اثر مواد جامد محلول (TDS) آب بر عملکرد جوجه‌های گوشتی

چکیده

به منظور مطالعه اثر کل مواد جامد محلول (TDS) آب مناطق مختلف استان اصفهان بر عملکرد جوجه‌های گوشتی، پس از بررسی بر روی میزان آب موجود استان و استفاده از آرایه‌های آزمایشی شامل ۴ تریپل ترکرار از سطح متوازی از ۵،۰۰۰ تا ۱۰،۰۰۰، ۱۰،۰۰۰ تا ۲۰،۰۰۰، ۲۰،۰۰۰ تا ۴۰،۰۰۰، ۴۰،۰۰۰ تا ۸۰،۰۰۰ و ۸۰،۰۰۰ تا ۱۰۰،۰۰۰ میلی‌میکرون (کمتر از ۱۰۰۰۰ میلی‌متر) انتخاب گردید. آزمایش‌های اصلی در یک ظرف کامل تصادفی با استفاده از تعداد ۲۸۸ جوجه در دوازده جریان با کنار گذاخت کردن مواد محتوی و زن‌کنی و با استفاده از ترکیب‌های انتخابی در یک سالار دارای شرایط یکسان در ۳ ترکیب انجام شد. تفاوت ثانیاً داده که TDS آب اثراتی مثبت بر روی میزان درصد تلفات جوجه‌ها در یک دوره دارد. به‌طور کل تایید که TDS نمی‌تواند تأثیر مثبتی بر روی میزان تلفات جوجه‌ها داشته باشد. TDS باعث تولید لیزر بیشتر می‌شود و تفاوت میان تلفات در ۵۰٪ و ۳۰٪ آب آب‌شیرین داده (۵/۰/۱) به دلیل تولید میکروورسیون باعث می‌شود تا تلفات این جوجه‌ها را تنها به وزن دانش داده. اثر میزان TDS بر میزان تلفات مختلف متفاوت است. تأثیر TDS بر روی تلفات جوجه‌ها به دلیل تغییر فراوانی نمی‌تواند مبنای جوجه‌های مورد بررسی باشد. بنابراین توصیه می‌شود آب دارای کیفیت خوب (حداقلی ۲ میکرون) توسط TDS کمتر از ۱۰۰۰۰ میکرون بر روی تغییرات مناسب برای بهبود ترکیب فیزیکی و شیمیایی آب مصرفی اضافه گردد.

واژه‌های کلیدی - سختی آب، جوجه گوشتی، کل مواد جامد محلول، تلفات

مقدمه

کیفیت آب‌های روان و زیر زمینی بسته به میزان ترکیب مواد معدنی در خاک و یاختهای زمین‌شناسی در مناطق مختلف

۱- به ترتیب داشتار، استادیار و مربی علوم دامی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲- کارشناس ارشد امور دام، جهاد سازنده اصفهان

۳- استادیار پژوهش مرکز تحقیقات امور دام، جهاد سازنده اصفهان
مقدار شیمیایی، pH، نسبت میانه، pH، و مواد آلاینده از جمله مواد خشک، از جمله مواد معدنی.

کیفیت آب مصرفی می‌تواند رشد و عملکرد می‌تواند تحت تأثیر خوردن دهد. این می‌تواند وابستگی به محیط‌های محیط‌های تالا از جمله موادی که به‌طور کلی بیکاری‌ها در آب و سلامت طیور تأثیر منفی دارد. تعدال اسید-باز بنن به‌وسیله کاتیون‌ها و آنیون‌ها، همچنین می‌تواند نقش مهمی داشته باشد. مهم در سلامت و عملکرد مطلوب حیوانات از جمله طیور محسوب می‌شود.

