مقایسه روش‌های عصاره‌گیری پتاسیم خاک برای تعیین سطح بحرانی پتاسیم برای برندی تعدادی از خاک‌های شالیزاری استان گیلان

محمود کبک‌پارسی و محمد کبک‌پارسی

چکیده

استان گیلان از مناطقی است که به دلیل ارتفاع بسیار بالا و بار دارند، از مهم‌ترین مناطق تولیدی برنج در سطح کشور است. با توجه به اینکه قابل بودن سطح بحرانی مورد نیاز برندی برنج در آن هر روز روی نقشه می‌یابد باعث می‌شود که این مطالعه از جمله مطالعات ارائه‌شده در این زمینه باشد. در پژوهش‌های انجام شده تاکنون، عصاره‌گیری به‌عنوان یکی از ابزارهای مناسب جهت تعیین سطح بحرانی پتاسیم برای برنج در مورد بخشی از منطقه دسترسی مشترک و برخی از این صنف‌ها در تعدادی از خاک‌های استان گیلان به‌عنوان اهمیت درآمده‌اند. این امر برای مدیریت برنج از لحاظ کیفی به‌عنوان یکی از مهم‌ترین توانایی‌های کنترل اعمال یابی در خاک و دو سطح صحراآسیب و توصیف 300 میلیگرم پتاسیم در کیلوگرم خاک ایجاد گردید.

نتایج نشان داده که آنتیسایم در اکثر خاک‌ها باعث کاهش استحکام عملکرد دانه کا و خلفیت پتاسیم درگیره و نیژ اناریش بذر باشد. توسط گیاه شده است. همچنین نتایج نشان دادند که در بستری که روش‌های مبتنی بر پتاسیم، بر اساس مدل‌های 80/600/7097، 80/7097، 80/600 و 60/600 به کار می‌رود، خودکاری پتاسیم در کلیه گیاهها (به ترتیب 99/7، 96/8، 93/9، 97/9 و 91/7) به‌طور کل به عنوان بهترین برای تعدادی از خاک‌های مختلف بوده است. سطح بحرانی پتاسیم برای 99 درصد عملکرد نسبی دانه با روش استاندارد 80/7097، 7097 و 80/600، 80/600 و 60/600 به 99/7 بهترین برای 99/7، 96/8، 93/9، 97/9 و 91/7 نتیجه‌گیری کرد که در معلام می‌شود تا روش استاندارد 300 میلیگرم پتاسیم در کیلوگرم خاک بود. تقریباً 75 درصد خاک‌ها از نظر پتاسیم قابل استفاده برای گیاه‌های باینی تر از سطح بحرانی پتاسیم

واژه‌های کلیدی - پتاسیم، قابل دسترسی، روش‌های عصاره‌گیری پتاسیم، برنج، سبد، برنج بحرانی پتاسیم

شناختن کتاب‌های خاص شناسی، دانشگاه، دانشگاه، دانشگاه، دانشگاه، دانشگاه، دانشگاه، دانشگاه، دانشگاه، دانشگاه

اسفهان 1378

57
مقدمه

امروزه به معنی افزایش جدی و پر محصول، فرصت مناسبی برای نمایندگان سمت پیوندی به استفاده از مکانیسمهای جدیدی برای مدیریت و مدیریت کودههای ملی و ایجاد آنر مجدد بالا رسانده است. یکی از کودههای مجددی که تاکنون بسیار در رشته علمی و اقتصادی کاربرد یافته است، به منظور ارائه توصیه کودی مناسب برای جدیدی که با توجه به آزمون خامه امری ضروری است. در نتیجه آزمون خامه برای یک عنصر غذا باعث و توصیه کودی مناسب غذا انتخاب عصاره گیری آزمایشگاهی به همراه دو عنصر غذا از آزمون خامه استفاده شده و مقدار عنصر غذاهای عصاره گیری از آزمون خامه و مقدار ژنده شده توسط گیاههای اولویت و بروخوردار است (5).

استاد گیاهی از عصاره گیری برای تعیین پتاسیم قابل استفاده، گیاه به کار رفته که احتمالاً به همراه اعمال مختلف مواد مغذی مانند آنزیم‌های تنشی و تنشی‌های عصاره گیری، مواد عصاره گیری، عصاره گیر نشان‌دهنده استفاده در آزمون خامه ایرانی.یک عنصر غذا باعث بهبود سیستم عصبی و کبدی و پزشکی و پیوندی به سیستم عصبی و کبدی است (5).

