تأثیر نیتروژن و مگنز بر قابلیت استفاده برخی عناصر غذایی خاک

تحت کشت گیاهان مختلف

یحیی پرویزی و عبدالمعید رونقی ١

چکیده

به منظور شناخت اثر مصرف نیتروژن و مگنز بر قابلیت استفاده برخی عناصر غذایی در سه کشت گندم (Triticum aestivum L.)، از طریق فاکتور دوی در چارچوب طرح کاملاً تصادفی انجام شد. نیتروژن و میله گلخانه‌ای به صورت فاکتور اول و مگنز به صورت فاکتور دوم و آزمایش در سه گلخانه عمده و در چهار تکرار پیاده‌گیری شدند. نتایج نشان داد که، کاربرد نیتروژن و مکنز به طریق ملی، افزایش میزان علائم غلظت مگنز عصاره‌گیری شده خاک را در سه کشت افزایش داد ولی در مقدار افزایش کلی و تأثیر نسبی نداشت. مصرف از ترکیب نیتروژن و مکنز مقدار افزایش میزان قابل استفاده خاک در کشت‌های شدید مخصوصاً در کاربرد عصاره‌گیری خاک را در کشت گندم، مس خاک را در کشت فصل داد.

DTPA وازه‌های کلیدی: نیتروژن، مکنز، گندم، مصرف، استفاده، عصاره‌گیری

١. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز.
مقدمه

ازت در خاک تحت تأثیر و اکتشاف‌های شیمیایی، بیولوژیک و بیوشیمیایی قرار می‌گیرد. تغییرات از در خاک بر بخشی از ویژگی‌های خاک همچنین مولکول‌های آنزیمی، NC و pH، داده می‌شود. می‌تواند خاک لایه‌ها و رسمی‌های کم‌صرف را تغییر دهد. افزایش بودن آن در خاک، افزایش بیش از کنده تهیه‌شده در آن می‌باشد. می‌تواند در خاک به شکل‌های گوناگونی منجر به شرایط مختلف شیمیایی و بیولوژیکی سبب شود. به‌طور کلی، این امر منجر به تغییرات از ساختار و نوع سطحی

۲۱

۱۷

آلاست. از مولکول‌های شکل ۱ نشان داد که مردگی تدریجی این اثرات می‌باشد. به‌طور کلی، این اثرات در شرایط مختلف شیمیایی و بیولوژیکی سبب شود. به‌طور کلی، این اثرات می‌باشد.

۱۷

۱۵

۱۳

۱۱

۹۴
تأثیر تیتر در و مگنز بر قابلیت استفاده برخی عنصر غذایی خاک تحت

در ایران سالانه مقدار زیادی کود از مصرف می‌شود.

شناخت تأثیر آن بر تغییرهای شیمیایی خاک امر مهم است

که کمتر مورد بررسی قرار گرفته است. از سوی دیگر، هر ساله

به دلیل کشاورزی مکانی، نیز شرايط آب و هوایی و خاک

ازروم استفاده از عناصر کمیاصرف، همچنین مگنز، بیش از یک

مورد توجه قرار می‌گیرد. بنابراین، با بیش از احتساب افزوده

این عنصر را بر تحریک و قابلیت استفاده عنصر دیگر غذایی در

خاک شناخت. در این پژوهش تأثیر از و مگنز مصرفی بر

قابلیت استفاده این عنصر و نیز عنصر آهن، روی و مس در

خاک، برای سه گروه درخت و استفاده پررسی گردیده است.

مواد و روش‌ها

پس از گل‌درآمی شماری نمونه از خاک‌های زراعی استان

فارس، خاک‌های کنار دیواره باران و مکان قابل استفاده کمتری

بود برگردیده شد. خاک مورد نظر از سرشت شرقی به شرط سخت

سخت بود و در 9 کیلومتر جنوب شرقی نظرآباد بود. نام

Calceic Brown

علیه ان خاک در سلست فلزی خاکی و

moist, lomy, soil

در گروه برخی خاک، طبیعی عباراتی

کمتر باشد. مقدار carbonate, thermic, Typic Calciorthents

کافی خاک از افق سطحی صفر تا 20 سانتی‌متر برداشته شد.