تغییر در تاکثیرونها و آنیونها به دلیل یک تبیدل غذا در جوجه‌ها گوشته می‌شود. در حالی که موجودی آلمان‌ها از تغییرات در محیط داخلی به‌دست امکان می‌پذیرد و همچنین بکارگیری نمایشگاه‌های تکنولوژی‌ها، بیشتر به تنظیم TDS می‌رود (و اکتاوله‌های نهایی). همگامی که مهم‌ترین از املاح طیور کبد، سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های بدنی و کمتر به فراوانی‌های تولیدی می‌پردازند (16). همچنین که برای کاهش نیازهای املاح جوجه‌ها و سلیمی، الکترولیت‌های ب‌
جدول 1 - مشخصات تیمارهای آزمایشی

<table>
<thead>
<tr>
<th>مشخصه تیمار</th>
<th>نام شهرستان</th>
<th>TDS (قسمت درملیون)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصفهان</td>
<td>A</td>
<td>1000</td>
</tr>
<tr>
<td>اصفهان</td>
<td>B</td>
<td>1500</td>
</tr>
<tr>
<td>اصفهان</td>
<td>C</td>
<td>2000</td>
</tr>
<tr>
<td>جرقویه</td>
<td>D</td>
<td>3500</td>
</tr>
<tr>
<td>برخورمیه</td>
<td>E</td>
<td>4500</td>
</tr>
<tr>
<td>شهرضا</td>
<td>F</td>
<td>5800</td>
</tr>
</tbody>
</table>

- آب مورد استفاده از واحدهای مرغبداری موجود در شهرستان‌های نامبرده

منابع آبی، مشخصات گرندیدن‌آب آب‌آمیخته شهر اصفهان به سطح TDS کمتر از 1000 قسمت در میلیون به عنوان تیمار شاهد در نظر گرفته شد. سایر تیمارها به شرح جدول 1 انتخاب گردیدند. همچنین ترکیب چربی‌های آزمایشی در جدول 2 نشان داده شده است.

علاوه بر EC (هداوت الکتریکی)، فظم، سدیم، پتاسیم، کلسیم، کلس و میژم نیز انتخاب گردید. آب مورد استفاده در تیمارها، روزانه از محله‌های ذکر شده در جدول 1 به سالن محل آزمایش انتقال می‌یافت.

تعداد 200 تیمار جوجه ماده زاد آورین تا ۷ روژگی، تحت شرایط یکسان و چیزه مشابه (جدول 2) پرورش یافتند. سپس در سن ۷ روژگی، پس از توزیع انفرادی جوجه‌ها (۲۸ قطعه) قطعه از هر جنس که میانگین وزنی یکسان داشتند انتخاب و به ۱۸ گروه (تکرار) تکسیم شدند. در هر تکرار ۱۶ قطعه (۸ قطعه نر و ۸ قطعه ماده) وجود داشت.

در طول دوره آزمایش جوجه‌ها با چهار یکسان که مناسب استان اصفهان استفاده گردید. برای اساس تعادل ۲۷۸ نمونه آب از لحاظ کیفی مورد تجزیه قرار گرفت و آب مناطق مختلف براساس سطوح مختلف TDS و عوامل دیگری نظیر مواد معدنی و کانی‌ها و سایر های اصول مؤثر بر کیفیت آب مورد بررسی واقع شد. تراکم واحدهای مرغبداری در سطح هر شهرستان به عنوان معيار دوم جهت انتخاب تیمارهای آزمایشی می‌تواند تأثیر گردد. جهت حصول اطمینان از نتایج مورد شده و برطرف نمودن خطاها آزمایشگاهی، از هن نمونه آب، دو نمونه انتخاب و سپس با مراحل مستقیم به محل پر اساس اصول فنی، نمونه‌گیری در ۲ تکرار صورت گرفت و نمونه‌ها جهت اندازه‌گیری عوامل مورد نظر به آزمایشگاه ارسال شد.

نمونه‌برداری در ظروف استریل انجم پذیرفت و جهت انتخاب گزینی میزان پار میکروبی آب از آزمایشگاهی شیکه دایزیکاکی استانداردهای میکروبیولوژی مرکز پوششی معاونت امور دام جهادسازندگی استان اصفهان استفاده شد.

