای شده است. کاتیون‌های موش مولی‌ولیتیت آریزونا، پالیمر‌سیستم

فلوریدا، کاتیون‌های خاک بی‌چینش شده در برخی از مواد آلی و کاتیون شک.
جدول 1. برخی از ویژگی‌های فیزیکی و شیمیایی خاک نمونه‌برداری شده

<table>
<thead>
<tr>
<th>اندازه</th>
<th>ویژگی</th>
<th>meq²⁻/گرم</th>
<th>اندازه</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/4</td>
<td>CEC (Cmol Kg⁻¹)</td>
<td>0.54</td>
<td>CO₃²⁻</td>
<td>0.17/5</td>
</tr>
<tr>
<td>1/28</td>
<td>EC (dsm⁻¹)</td>
<td>0.42</td>
<td>HCO⁻₃</td>
<td>0.35/8</td>
</tr>
<tr>
<td>7/7</td>
<td>pH</td>
<td>0.13</td>
<td>SO₄²⁻</td>
<td>0.29/7</td>
</tr>
<tr>
<td>0/72</td>
<td>ESP (%)</td>
<td>0.23</td>
<td>Cl⁻</td>
<td>0.24/6</td>
</tr>
<tr>
<td>0/4</td>
<td>Na⁺</td>
<td>0.05</td>
<td>لوم رسی</td>
<td>0.1/7</td>
</tr>
<tr>
<td>3/9</td>
<td>K⁺</td>
<td>0.03</td>
<td>کربنات کلسیم هیپس</td>
<td>0.45/6</td>
</tr>
<tr>
<td>8/4</td>
<td>(Ca+Mg)²⁺</td>
<td>0.02</td>
<td>مواد آلی</td>
<td>0.1/5</td>
</tr>
<tr>
<td>0/2</td>
<td>Ca²⁺</td>
<td>0.01</td>
<td>پتاسیم تبادلی</td>
<td>0.02/5</td>
</tr>
</tbody>
</table>

پیپس از اولتراسونویفیکاسیون (Ultrasonification) سوسپنژ‌سازی 200 از آزمایشگاه‌های کار (F Pase) در نوار 183 cm کاغذ صافی و اندازه شماره 1 و پرای آزمایش انگولکتاناز (CMCase) 0/5 و گرم کربوکسی میل سلولار (Carboxymethyl cellulose, low viscosity) آنیزم‌ها با محاسبه میلول قند‌های چندنی آزمایشگاه آزمایشگاه‌ها در یک دقيقه، برای یک میلی متر از سوسپنژ‌سازی نگهدارنده آزمایش و یک گرم از نگهدارنده (U/g) و یک گرم از نگهدارنده (U/ml) شده است.

نتایج

نتایج ارزیابی فعالیت آنزیم‌های سلولولیتیک (Ultrasonification) به چندین روش از آزمایشگاه‌ها سوسپنژ‌سازی کپلکس نگهدارنده-آزمایشگاه (Ultrasonification) به غلظت 1/2 میلی‌گرم در میلول 1/2 میلی‌گر
فعالیت آنزیمی اگروگلیکاناز و اندوگلیکاناز به چینش
شده روی آویل، خاك و بrixی از کالیه آن در نمودارهای
31، 28، 26 و 24 نشان داده شده است. این نمودارها نشان می دهد که
فعالیت آنزیمی اگروگلیکاناز و اندوگلیکاناز به چینش شده
روی آویل به اندازه جسم گیری بیشتر از نگهدارندهای دیگر
است. پس از آویل، فعالیت آنزیمی به چینش شده روی
نگهدارندها، ثروت بیش از کالیه بالغ وسیبکی، به مونت
موربولین، کاتلونیت، خاك و اپیل کاهش می یابد.

یوشانده هر یک از نگهدارندها با هیدروکسید آلومینیم
توان یا چینش سوزانی آن را به اندازه جسم گیری افزایش میدهد
(داده ها گزارش شده است). (1). همانگونه که در نمودارهای
3 و 4 دیده می شود، فعالیت آنزیمی اگروگلیکاناز و به ویژه
اندوبنکراتیز یا چینش شده روی هر یک از نگهدارندها، در
تیمار آنها با هیدروکسید آلومینیم نیز به اندازه جسم گیری
افزایش یافته است. به هر حال، افزایش فعالیت آنزیمی با ویژه
اندوبنکراتیز یا چینش شده روی آویل در یکرا دبیر
نگهدارندها، در تیمار هیدروکسید آلومینیم کمتر است.

نمودار 1. فعالیت آنزیمی اگروگلیکاناز یا چینش شده روی پر از
مانده‌های کشاورزی

برنگ کمترین است. گذشتگی از پرورش برنگ، دیده می شود که
روی هر رنگ فعالیت آنزیمی سولولیسیک یا چینش شده
روی مانده‌های کشاورزی با درصد تبأ انزیمی (کا نموده)،
پیشانی از مانده‌های دیگر (کا نگذم، برنگ و خاك اره) است. این
نتیجه ممکن است وبسته به رنگ یا چینش سازی بهتر آنها باشد.