نتایج تحقیقات در نقاط مختلف دنیا برای تعیین عصاره گیر مانند برای پتاسیم برای مطالعه بوده است. تاکنون در انواع مختلف پتاسیم، استفاده از امکانات استیک است. استفاده از پتاسیم مولکولی و مولکول مقدار از پتاسیم غیر تبادلی استفاده می‌باشد (5). بدیعی از محصولات بسیار خوبی بین پتاسیم قابل استفاده به سیستم امومیون و جذب آن توسط گیاه به دست آوردهان (5). برای خاک‌هایی که حاوی مقادیر زیادی سوخت‌های الکتریکی، کالسیم و مال آلی هستند و در حیال مکان انریک های کنارکันه می‌کنند از آنها کم است و بایدها در آنها فریب شده است (5).

1. Kelowana
نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالасیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.

نتایج آزمایش‌های انجام شده در آزمایشگاه‌های مالکیت پالاسیوم داده‌های آزمایشگاه‌های تفتیض مالکیت پالاسیوم به مدل سرمایش گرفته شده با یک مدل سایر مدل‌ها و مدل‌های اصلی.
آموبیوم (۲۴)، مداخله به بروز ۱۰ گرم خاک خشک با نسبت ۵:۵ و ۵ دقیقه تکان دادن (۲۲)، مداخله به بروز ۱۰ گرم خاک با نسبت ۵:۵ و ۵ دقیقه تکان دادن (۲۴)، اسید کلئیدیک ۵۰ مولار بر روی ۴ گرم خاک با نسبت ۱۱:۲۴ و ۵ دقیقه تکان دادن (۱۹)، اسید سولفوریک بر روی ۱۰ گرم خاک و یک سانتی‌متر منبع اسید سولفوریک غلیظ و شستشو با اسید سولفوریک ۲۰۰ نرمال (۱۶)، کلرید کلسیم به صورت مولار بر روی ۱۰ گرم خاک با نسبت ۱۱:۲۴ و ۵ دقیقه تکان دادن (۲۲، مواردگان با استفاده از اسید استیک ۵/۲ مولار و استیل‌یدرکسیک به صورت مولار به نسبت ۵:۵ و ۵ دقیقه تکان دادن (۲۵) در می‌تواند به صورت فیزیکی و شیمیایی خاک‌های

۱. IRRI

نتایج و بحث

جدول ۱ برخی از خصوصیات فیزیکی و شیمیایی خاک‌های
جدول 1 - برخی خصوصیات الیوتیک و شیمیایی خاکهای مورد استفاده

<table>
<thead>
<tr>
<th>شماره شماره</th>
<th>گونه الم</th>
<th>رس</th>
<th>سیلت</th>
<th>نظریه نیاز کاتیونی</th>
<th>پتانسیم استخراج شده با</th>
<th>تهیه نیاز</th>
<th>استحکام آمونیم مولار</th>
<th>اسید لنتریک</th>
<th>pH</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>087</td>
<td>180</td>
<td>22</td>
<td>56</td>
<td>22</td>
<td>0/88</td>
<td>7/8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>083</td>
<td>95</td>
<td>22</td>
<td>52</td>
<td>22</td>
<td>2/38</td>
<td>5/1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>85</td>
<td>23</td>
<td>50</td>
<td>30</td>
<td>2/96</td>
<td>6/4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>110</td>
<td>44</td>
<td>50</td>
<td>22</td>
<td>0/44</td>
<td>6/5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>60</td>
<td>14</td>
<td>54</td>
<td>22</td>
<td>2/06</td>
<td>7/4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071</td>
<td>75</td>
<td>15</td>
<td>42</td>
<td>18</td>
<td>1/74</td>
<td>5/0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>120</td>
<td>40</td>
<td>40</td>
<td>22</td>
<td>1/50</td>
<td>7/2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>100</td>
<td>50</td>
<td>38</td>
<td>22</td>
<td>3/06</td>
<td>5/4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071</td>
<td>85</td>
<td>75</td>
<td>25</td>
<td>10</td>
<td>0/83</td>
<td>0/3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>100</td>
<td>39</td>
<td>36</td>
<td>25</td>
<td>3/14</td>
<td>8/4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>130</td>
<td>26</td>
<td>20</td>
<td>22</td>
<td>2/21</td>
<td>6/1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>60</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>1/05</td>
<td>7/7</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>074</td>
<td>145</td>
<td>29</td>
<td>44</td>
<td>22</td>
<td>1/53</td>
<td>7/0</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>078</td>
<td>110</td>
<td>38</td>
<td>22</td>
<td>16</td>
<td>1/50</td>
<td>6/8</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>088</td>
<td>80</td>
<td>24</td>
<td>28</td>
<td>12</td>
<td>1/84</td>
<td>7/2</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>85</td>
<td>30</td>
<td>26</td>
<td>22</td>
<td>3/28</td>
<td>8/6</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>086</td>
<td>90</td>
<td>59</td>
<td>50</td>
<td>30</td>
<td>0/87</td>
<td>7/3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>85</td>
<td>22</td>
<td>40</td>
<td>20</td>
<td>2/21</td>
<td>7/2</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>85</td>
<td>43</td>
<td>50</td>
<td>22</td>
<td>2/28</td>
<td>8/6</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>120</td>
<td>28</td>
<td>26</td>
<td>22</td>
<td>1/12</td>
<td>7/7</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>90</td>
<td>22</td>
<td>40</td>
<td>22</td>
<td>1/84</td>
<td>7/3</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071</td>
<td>240</td>
<td>78</td>
<td>50</td>
<td>30</td>
<td>0/87</td>
<td>7/3</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دامنه | 500/75 | 32/50 | 44/22 | 55/58 | 57/75 | 78/91 | 298/650 |

