مقایسه روشهای عصاره‌گیری پتاسیم خاک برای تعیین سطح بحرانی پتاسیم برای برنج در تعدادی از خاک‌های شمالی استان گیلان

محمود گلپاشی* و محمدرضا کاوسی**

چکیده

استان گیلان از مهم‌ترین مناطق تولید برنج در سطح کشور است که استفاده از یکی از محصولات مهم برنج در آن هر روز زیسته می‌یابد. با این وجود مطالعات زیادی در مورد وضعیت پتاسیم در مزارع برنج آن صورت گرفته و حتی تاکنون عصاره‌گیری مناسب یا با استخراج تاسیم قابل جذب معرفی نگردیده است. لذا این تحقیق با هدف ارزیابی 15 روش عصاره‌گیری به منظور تعیین عصاره‌گیری مناسب جهت تعیین پتاسیم قابل حل در خاک و سطح بحرانی پتاسیم برای برنج رقم سپیدرد در تعدادی از خاک‌های استان گیلان به آن درآمد. این آزمایش در قالب طرح بلوکهای کاملاً تصادفی و به صورت فاکتوریل شامل یک تکرار شامل 33 نمونه خاک و دو سطح صفر و 30 میلیگرم پتاسیم در کیلوگرم خاک انجام گرفت.

نتایج نشان داد که استفاده از کود پتاسیم در اکثر خاک‌ها باعث افزایش عملکرد خاک و کاهش ضریب جذب پتاسیم توسط گیاه شده است. بررسی روایت‌های همبستگی وابستگی یافته بود که روشهای عصاره‌گیری با استفاده از کودی کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در کود کربنات کلسیم یک صدیم مولار همبستگی بالایی با غلظت پتاسیم در کاکی به مقدار 38/30* و 38/70* و 38/95* و غلظت پتاسیم در

واژه‌های کلیدی - پتاسیم قابل حل، روشهای عصاره‌گیری پتاسیم، برنج، نیاز به پتاسیم، سطح بحرانی پتاسیم

*دانشجوی دکتری خاک شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
**استاد خاک شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

57
پتانسیم به کننده قابل استفاده در ارتباط می‌باشد (۳) و همیستگی‌های خوبی نیز بین آن و جذب پتانسیم توسط گیاه مساوید (۳،۴) در عین حال همیستگی‌های ضعیف نیز افزایش گردد (۷) (۴).

امروزه با عرضه یک اقیانس چند و یک محصول، فرصت مناسبی برای افزایش تولید برنج با استفاده از مقادیر مناسب کودهای معدنی به وجود آمده است. یکی از کودهای معنی‌دار که نسبت به رشد، عملکرد و ارتقای کیفیت برنج این قنک، کودهای پانتاسیم است. به منظور ارائه توصیه ویژه مناسب برای هر منطقه گرایی از جمله پانتاسیم، انجام بررسی آزمون خاک امری ضروری است. در بررسی آزمون‌های خاک برای یک عنصر غذایی، انتخاب عصاره گیر و آزمایش‌های تعیین همبستگی بین مقادیر عنصر غذایی و عصاره گیری شده از خاک و مقادیر گذشته توسط گیاه و یا بوته‌های خودرو و پرورشدار است. (۶)

استان گیلان از مسیری است که از در ارتفاع به مجموعه از آن در آری جریان روز روان بیشتری می‌باشد. اما با تاکید مناطق التکیه دار به برنج و اراضی استان صورت گرفته و تاکنون عصاره گیر مناسبی برای استخراج پاناسیم قابل استفاده در این اراضی معرفی نگردیده است. و توصیه کود مناسبی هم برای عنصر اراضی در اراضی مذکور وجود ندارد.

طبق گسترده‌تری از عصاره‌گیرهای برای تعیین پاناسیم قابل استفاده، گیاه به کار رفته که از طریق تفاوتی در همه از منابع موجود در آزمایشات مناسب و سپس با استفاده از استیل استیل، مجموعه پاناسیم ثابت و محدود و مقداری از پاناسیم غیر ثابتی استخراج می‌شود (۲۱). بعضی از محصولات رابطه خوبی بین پاناسیم قابل استخراج به وسیله استان آزمایش و گذشته آن توسط گیاه به دست آمده است. برای خانه که حاوی مقادیر تزیم رسانه اکسترمیت و مواد آلی هستند و در موارد مانند یا یا دیگر کانال‌های میکروبی از آنها کم است، رابطه دار شده یک فرق می‌توان یافت (۱۸).