(1). بنابراین، شاید بتوان پیش بینی کرد که بخش بزرگی از
آنزیمی یا چینش شده در خاك روي ماده آلی هومیک و
پوسیده آن تهیه از شود و کار کاتالیزر خود را انجام دهد.
دادهای ارزیابی اندوجلیکاناز و اگروفلاکانتاز یا چینش شده
روی مانده‌های کشاورزی، نشان می دهد که آنزیم ایندوجلیکاناز
در برابر اندوجلیکاناز، روي مانده‌های کشاورزی با تباین
زیاد مانده، خاك اره نيز مي تواند فعالیت زيادي داشته باشد.
نمودار ۳. فعالیت آنزیم اگزوسیلوکاتاز یی جنسیتی شده روی آویس. خاک و برخی از کانال‌های آن در برای آنچه که با هیدروکسید آلومینیم پوشانده شده‌اند.

نمودار ۴. فعالیت آنزیم اندوگلوکاتاز یی جنسیتی شده روی آویس. خاک و برخی از کانال‌های آن در برای آنچه که با هیدروکسید آلومینیم پوشانده شده‌اند.

نمودار ۵. پایداری آنزیم اگزوسیلوکاتاز یی جنسیتی شده روی آویس. خاک و برخی از کانال‌های آن که با کلریم با پتاسیم همبون شده و با هیدروکسید آلومینیم پوشانده شده‌اند.
فعالیت آنزیم‌های سلولولیکس، با جنسیت شده در برخی از مواد آلی و کاتی خاک.

نمودار 1. پایداری آنزیم اندوگلوکاناز، با جنسیت شده، روی آویش. خاک و برفی از کاتی‌های آن که با کلمی‌ها پناهه‌های مناسب هم‌پنون شده و با هیدروکسی آلومنیم پوشانده شده‌اند.

روی آویش هم‌پنون شده با پناهه‌ها و کلسیم‌های ناهماهنگ، چشم‌گیری ندارد. شاید چگونگی و روشی که جنسیت شدن آنزیم‌های سلولولیکس، روی سوپرژرا آن با مانده‌های کشاورزی و آویش، با خاک و کاتی های آن ناهماهنگ باشد.

بحث و نتیجه‌گیری

اگرچه بی جنسی سازی آنزیم‌ها در بیونکولوژی، بیشتر برای بهره‌گیری درمان از آنزیم‌ها و کاهش هزینه فراوری آنها انجام می‌شود (21)، ولی کاراکتری شده است که پیوند کوالانتسیم‌های آنزیم‌های یک گروه به یک گروه موکول آنزیم می‌شود، و بیانی است. اگرایی آنها، بیشتر در اکتشافات و کشفیات آنها، بسته به روشی که جنسیت شده آن روی نه‌چندان، ساختار آنزیم‌ها و ساختار آنزیم‌های، از دست می‌رود (22 و 74). نشان داده شده که میان آنزیم‌های سلولولیکس، با جنسیت شده، همکاری در فعالیت کلی و کشتی ویژه (آنزیم-β)

-، می‌باشد. اگرایی آن‌ها در افزایش فعالیت آنزیم‌ها یک جنسیت شده روی نه‌چندان‌ها، هم‌پنون شده با کلسیم‌های درمان است، و جدا کردن آنها نیاز به پژوهشی و برگرداندن به مورث‌های دارد. به هم‌پنون شده با کلسیم‌های درمان است.
کشاورزی است. بازآیندن، شاید باعث گفت که بخش بزرگی از
فعالیت آنزیم‌های سولفنولیک خام و انسیبی به آنزیم‌هایی است
که روی مانده‌های گیاهی در خاک نگهداری و بی‌چسبی
می‌شوند.
از آنجا که کم‌که رسی در خاک با هیدروکسید‌های آهن
و آلومنیم پوشیده شده‌اند، در باره چگونگی جذب آنزیم‌ها در
میان لاگونی مونترولین‌بندی شده با هیدروکسید‌های آهن و آلومنیم آزمایش‌های انجام شده است. گزارش شده که
پوشش‌های آریسی و بسیاری آنزیم‌ها مایه افزایش
جذب آنزیم آسیاریتاز (Aspartase) روی آنها شده است (22). این پژوهش نشان داد که پوشش‌های
کم‌که در خاک با هیدروکسید‌های آلومنیم به اندام‌های چشم‌گیری بر
فعالیت آنزیم‌های بی‌چسبی شده در آن‌ها می‌افزاید.
فعالیت آنزیم‌های بی‌چسبی شده در خاک و کم‌که‌های
همی‌پوش شده با کلسیم بیشتر از تناسیم است. با توجه به یپامد
مثبت کاتیون کلسیم بر روی ارزیابی و نیز فعالیت این آنزیم‌ها
(1) در باره یپامد مثبت این روی بی‌چسبی سازی بر فعالیت
این آنزیم‌ها بیشتر می‌توان گفت. به هر حال، این یپامد مثبت
در میزان و فعالیت آنزیم‌های بی‌چسبی شده روی أوپسیل
چشم‌گیر می‌باشد.

سیاستگری
از جنبه آقای دکتر قرانی، کارکنان آزمایشگاه‌های خاک‌شناسی
و دامپزشکی دانشگاه صنعتی اصفهان و کارکنان آزمایشگاه
پژوهشی زیست‌شناسی گلخانه دانشگاه اصفهان، به ویژه سرکار
خانم مهندس خالصه صمیمانه سیاستگری می‌شود.

منابع مورد استفاده
1. مصیری سنگانی، ع.، 1379. فروشگاه زیستی برخی از مانده‌های کشاورزی و ارزیابی کارایی آنزیم‌های لیگنوسولولیتیک قارچ‌ها
در خاک. پایان‌نامه دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
2. کوچکی‌ب، ع.، م. حسینی و ح.، خزاعی، 1379. بیمه‌سازی خاک (تزوج). انتشارات دانشگاه فردوسی مشهد.