1. Electrical Conductivity
جدول ۲- ترکیب چربی‌های مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>پایانی</th>
<th>آغازین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رشد</td>
<td></td>
</tr>
</tbody>
</table>

۴۹/۵	۵۲/۸۰	۵۸/۱۱
۲۶	۷۷	۴/۴
۱۸/۲	۳۲	۲۸/۲
۲/۵	۶	۶
۱۰/۰	۱	۰/۵
۰/۶۲	۰/۴۲	۰/۵۲
۰/۱۵	۰/۱۲	۰/۱۵
۰/۹۷	۰/۷۳	۰/۷۳
۱/۲۵	۱/۱۳	۱/۲۲
۰/۰۲	۰/۰۱	۰/۰۱
۱۰۰	۱۰۰	۲۹۱۰

انزیم قابل سوخت و ساز (کیلوکالری در کیلوگرم)

نسبت انرژی به پروتئین

پروتئین

کلسیم

فسفور فراهم

لیزین

متیانین

اسیدهای آمینه گردیدار

در تنظیم جیره از جدول (۱۷) استفاده شد.

不论 (آغازین، رشد و پایانی) تغییر می‌یافت تغذیه گردیدند.

ترکیب چربی‌ها در جدول ۲ ارائه شده است. از روز هشتم به بعد به سه گروه از جوجه‌های هر تیمار یکی از آن‌های مورد آزمایش (جدول ۱) داخل شد. اب مورد استفاده تمام تیمارهای دانه‌ی ۱ تیمارهای TDS هستند. اول دارای ۱۶۰۰ بیود. در طول دوره آزمایش، جوجه‌های هر گروه از هفته یک بار به صورت دسته‌جمعی
جدول ۲- کیفیت منابع آب مورد مطالعه براورد میزان باقی مانده ماده خشک TDS (ناتیو از تبخیر) برحس شهرستان

<table>
<thead>
<tr>
<th>تعداد نمونه</th>
<th>تام شهرستان</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>بیشترین دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۶</td>
<td>اُردستان</td>
<td>۶۵۸</td>
<td>۴۱۵۳</td>
<td>۲۰۰۰ - ۲۰۰۰</td>
</tr>
<tr>
<td>۶۲</td>
<td>اصفهان</td>
<td>۲۷۵</td>
<td>۴۱۲۵</td>
<td>۲۰۰۰ - ۳۰۰۰</td>
</tr>
<tr>
<td>۹۰</td>
<td>بوخاریمه</td>
<td>۴۲۰</td>
<td>۴۸۶۴</td>
<td>۲۰۰۰ - ۵۰۰۰</td>
</tr>
<tr>
<td>۴۱</td>
<td>شهرضا</td>
<td>۴۲۰</td>
<td>۴۸۴۶</td>
<td>۲۰۰۰ - ۷۰۰۰</td>
</tr>
<tr>
<td>۲۴</td>
<td>نظر آبان</td>
<td>۷۱۱</td>
<td>۱۰۶۸</td>
<td>۲۰۰۰ - ۱۰۰۰</td>
</tr>
<tr>
<td>۵۴</td>
<td>فردی</td>
<td>۱۷۳</td>
<td>۱۰۴۷</td>
<td>۲۰۰۰ - ۲۰۰۰</td>
</tr>
<tr>
<td>۲۱</td>
<td>گلیمکان</td>
<td>۱۱۱</td>
<td>۷۵۲</td>
<td>۲۰۰۰ - ۴۰۰۰</td>
</tr>
<tr>
<td>۴۸</td>
<td>لنجوان</td>
<td>۲۸۸</td>
<td>۲۸۱۶</td>
<td>۱۰۰۰ - ۱۰۰۰</td>
</tr>
<tr>
<td>۳۹</td>
<td>نزف آباد</td>
<td>۴۲۳</td>
<td>۲۲۷۷</td>
<td>۲۰۰۰ - ۱۰۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>نطنز</td>
<td>۱۷۳</td>
<td>۷۹۱۲</td>
<td>۲۰۰۰ - ۲۰۰۰</td>
</tr>
</tbody>
</table>