یکی از اسیران روندها جهت مطالعه دنیاکنی آزاد سازی پاناسیم غیر ثابتی از خاک و استفاده از استیل تغییر مولکول جوشان است. (۲۹) مقادیر پاناسیم عصاره‌گیرهای شده از روش با مقدار

1. Kelowana
نتایج آزمایش‌های انجام شده در آزمایشگاه‌های دانشگاه تهران نشان داده شد که در بیش از دو برابر کلیسای پتیسی سه درصد موارد، استانس آمونیوم مورخ خاک کلیسیم‌های پتیسی ۲۵۰/۰ مولار و اسید کلریدریک نیم نیم‌گی با عامل‌دانه، وزن خشک‌گاه و پتیسی جذب شده و سیستم هسته‌نگاری متنی داری داشته است (۲۵). در نمونه‌های استانی به این سال ۱۹۶۸ تا ۱۹۷۵ در تاپران انعام گرفت روش‌های مهیل بک و استانس آمونیوم مورخ خاک بیای بعضی از خاک‌های شالیزاری همبستگی خویی نشان داده‌اند (۳). در سلامتی که در فیلیپین صورت گرفت ضرایب همبستگی استانسی و عصاره‌گیری شده به سیستم‌های مخلوط‌های استانسی سولفوراکس و سولفوراکس داغ با پاسخ بیای نتایج خاک‌های تغییر ۰/۳۰۹/۲۷۱/۰۳۷/۰۲ و ۰/۵۳ بوده که نشان می‌دهد نتایج غیر تکنیکی شاخه‌های پتیسی موابق در بالای شالیزارها بوده است.

در زمان رسیدن بودن قابل استفاده خاک و بیای آزمایش‌های پتیسی برای رنگ‌سپید رود در خاک‌های اراضی گیلان، در یک آزمایش‌گلنادی به اجرای آزمایش‌گلنادی استفاده کنند. استانسی پتیسی برای یک آزمایش‌گلنادی به دست آمد.

مواد و روش‌ها
به‌منظور تعیین عصاره‌گیری با عصاره‌گیری درست مناسب برای پتیسی قابل جذب و پتیسی سطح بحراطی بنیاد برای پتیسی به رنگ مرغ سپیدروم، یک آزمایش‌گلنادی با ۲۵ نمونه خاک از شالیزارهای مختلط استان گیلان که طبق نظر درصد سیستم موارد آزمایش و پتیسی قابل عصاره‌گیری با استانس آمونیوم پیک موارد خاکی متفاوت بودند. در سیستم مخلوط‌های استانسی برنامه صورت گرفت. آزمایش‌ی با صورت فاکتوریل در قابل طرحی بکه کامل تصادفی در ۲۵ نمونه خاک‌ها بیای سطح پتیسی (صرفر و میلی‌گرم) و ۲۵۰/۰ مولار خاک‌های خاکی به‌صورت کلیسیم (پتیسی) و در سه تکرار در زمره‌انجام گردید. مقدار کافی خاکی شالیزاریهای مذکوری نهم و پس از این
آمونیوم (24)، ملیح یک بروزی 10 گرم خاک خشک با نسبت ۰.۵ و دیقته تناک دان (22)، ملیح سریب ۱۰ گرم خاک با نسبت ۰.۵ در دیقته تناک دان (22)، اسس ملیجدیک ۵۰ گرم بروزی ۲۰ گرم خاک با نسبت ۰.۵ و دیقته تناک دان (19)، اسس سولفوردیک بروزی ۱۰ گرم خاک و یک سانتیمتری مکعب اسس سولفوردیک غلظت و شستوان با اسید سولفوردیک ۰.۱ نرمال (16)، کلریکلیسم یک صدم مولار بروزی ۵ گرم خاک با نسبت ۰.۵ و دیقته تناک دان (12)، مولار با استفاده از اسید استیک ۲/۵ مولار و استیک ۲/۵ مولار در سدیم ۷۲/۶ مولار در pH = ۴/۸، قبل از تهیه نگاره با استفاده اسید ۱۲۵/۵ مولار + سولفوردیک ۲/۵ مولار + EDTA (2) و (25) مولار در pH = ۴/۵، قبل از تهیه نگاره با استفاده اسید استیک ۲/۵ مولار + اسس سولفوردیک مولار و (24) عصاره‌گیری با آب با نسبت ۱/۲ و یک سانتیمتری مکعب اسس دان (17) و (22) در دیقته تناک دان (۰.۵) روی خاک خشک با نسبت ۱/۲ و دیقته تناک دان (17) و (22) در دیقته تناک دان (۰.۵) روی خاک خشک با نسبت ۱/۲ و دیقته تناک دان (17)