میانگین | 0.105 | 27 | 32/75 | 25/13 | 3/27 | 6/66 | 500/75 |
جدول 2- اثر انگیزه بر عملکرد بینجه و غلظت و جذب پتاسیم به وسیله گیاه

<table>
<thead>
<tr>
<th>شماره شماره</th>
<th>عملکرد (گرم در گلدان)</th>
<th>غلظت پتاسیم (‰)</th>
<th>کل گیاه کاه و کلش کاه و کلش</th>
<th>دانه</th>
<th>گل و شاخ</th>
<th>کاه و کلش کاه و کلش</th>
<th>دانه</th>
<th>گل و شاخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₀</td>
<td>1/10</td>
<td>1/4</td>
<td>1/18</td>
<td>-/40</td>
<td>1/10/1</td>
<td>82/1</td>
<td>82/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁</td>
<td>1/2</td>
<td>1/5</td>
<td>1/8</td>
<td>1/5</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₂</td>
<td>1/3</td>
<td>1/3</td>
<td>1/8</td>
<td>1/2</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₃</td>
<td>1/4</td>
<td>1/4</td>
<td>1/8</td>
<td>1/1</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₄</td>
<td>1/5</td>
<td>1/5</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₅</td>
<td>1/6</td>
<td>1/6</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₆</td>
<td>1/7</td>
<td>1/7</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₇</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₈</td>
<td>1/9</td>
<td>1/9</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₉</td>
<td>1/10</td>
<td>1/10</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₀</td>
<td>1/11</td>
<td>1/11</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₁</td>
<td>1/12</td>
<td>1/12</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁²</td>
<td>1/13</td>
<td>1/13</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₃</td>
<td>1/14</td>
<td>1/14</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₄</td>
<td>1/15</td>
<td>1/15</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₅</td>
<td>1/16</td>
<td>1/16</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₆</td>
<td>1/17</td>
<td>1/17</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₇</td>
<td>1/18</td>
<td>1/18</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₈</td>
<td>1/19</td>
<td>1/19</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₁₉</td>
<td>1/20</td>
<td>1/20</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
<tr>
<td>K₂₀</td>
<td>1/21</td>
<td>1/21</td>
<td>1/8</td>
<td>1/0</td>
<td>1/6/10</td>
<td>88/1/10/10/10</td>
<td>88/1</td>
<td>52/1</td>
</tr>
</tbody>
</table>

* - به ترتیب معنی‌دار در سطح پنج و یک درصد

- بی‌معنی‌دار

- بدون پتاسیم

- گیاهی که 300 میلی‌گرم پتاسیم در کیلوگرم خاک
جدول 3- ضرایب همبستگی روش‌های مختلف عصاره‌گری با عملکرد، غلظت و جذب پتاسیم در گیاه برنج