نتایج

نتایج مربوط به کیفیت و بررسی تجزیه و تحلیل اطلاعات این ۷۸۸ نمونه آب در جدول ۳ ارائه گردیده است. اطلاعات آن در آب‌های TDS جدول نشان داده و وجود دامنه و سیستمی از آب‌های TDS میزان موجود در آب‌های TDS کمتری نسبت به منطقه تولید کیفیت و کم باران هستند. ترکیب شیمیایی نمونه‌های آب مورد مطالعه از لحاظ املاح معدنی در جدول ۴ نشان داده شده است. اطلاعات این جدول مشخص کننده این نکته است که همزمان وسایل و سیستمی بخوردار است. به‌عنوان نمونه سطح TDS از مقدار ۵۷۶ تا ۷۹۱۲ قسمت در میلیون کلسیم از ۵/۹ تا ۲۴/۲۶ و پیروکانات منجر به روش AOAC گردید. خاصیت و ماده خشک استخوان ران به روش (۴) اندام‌هایی شد.
جدول ۴- ترکیب شیمیایی نمونه‌های آب مورد مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد نمونه‌ها</th>
<th>میانگین</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS (نمیت در میلیون)</td>
<td>۷۸۲</td>
<td>۱۴۷۷/۳</td>
<td>۱۷۳</td>
<td>۲۰۱۴/۶</td>
<td></td>
</tr>
<tr>
<td>کلسیم (این/ایلیمگرم)</td>
<td>۲۳۳</td>
<td>۱۱۲/۲</td>
<td>۱۸۵/۸</td>
<td>۲۴/۰۵</td>
<td></td>
</tr>
<tr>
<td>بنزلین (این/ایلیمگرم)</td>
<td>۲۳۳</td>
<td>۶۱/۲</td>
<td>۷۱</td>
<td>۶۱/۲</td>
<td></td>
</tr>
<tr>
<td>سدیم "</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>پتاسیم "</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>کلر "</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>سولفات "</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>نیترات (این/ایلیمگرم)</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>کلسیم (این/ایلیمگرم)</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>پیکورین "</td>
<td>۲۳۳</td>
<td>۴۶۲/۲</td>
<td>۳۹۸/۴</td>
<td>۱۱۸/۴</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تأثیر سطوح مختلف TDS بر وزن بدن، مصرف غذا، ضربت تبدیل غذا، آب مصرفی، رطوبت بستر و تلفات در ۶ اثره گردیده است. وزن بدن نیز در سطوح بیشتر از ۱۵۰۰ قسمت در میلیون کاهش معنی‌داری TDS نشان داد و اختلاف بین سایر سطوح TDS معنی‌دار نبود. اگرچه های ۱۵۰۰ (به‌صرفه E) TDS نیز داشت. این نتایج نشان می‌دهد که اگر TDS از ۱۵۰۰ به‌صرفه E، وزن بدن کمتر نسبت به گروه شاهد و گروه ۱۵۰۰ قسمت در میلیون داشته باشد.

نبشتن مقدر مصرف غذا بیشتر بود و افزایش Seros TDS به حدود ۱۵۰۰ مقدار (۵/۵ < P) معنی‌دار گردید (با استاندارد گروه E). TDS در ۱۵۰۰ قسمت در میلیون کمی مصرف غذا را داشت. اختلاف میانگین مختلف از TDS لحاظ ضربت تبدیل غذا معنی‌دار بود. با افزایش میزان منابع از آب مصرفی رطوبت آب افزایش یافت و نامرب تا رشد و اختلاف در مصرف آب در سطوح بیشتر از میلی اکی این متغیر است. میانگین مصرفی بسیار از این عنصر به حداکثر است که مصرف آن در نتایج تأثیرات متفاوت بر سلامت و عملکرد طبیور داشته باشد.

جدول شماره ۵ افزایش متوسط زیست TDS و نمونه آب مورد استفاده در آزمایش را نشان می‌دهد. این نتایج تجزیه و تحلیل و همچنین نتایج اطلاعات مربوط به ۳۸۸ نمونه آب که در جدول ۳ اثره گردیده و نشان داده‌اند این است که انتخاب نمونه‌های آب برای اجرای آزمایش براساس اطلاعات موجود در جدول ۳ دست به طور است. سیال آب مورد نظر برای تیمارها، در همان محدوده‌های پیش‌بینی شده و از کمتر از میزان ۲۵۰۰ برای گروه شاهد نا بیشتر از ۵۰۰۰ قسمت در میلیون منتفی بود.

نتایج نشان داد که آب‌های مورد مطالعه از لحاظ نوع و تعداد باکتری‌ها در حذف بودند. هم‌چنین نشان داده که هر گروه غون اولیک و ابتلا به بیماری‌ها برای انسان و طیور به همراه نداشتند.