کاربرد پتانسیم در خاک باعث افزایش غلظت پتانسیم در خاک کل بنا به کلا
جدول 1- برخی خصوصیات نیزیکی و شیمیایی خاک‌های مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>کربن آلی</th>
<th>رس</th>
<th>سیلت</th>
<th>گونه استخراج بای</th>
<th>پناسیم استخراج بای</th>
<th>نیشورکی</th>
<th>استخراج آمونیوم مولار</th>
<th>شماره</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>587</td>
<td>180</td>
<td>22</td>
<td>56</td>
<td>0/88</td>
<td>0/1</td>
<td>7</td>
<td>1/56</td>
<td>1/2</td>
<td>7/8</td>
</tr>
<tr>
<td>662</td>
<td>75</td>
<td>16</td>
<td>52</td>
<td>2/58</td>
<td>0/1</td>
<td>3</td>
<td>2/96</td>
<td>0/6</td>
<td>1/4</td>
</tr>
<tr>
<td>408</td>
<td>85</td>
<td>24</td>
<td>50</td>
<td>3/36</td>
<td>2/32</td>
<td>4</td>
<td>0/6</td>
<td>0/2</td>
<td>0/4</td>
</tr>
<tr>
<td>709</td>
<td>110</td>
<td>42</td>
<td>50</td>
<td>0/21</td>
<td>0/1</td>
<td>4</td>
<td>2/11</td>
<td>0/1</td>
<td>5</td>
</tr>
<tr>
<td>339</td>
<td>90</td>
<td>14</td>
<td>54</td>
<td>1/89</td>
<td>1/74</td>
<td>6</td>
<td>0/5</td>
<td>1/74</td>
<td>6</td>
</tr>
<tr>
<td>791</td>
<td>75</td>
<td>22</td>
<td>42</td>
<td>1/50</td>
<td>0/2</td>
<td>4</td>
<td>1/50</td>
<td>0/2</td>
<td>4</td>
</tr>
<tr>
<td>805</td>
<td>60</td>
<td>20</td>
<td>38</td>
<td>0/9</td>
<td>0/6</td>
<td>9</td>
<td>0/9</td>
<td>1/4</td>
<td>9</td>
</tr>
<tr>
<td>845</td>
<td>100</td>
<td>30</td>
<td>38</td>
<td>3/6</td>
<td>0/4</td>
<td>11</td>
<td>3/6</td>
<td>0/4</td>
<td>11</td>
</tr>
<tr>
<td>553</td>
<td>130</td>
<td>26</td>
<td>30</td>
<td>2/11</td>
<td>1/1</td>
<td>11</td>
<td>2/11</td>
<td>1/1</td>
<td>11</td>
</tr>
<tr>
<td>902</td>
<td>40</td>
<td>20</td>
<td>30</td>
<td>1/7</td>
<td>1/10</td>
<td>12</td>
<td>1/7</td>
<td>1/10</td>
<td>12</td>
</tr>
<tr>
<td>774</td>
<td>145</td>
<td>29</td>
<td>44</td>
<td>1/55</td>
<td>0/7</td>
<td>13</td>
<td>1/55</td>
<td>1/7</td>
<td>13</td>
</tr>
<tr>
<td>348</td>
<td>110</td>
<td>28</td>
<td>22</td>
<td>1/50</td>
<td>0/8</td>
<td>14</td>
<td>1/50</td>
<td>0/8</td>
<td>14</td>
</tr>
<tr>
<td>398</td>
<td>90</td>
<td>24</td>
<td>28</td>
<td>1/84</td>
<td>0/2</td>
<td>15</td>
<td>1/84</td>
<td>1/2</td>
<td>15</td>
</tr>
<tr>
<td>905</td>
<td>65</td>
<td>30</td>
<td>26</td>
<td>2/12</td>
<td>1/5</td>
<td>16</td>
<td>2/12</td>
<td>1/5</td>
<td>16</td>
</tr>
<tr>
<td>405</td>
<td>50</td>
<td>20</td>
<td>40</td>
<td>2/21</td>
<td>0/1</td>
<td>17</td>
<td>2/21</td>
<td>0/1</td>
<td>17</td>
</tr>
<tr>
<td>333</td>
<td>80</td>
<td>44</td>
<td>28</td>
<td>1/87</td>
<td>0/2</td>
<td>18</td>
<td>1/87</td>
<td>0/2</td>
<td>18</td>
</tr>
<tr>
<td>791</td>
<td>80</td>
<td>23</td>
<td>50</td>
<td>2/48</td>
<td>0/6</td>
<td>19</td>
<td>2/48</td>
<td>0/6</td>
<td>19</td>
</tr>
<tr>
<td>364</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>1/80</td>
<td>0/6</td>
<td>21</td>
<td>1/80</td>
<td>0/6</td>
<td>21</td>
</tr>
<tr>
<td>306</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>1/88</td>
<td>0/2</td>
<td>22</td>
<td>1/88</td>
<td>0/2</td>
<td>22</td>
</tr>
<tr>
<td>540</td>
<td>240</td>
<td>28</td>
<td>40</td>
<td>1/12</td>
<td>0/7</td>
<td>23</td>
<td>1/12</td>
<td>0/7</td>
<td>23</td>
</tr>
<tr>
<td>791</td>
<td>294</td>
<td>44</td>
<td>50</td>
<td>0/56</td>
<td>0/56</td>
<td>24</td>
<td>0/56</td>
<td>0/56</td>
<td>24</td>
</tr>
</tbody>
</table>