<table>
<thead>
<tr>
<th>متغیر وابسته</th>
<th>عصاره‌گری</th>
<th>عمکرکر</th>
<th>عملکرد نسبی</th>
<th>عملکرد</th>
<th>استات میزانی</th>
<th>مورگان</th>
<th>کلونیا</th>
<th>نگارس</th>
<th>اسید نتریک جوشان</th>
<th>کلسیم کل و کلسیم مولار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/87**</td>
</tr>
<tr>
<td>0/78**</td>
</tr>
<tr>
<td>0/69**</td>
</tr>
<tr>
<td>0/59**</td>
</tr>
<tr>
<td>0/6**</td>
</tr>
<tr>
<td>0/66**</td>
</tr>
<tr>
<td>0/63NS</td>
<td>0/63*NS</td>
</tr>
<tr>
<td>0/59**</td>
</tr>
<tr>
<td>0/43*</td>
</tr>
<tr>
<td>0/38**</td>
</tr>
<tr>
<td>0/28**</td>
</tr>
<tr>
<td>0/18**</td>
</tr>
<tr>
<td>0/0**</td>
</tr>
</tbody>
</table>

استات آمینوم 1- بدون غرفاب
اب۱- بدون غرفاب
- معنی دار در سطح 5 درصد
- معنی داده در سطح 1 درصد
- معنی داده در سطح 0.1 درصد

می‌توان به علت تأمین پتاسیم بهتر، غلظت پتاسیم و در نتیجه جذب کل آن را در گیاه افزایش دهد. تاثیر کلرید پتاسیم بر عملکرد و آرزایی عملکرد و نیز غلظت پتاسیم در گیاه برنج به وسیله پژوهشگران مختلفی گزارش شده است (10, 11, 17 و 22). جدول 2 به خوبی نشان می‌دهد که برعکس غرفاب غلظت و مقدار جذب پتاسیم توسط برنج، به‌همه‌اند افزایش غرفابی و افزایش عملکرد (از عملکرد دانه یا کاکه و کلش) تگردیده است، که احتمالاً این پدیده مولکول مصرف لوزیک (تجلیلی) پتاسیم به وسیله برنج می‌باشد.

جدول ۳ ضرایب همبستگی خطی بین عصاره‌گری ها و
روش استاتس منژیروکسیلیکاکسی می‌تواند نیست. روش‌هایی مثل استاتس آمونیوم و مهلیک ۳۴ در آن غلظت آمونیوم، زیاد است، نسبت به روش‌هایی که قبلاً آمونیوم را درآیی غلظت کمی از آمونیوم سه‌تیم‌ها هستند، هم‌سیستم سه‌تیم‌ها با روش استاتس منژیروکسیلیکاکسی دارند. با توجه به ضریب هم‌سیستم‌ها در نظرگیری این مشاهده‌ها در یک (جدول ۳)، می‌توان نتیجه گرفت که عنوان آمونیوم بخشی از پاناسیم غیر توده‌ای خان را با عصاره‌گیری می‌کند.

روش سولفوکسید بالایین هم‌سیستم‌ها با استاتس آمونیوم ناشان می‌دهد که در این اثر توده‌ای عصاره‌گیری با آب و کریکل کلیسم یک نکته مولار با توجه به سالگری‌ها و آوران این مشاهده مورد توجه قرار گرفت. هم‌سیستم‌ها عصاره‌گیری مختلف با بدن کلیسم آلوده است. در برخی از مطالعات با استاتس آمونیوم (۵۱) و در عادی عصاره‌گیری که پاناسیم غیر توده‌ای را استخراج می‌کند (۴) مناسب‌ترین عصاره‌گیری گسترده‌ترین شاخص داده است. در برخی از آزمایش‌ها به طور کلی هم‌سیستم‌ها عصاره‌گیری مناسب تشخیص داده شده است (۴).

جدول ۴ پنگار ضرایب هم‌سیستم‌های خشک پاناسیم استخراج شده به وسیله عصاره‌گیری مختلف است. این جدول نشان می‌دهد هم‌سیستم‌ها استاتس منژیروکسیلیکاکسی با روش‌هایی که پاناسیم به سه‌تیم‌ها استخراج می‌کنند (۱) با نتایج برای عصاره‌گیری داده شده است (داده‌های داده نشده‌اند).