76
جدول ۵- فراوانی سطوح متفاوت TDS در شهرستان‌های انتخابی مورد آزمایش

<table>
<thead>
<tr>
<th>تعداد فراوانی</th>
<th>تعداد دامنه</th>
<th>تعداد دامنه</th>
<th>تعداد دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۴۱۲</td>
<td>۶۶</td>
<td>۶۴</td>
<td>۶۲</td>
</tr>
<tr>
<td>۲۷۵۰</td>
<td>۲۷۰۰-۲۵۰۰</td>
<td>۲۷۰۰-۲۵۰۰</td>
<td>۲۷۰۰-۲۵۰۰</td>
</tr>
<tr>
<td>۲۴۱۲</td>
<td>۴۲</td>
<td>۴۲</td>
<td>۴۲</td>
</tr>
<tr>
<td>۲۱۴۲</td>
<td>۸۹</td>
<td>۸۹</td>
<td>۸۹</td>
</tr>
<tr>
<td>۲۰۸۵</td>
<td>۲۰۰۰-۱۷۵۰۰</td>
<td>۲۰۰۰-۱۷۵۰۰</td>
<td>۲۰۰۰-۱۷۵۰۰</td>
</tr>
</tbody>
</table>

امیر موحد جام‌محلول

جدول ۶- تأثیر سطوح مختلف TDS بر عملکرد جوده‌های آب

<table>
<thead>
<tr>
<th>تلفات</th>
<th>تعداد (درصد)</th>
<th>ضرر بی‌درمان</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۲۶/۱۲</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>B</td>
<td>۲۴/۳۷</td>
<td>۲/۳۷</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>C</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>D</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>E</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>F</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>G</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>H</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵</td>
<td>۶۱۲۷ a</td>
<td>۲۶/۱۲ a</td>
<td>۲/۱۵ a</td>
</tr>
</tbody>
</table>

میانگین از ستون‌های متغیر مشخص شده‌اند اختلاف معنی‌دار دارد (۵/۰ < P).

جدول ۷- تأثیر مصرف TDS در میلیون (درصد) بر عملکرد جوده‌های آب

<table>
<thead>
<tr>
<th>تلفات</th>
<th>تعداد (درصد)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۲۶/۱۲</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>B</td>
<td>۲۴/۳۷</td>
<td>۲/۳۷ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>C</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>D</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>E</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>F</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>G</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>H</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
</tbody>
</table>

میانگین از ستون‌های مشخص شده‌اند اختلاف معنی‌دار دارد (۵/۰ < P).

جدول ۸- تأثیر مصرف TDS در میلیون (درصد) بر عملکرد جوده‌های آب

<table>
<thead>
<tr>
<th>تلفات</th>
<th>تعداد (درصد)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
<th>ضرر بی‌درمان (گرمی‌لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۲۶/۱۲</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>B</td>
<td>۲۴/۳۷</td>
<td>۲/۳۷ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>C</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>D</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>E</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>F</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>G</td>
<td>۲۵/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
<tr>
<td>H</td>
<td>۲۰/۸۹</td>
<td>۲/۱۵ a</td>
<td>۶۱۲۷ a</td>
<td>۲/۱۵ a</td>
</tr>
</tbody>
</table>

میانگین از ستون‌های مشخص شده‌اند اختلاف معنی‌دار دارد (۵/۰ < P).
جدول ۷- تأثیر سطوح مختلف تبسیط TDS بر وزن لاشه، چربی بلنی، استخوان ران و میزان خونی