دامتی: 60 60

500/75
جدول 2- اثر پتاسیم بر عملکرد برنج و غلظت و جدابی پتاسیم به وسیله گیاه

<table>
<thead>
<tr>
<th>شماره شاخص</th>
<th>عملکرد (گرم در گلدان)</th>
<th>غلظت پتاسیم (٪)</th>
<th>کاه و کلکش</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
<td>K2</td>
<td>K1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

- K1: پتاسیم پذیرافته در کیلوگرم خاک
- K2: پتاسیم پذیرافته در کیلوگرم خاک
- NS: غیر معنی‌دار
- *: به ترتیب معنی‌دار در سطح پنج و یک درصد

دانه: 28
سیب‌گیاه: 37
* - K1، K2: پتاسیم در کیلوگرم خاک
جدول ۳- ضرایب همبستگی روش‌های مختلف عصاره‌گیری با عملکرد، غلظت و جذب پتاسیم در گیاه برنج

<table>
<thead>
<tr>
<th>متغیر وابسته</th>
<th>عصاره‌گیری</th>
<th>عملکرد</th>
<th>عملکرد نسبی</th>
</tr>
</thead>
</table>
| استان متیعزیم | مورگان | ۰/۶۳ | ۰/۶۹
| استان سبزوار | کلووانت | ۰/۵۴ | ۰/۶۹
| استان گرگان | اسید نیتریک جوشان | ۰/۴۴ | ۰/۵۴
| استان ساری | اسید نیتریک آبی | ۰/۸۲ | ۰/۷۵
| استان آذربایجان غربی | استان آذربایجان شرقی | ۰/۴۱ | ۰/۵۸
| استان ترکمن | استان ترکمن | ۰/۵۱ | ۰/۶۸
| استان ترکمن | استان ترکمن | ۰/۵۱ | ۰/۶۸

در این جدول، میزان همبستگی بین عناصر مختلف عصاره‌گیری، عملکرد، غلظت و جذب پتاسیم در گیاه برنج نشان داده شده است. همبستگی بین عصاره‌گیری و عملکرد، غلظت و جذب پتاسیم در گیاه برنج می‌باشد. همچنین همبستگی بین عملکرد، غلظت و جذب پتاسیم در گیاه برنج نیز مشاهده می‌شود.