مقافصل داده‌های بالا نشان می‌دهد که روش تغییرات، استاتس آمونیوم بدون غراف و روش سولفوکسید بالایین، پاناسیم
جدول ۲ - ضرایب همبستگی خطی بین یکنواختی استخراج شده به وسیله روش‌های مختلف عصاره‌گیری

<table>
<thead>
<tr>
<th>روش عصاره‌گیری</th>
<th>کلیه</th>
<th>کلیه آمونیوم</th>
<th>کلیه سولفوریک</th>
<th>کلرید کلیسیم</th>
<th>کلرید نیتریک</th>
<th>کلرید نیتریک</th>
<th>کلرید سولفوریک</th>
<th>کلرید آمونیوم</th>
<th>کلرید مورگان</th>
<th>کلرید کلیسیم</th>
<th>کلرید نیتریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>فنیل برات</td>
<td>1</td>
<td>0.95</td>
<td>0.93</td>
<td>0.88</td>
<td>0.79</td>
<td>0.77</td>
<td>0.74</td>
<td>0.67</td>
<td>0.63</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>استان منیزیم</td>
<td>1</td>
<td>0.85</td>
<td>0.77</td>
<td>0.7</td>
<td>0.65</td>
<td>0.58</td>
<td>0.52</td>
<td>0.48</td>
<td>0.42</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td>مورگان</td>
<td>1</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.62</td>
<td>0.57</td>
<td>0.52</td>
<td>0.48</td>
</tr>
<tr>
<td>کلورانا</td>
<td>1</td>
<td>0.88</td>
<td>0.84</td>
<td>0.79</td>
<td>0.74</td>
<td>0.69</td>
<td>0.64</td>
<td>0.59</td>
<td>0.54</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>تگراس</td>
<td>1</td>
<td>0.99</td>
<td>0.93</td>
<td>0.88</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.58</td>
<td>0.54</td>
</tr>
</tbody>
</table>

استان منیزیم: ۳۳ / ۳۵ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳
به روش سولفوریک: ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳ / ۳۳
استان آمونیوم: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش سولفوریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلیسیم: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید کلیسیم: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید کلرید کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش سولفوریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید کلرید کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش سولفوریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش سولفوریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
به روش کلرید نیتریک: ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱ / ۱
نتیجه گیری
نتایج به دست آمده از این تحقیق نشان داد که کاربرد پتاسیم در أكثر خاکهای شالیزاری گیلان باعث افزایش تولید ماده خشک و عملکرد دانه و کاه و کلش برتری شده است. بررسی ضربه همیستگی پتاسیم استخراج شده با عصاره گره‌های مختلف و خلط این دو بهبودی داشت که کلش و کاه و کلش در کلیه نشان دهنده همیستگی بسیار ضعیف این روش بر علله پتاسیم دانه و همیستگی بسیار قوی با غلظت پتاسیم در کاه و کلش و کل گیاه می‌باشد.

به‌طور کلی نشان داد که استخراج نموده و سطح بحرانی آنها بالاتر از عصاره گره‌های دیگر است. روش‌های مورگان و کلووتا از این نظر حد واسط هستند و استات میزان کلش کم گلی که احتمالاً پتاسیم به سهولت قابل جذب گیاه را پرآورده می‌نمایند، پتاسیم کمتری استخراج کرده و سطح بحرانی آنها پایین‌تر از عصاره گره‌های دیگر است. سطح بحرانی پتاسیم می‌تواند تحت تأثیر ویژگی‌های خاک، نوع ریشه و مدیریت کاشت و داشت گیاه قرار گیرد. به عنوان مثال سطح بحرانی پتاسیم برای گیاه برنج با استفاده از آمونیوم‌های مولار 1 میلی‌گرم در کیلوگرم خاک گزارش شده است (1). در کشور
مقایسه روش‌های عصاره‌گیری پتاسیم خاک برای تعیین سطح بحرانی...

شکل 6 - غلظت بحرانی پتاسیم برای روش کلرید کلسیم یک صدم مولار

شکل 7 - غلظت بحرانی پتاسیم برای روش استات آمینوپیس از در هفت غررقب

براساس این همبستگی‌ها، استات منیزیوم، اسید سولفوریک، مورگان و کلرید کلسیم یک صدم مولار و آب با توجه به همبستگی بالا و سهولت عصاره‌گیری، به عنوان عصاره گیوهای مناسب برای خاک به توجه به سطح بحرانی به‌دست آمده برای عصاره‌گیری مختلف می‌توان نتیجه‌گیری کرد که تقییاً ۷۵ درصد خاک‌های مطالعه شده از نظر تامین قابل جذب پایین‌تر از حد بحرانی می‌باشد. اگر به رضم همبستگی نسبتاً پایین استات آمینوپیس از مولار با عملکرد نسبی دانه...