<table>
<thead>
<tr>
<th>pH</th>
<th>HCO₃⁻</th>
<th>Cl</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>وزن خاکستر</th>
<th>وزن لاشه</th>
<th>چربی بلنی</th>
<th>استخوان ران</th>
<th>میزان خونی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mmol/l)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>(mg/dl)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
</tr>
<tr>
<td>v/33</td>
<td>a</td>
<td>25.4/5 a</td>
<td>116 a</td>
<td>19/8 a</td>
<td>10/2 a</td>
<td>72/52 a</td>
<td>1939 a</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/38</td>
<td>a</td>
<td>21/8 a</td>
<td>113/5 a</td>
<td>128/8 b</td>
<td>10/5 a</td>
<td>72/32 b</td>
<td>1930 a</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/43</td>
<td>a</td>
<td>21/8 a</td>
<td>113/5 a</td>
<td>128/8 b</td>
<td>10/5 a</td>
<td>72/32 b</td>
<td>1930 a</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/49</td>
<td>a</td>
<td>23/8 a</td>
<td>118/5 b</td>
<td>155/8 a</td>
<td>10/5 a</td>
<td>72/32 a</td>
<td>1930 a</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/54</td>
<td>a</td>
<td>24/8 a</td>
<td>116/5 ab</td>
<td>157/8 ab</td>
<td>10/5 a</td>
<td>72/32 a</td>
<td>1930 a</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/59</td>
<td>a</td>
<td>24/8 a</td>
<td>116/5 ab</td>
<td>161/8 c</td>
<td>10/5 b</td>
<td>72/32 c</td>
<td>1930 a</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/64</td>
<td>a</td>
<td>24/8 a</td>
<td>116/5 ab</td>
<td>169/8 ab</td>
<td>10/5 b</td>
<td>72/32 c</td>
<td>1930 a</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/74</td>
<td>a</td>
<td>24/8 a</td>
<td>116/5 ab</td>
<td>173/8 ab</td>
<td>10/5 b</td>
<td>72/32 c</td>
<td>1930 a</td>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر سیستم میانگین‌هایی که دارای جوهر متقارن سطح اختلاف معیار (P<0/05) دارند.

میزان چربی حریف بطنی کاملاً معنی‌داری (P<0/05) نشان داد کمترین مقدار چربی حریف بطنی مربوط به گروه‌هایی بود که در تبسیط TDS آب دارای بکرتن بودند. اختلاف خاکستر استخوان ساق بین گروه‌های مختلف معنی‌دار نبود. از این‌رو، تنا کلسیم آن تفاوت با سایر گروه‌ها اختلاف معنی‌دار TDS در بکرتن از (P<0/05) نشان داد. مقدار کلسیم خون این گروه بیشتر از سایر گروه‌ها بود.

ضرایب همبستگی بین TDS و معیارهای تولیدی در بخش TDS نشان داده شد. ضریب همبستگی وزن زده باید با TDS معنی‌دار باشد (P<0/05). همچنین ضریب همبستگی مصرف غذا درصد تلفات، مصرف آب و رطوبت بطور معنی‌دار با TDS و تلفات بارداری (P<0/05) بود. چسبانی بین همبستگی بین مصرف آب و TDS که مقدار کلسیم TDS و تلفات بارداری (P<0/05) بوده است ممکن است بر سوء سلامت TDS اندازه‌گیری کم‌تر و تلفات می‌باشد.

بررسی‌های بالینی و کلینیکی نشان داد که از سن ۲۴ روزگیری TDS به بعد، آثار کوکسیدیوز در جوهرهایی که آب حاوی TDS مصرف نمی‌کنند، مهم می‌باشد.
جدول 8- ضرایب همبستگی بین وزن زنده، مصرف غذا و... با سطح TDS از سال 7 تا 95 روژگر

<table>
<thead>
<tr>
<th>وزن زنده</th>
<th>مصرف غذا</th>
<th>ضریب تبیین</th>
<th>TDS میزان</th>
<th>TDS مصرفی</th>
<th>رابطه بسته میزان</th>
<th>رابطه بسته مصرفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/09</td>
<td>0/14</td>
<td>0/05</td>
<td>0/19</td>
<td>0/14</td>
<td>1</td>
<td>0/14</td>
</tr>
<tr>
<td>0/08</td>
<td>0/15</td>
<td>0/06</td>
<td>0/12</td>
<td>0/15</td>
<td>1</td>
<td>0/15</td>
</tr>
<tr>
<td>0/07</td>
<td>0/16</td>
<td>0/07</td>
<td>0/11</td>
<td>0/16</td>
<td>1</td>
<td>0/16</td>
</tr>
<tr>
<td>0/06</td>
<td>0/17</td>
<td>0/08</td>
<td>0/10</td>
<td>0/17</td>
<td>1</td>
<td>0/17</td>
</tr>
</tbody>
</table>