می‌توان به عنوان نتایج پتاسیم بیشتر، غلظت پتاسیم و در نتیجه جذب کل آن را در گیاه افزایش دهد. تاثیر کاربرد پتاسیم بر عملکرد مختلف عصاره‌گیری نیز مشاهده شده است. (۱۰، ۱۷ و ۲۳) در این جدول، همبستگی بین عناصر مختلف عصاره‌گیری، عملکرد، غلظت و جذب پتاسیم در گیاه برنج مشاهده شده است.

در ادامه، اگرچه مدل مصرف لوسک (تجسمی) پتاسیم به وسیله بروز سطح کمتر از ۱۰ درصد و مقدار جذب پتاسیم توسط برنج، همیشه باید باعث افزایش عملکرد (از عاملکرد دانه یا کلیش) نگریمی داشته باشد.

دنده، همبستگی بین عناصر مختلف عصاره‌گیری نیز مشاهده می‌شود. همچنین همبستگی بین عملکرد، غلظت و جذب پتاسیم در گیاه برنج می‌باشد.
هیپستگی عصاره گیره‌های مختلف با غلظت پایانی در کاه و کلش و کلش یک سیستم مشابه دور و دور باشد (جدول ۳). این هیپستگی برای استات میتریزم؛ مورکس، اسید سولفوریک، کلرید کلسیم یک صدم مولار و آب به مراتب قویتر از سایر روش‌ها و این اسید نیتریک چون، سیدم ترکیبی است. آسید کلرید کلسیم ضعیفتر از سایر عصاره گیره‌ها است. به نظر می‌رسد روش‌هایی که ارتباط تنظیم‌گذاری به پایانی به شکل تابلت استفاده دارند در مقایسه با سایر روش‌های هیپستگی بهتری به غلظت پایانی در برنج نشان می‌دهند. در این ارتباط روشهای صادقی را با آب یا کلرید کلسیم یک صدم مولار و آب به مراتب قویتر از سایر روش‌ها است. هیپستگی عصاره گیره‌های مختلف با چند پایانی عمومی توسط کلیه یا یک کلش مشابه با هیپستگی این روش را به غلظت پایانی در گیاه، است. عصاره گیره‌ای اسید سولفوریک است. استات میتریزم، مورکس و کلرید کلسیم یک صدم مولار با توجه به هیپستگی بالای و ساده‌تر روشهای توانایی می‌شوند. نتایج تحقیقات انجام شده در تولید گیاهی دنیا در مورد تعبیه‌های هیپستگی روشهای عصاره گیری مناسب برای یک پایانی در برنج یا سیستم متفاوت است. در برخی از مطالعات استات میتریزم و کریستالهای مولار (۲۵) در زمینه کلرید کلسیم یک صدم مولار (۵۳) و در پایان صادقی یک پایانی که پایانی غیر تابلیک استرخراج می‌کشد (۴) مناسبترین عصاره گیری تشخیص داده شده. در برخی از این مطالعات استات میتریزم تشخیص داده شده است. (۶) جدول ۴ پایانگر ضرایب هیپستگی خطی پایانی استرخراج شده به همراه عصاره گیره‌های مختلف است. این جدول نشان می‌دهد هیپستگی استات میتریزم با روشهایی که پایانی به سهولت قابل استفاده روش‌هایی که کلرید کلسیم یک صدم مولار و آب یا یک بخشی از پایانی غیر تابلیک (آسید نیتریک چون، سیدم ترکیبی است. آسید کلرید کلسیم) را استرخراج می‌کند بسیار ضعیف‌تر از روشهایی است که عمداً پایانی تابلیک را خارج می‌کنند. اما هیپستگی روشهایی که پایانی غیر تابلیک را استرخراج می‌کند با...
جدول ۴ - ضرایب همبستگی خطی بین پیش‌بینی استحکام سهمیه و شرایط مختلف محور اورژانسی