نتایج مربوط به تجزیه و تحلیل آمار نمونه‌های آب جمع آوری شده از سایزهای مختلف استان داده که آینهای نواحی مختلف استان از لحاظ میزان سختی و اصلاح معدنی بسیار متفاوتی به طوری که بعضی از آنها برای انسان و طیور قابل استفاده نیستند و میزان سختی و اصلاح آنها خیلی پیشرفت از مقادیر مجاز توصیه شده توسط NRC (17) می‌باشد. منابع علمی موجود (2، 3 و 5) نتایج این آزمایش‌ها مبتنی بر چگونگی کیفیت آب در نقاط مختلف استان احصایی را تأیید می‌کنند. نتایج همچنین نیاز کافی استفاده بودن آب برخی مناطق را در مصرف انسانی و حیوانی، که بسته به نقاط (2) گزارش شده است. مورد آزمایش بالا رفت، رابطه بسته باعث بروز بیماری کوکسیدوز گردید. تا کمی توان
درصدی از تلفات را به بروز این بیماری در گروه‌هایی که آب حاوی گلیس مصرف کرده، مربوط دانست. به علاوه وجود ضایعات کلیوای و کبدی و روده‌ای ناشی از مصرف آب‌های دارای
و املاح بلای آلی خاص می‌باشد. بنابراین تی‌دی‌اس
و املاح بلا نی نیز رشد و عملکرد کافی می‌دهند.

تی‌دی‌اس کاملاً جزیب حفره بطن در طیوری که آب حاوی زیاد مصرف کردند، به‌دلیل کمتر بودن وزن بدن آن‌هاست، زیرا حفره بطنی تابعی از وزن بدن است و اصولاً در سطح‌های سنگین‌تر دارای جریان حفره بطنی بیشتری هستند (۹، ۱۰ و ۱۵). با این که در جوجه‌های مصرف کننده آب با بیش از ۳۰۰۰ درصد عکس نقش شکر، در احتمال داده که دلیل این می‌گردد. داده آن ۲۰ درصد زیادتر از سایر عناصر است و مرغداران این مناطق از بین موضوع
شکسته دارند. نتایج نشان داد که دلیل این می‌گردد، می‌باشد. حدوداً بین ۱۰ تا ۲۰ درصد TDS آنها را دارند. تغییرات TDS با توجه به شکسته یا آب مصرفی آنها و به عوامل تغذیه‌ای جستجو
و کردن. وجود می‌تواند میثاب و معنی دار باشد. این تحلیل TDS آب هم مؤثر یا نتیجه این است، بخصوص اینکه هموگلیس TDS بسیار بالای آب و رطوبت بسترش با پر بیماری کوکسیدوز و نقش این بیماری را در تغییرات نیاز باید نامیده گردد (جدول ۲). مصرف TDS بالا و یا به‌طور غیرمستقیم نیز تغلیق TDS ناشی از سایر بیماری‌ها از جمله بیماری نیکوکس هم‌عرض است. به طوری که تغییر این آزمایش نشان داده به رغم شرایط یکسان
و واکنش‌های منظم و یکنواخته، تا آن‌ها با توجه به تی‌دی‌اس نیکوکس دلایل حاوی آب TDS و گروه‌هایی که آب حاوی

منابع مورد استفاده:

۱- صوفی سباوشی، ر. ۱۳۶۹. تغذیه غذای چوب سوم. انتشارات عمیدی، تبریز.
۲- کرودانی، ب. ۱۳۷۸. منابع و مسائل آب در ایران. آب‌های شور و راه‌های استفاده از آنها. انتشارات
ارشد آب‌های، تهران.
۳- کبابی، م. ۱۳۷۷. پودری کپیت آب‌های سرزمینی در محدوده شهر اصفهان. انتشارات روابط
عمومی سازمان پارک‌ها و فضاهای سبز شهر اصفهان.
۴- کمالی زاده، ج. ۱۳۷۵. کتاب راهنمای آب. انتشارات علمی، تهران.
۵- ولی‌عسکری، ب. ۱۳۷۶. جغرافیای آب و میراث منابع آب. انتشارات دانشگاه فردوسی، مشهد.
Washington DC.