<table>
<thead>
<tr>
<th>جزئی از محور اورژانسی</th>
<th>۲/آب ۱</th>
<th>۲/آب ۲</th>
<th>۲/آب ۳</th>
<th>۲/آب ۴</th>
<th>۲/آب ۵</th>
<th>۲/آب ۶</th>
<th>۲/آب ۷</th>
<th>۲/آب ۸</th>
<th>۲/آب ۹</th>
<th>۲/آب ۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلریدریکت</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلریدریکت</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
<tr>
<td>کلروژا</td>
<td>۱/۰۵۲</td>
<td>۱/۰۹۵</td>
<td>۱/۰۸۶</td>
<td>۱/۰۷۵</td>
<td>۱/۰۶۷</td>
<td>۱/۰۷۳</td>
<td>۱/۰۶۵</td>
<td>۱/۰۷۹</td>
<td>۱/۰۹۷</td>
<td>۱/۰۸۵</td>
</tr>
</tbody>
</table>
پیش‌تری از خاک استخراج نموده و سطح بحرانی آنها بالاتر از عصاره گیره‌های دیگر است. روش‌های مورگان و کلرونا از این نظر واسطه‌هستند و استانت مناسب و کاربرد کلیمی پس صدم مولاژ، که احتمالاً پاسخی به سهولت قابل جذب گیاه را پرآورد می‌نمایند، پاسخی کمتری استخراج کرده و سطح بحرانی آنها یک‌پانچ کمتر از عصاره گیره‌های دیگر است. سطح بحرانی پتاسیم می‌تواند تحت تأثیر وریگرهای خاک، نوع رنگ و مداری کشش و داشت گیاه قرار گیرد. به عنوان مثال سطح بحرانی پتاسیم برای گیاه برنج با استفاده از آمپیون مولیتو از ارتفاع خاکهای مختلف از حدود 100 تا 160 میلیگرم در کیلوگرم خاک گزارش شده است (9). در کشور هندوستان این اعداد از 51 تا 160 میلیگرم در کیلوگرم خاک متفاوت بوده است (7، 15 و 26).

نتیجه‌گیری
نتایج به دست آمده از این تحقیق نشان داد که کاربرد پتاسیم در اکثر خاک‌های نیلزی از خاک استخراج نموده و سطح بحرانی آنها بالاتر از عصاره گیره‌های دیگر است. روش‌های مورگان و کلرونا از این نظر واسطه‌هستند و کاربرد کلیمی پس صدم مولاژ، که احتمالاً پاسخی به سهولت قابل جذب گیاه را پرآورد می‌نمایند، پاسخی کمتری استخراج کرده و سطح بحرانی آنها یک‌پانچ کمتر از عصاره گیره‌های دیگر است. سطح بحرانی پتاسیم می‌تواند تحت تأثیر وریگرهای خاک، نوع رنگ و مداری کشش و داشت گیاه قرار گیرد. به عنوان مثال سطح بحرانی پتاسیم برای گیاه برنج با استفاده از آمپیون مولیتو از ارتفاع خاکهای مختلف از حدود 100 تا 160 میلیگرم در کیلوگرم خاک گزارش شده است (9). در کشور
بررسی در استفاده از این روش اسفر به این نتیجه می‌رسد که ۳۱ میلی‌گرم پتاسیم قابل استفاده در کیلوگرم خاک ۱۰۰ می‌باشد. به همراه این نتایج آماری ساده چهارمگرم در کیلوگرم خاک است که توسط مسیر اجرای آزمون تی‌تای که مربوط به تابع معادله (۱) اجرا می‌شود. با توجه به سطح پرداخته ۱۰۰ میلی‌گرم پتاسیم گرایش‌های مختلف می‌توان رفتار افزایش انرژی که تقریباً ۷۵ درصد خاکهای مطلوعه شده از نظر پتاسیم قابل جذب پایین‌تر از حد پایینی می‌باشد. اگر به رسم همبستگی نسبت پایین استات آمونیوم یک مولار با عملکرد نسبی داده