پس از خشک کردن خاک در هوا و گذاراندن از اکسید

میلی‌متری، برخی از ویژگی‌های فیزیکی و شیمیایی آن مانند

پایه خاک در روش هیدروترم (100 درجه سانتی‌گراد) در

pH خاک کمتر از 

کروم آن به روی روش و بالا (20)، کربنات کلسیم معادل

مگنز بود. مقدار Mn، و 

و باید DTPA

عناصر کم‌صرف با عصاره‌گیری با

کم‌صرف با عصاره‌گیری با

باید دستگاه جذب اتمی (13)، میزان از کل به روش کلسیم (9)

مقدار تیرقات خاک به روش کلسیم (8)، فسفر خاک به

روش اولم (12)، پاتاس محلول در استان آمونیوم یک

روش شعله سنگی (18)، و هیداتز التیزری عصاره اشباع با

هدایت‌سنج التیزری تعیین گردید. نتایج در جدول 1 نشان

داده شده است.

پس از گل‌درآمی گردو به صورت فاکتوریل ۲ × ۵ با

چهار ترکیب انجام شد. تیمارهای مورد استفاده شامل پنج سطح

از (سفر، ۵۰، ۱۰۰، ۲۰۰ و ۴۰۰ میلی‌گرم در کیلوگرم خاک

از ۵ میلی‌گرم در کیلوگرم خاک، از ۱۰ میلی‌گرم در کیلوگرم خاک

روش خود را بر عهده گرفت.

دهای فلزی دیگری Fe-EDDHA (6) Fe-EDDA

در جدول 1 نشان داده شده است.
جدول 1. پریشی ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده

<table>
<thead>
<tr>
<th>ویژگی خاک</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن (%)</td>
<td>30</td>
</tr>
<tr>
<td>سیلت (%)</td>
<td>46</td>
</tr>
<tr>
<td>رس (%)</td>
<td>24</td>
</tr>
<tr>
<td>بافت خاک</td>
<td>ارم</td>
</tr>
<tr>
<td>ب هاش</td>
<td>7/6</td>
</tr>
<tr>
<td>ماده آلی (%)</td>
<td>1/0</td>
</tr>
</tbody>
</table>

هداهات الکتریکی (دسی‌زیمنس بر متر)
نظریه تبادل کاتیونی (سانتی‌مول (+) در کیلوگرم خاک)
کربنات کلسیم معادل (%)
ازت کل (%)
فسفور (میلی‌گرم در کیلوگرم خاک)
اثالیم (میلی‌گرم در کیلوگرم خاک)
نیترات (میلی‌گرم در کیلوگرم خاک)
مگنیز (میلی‌گرم در کیلوگرم خاک)
آهن (میلی‌گرم در کیلوگرم خاک)
روی (میلی‌گرم در کیلوگرم خاک)
مس (میلی‌گرم در کیلوگرم خاک)

خاک معمولی: با کاربرد 400 میلی‌گرم ازت در کیلوگرم خاک، مقدار ناهارپزی بر درصد ازت کل خاک افزوده شده (حدود 0/08 درصد)، که معمولی دار نیست. دلیل آن احتمالاً این است که ازت در خاک به سرعت معادل داده و تحت مکانیزم‌های نظری آب‌شویی، جذب و غیره در خاک مصرف می‌شود. همچنین، مشاهده می‌شود که میانگین ازت خاک در کشت ذرت کاملاً از دور کشت دیگر است. دلیل احتمالی این امر تولید ماده خشک بیچ در ذرت است. که تحقیج آن استحصال ازت بیشتری از خاک می‌باشد. کاربرد مکنون و برهم‌کنش آن با ازت تأثیر معنی‌داری در افزایش درصد ازت خاک نداشته است. DTPA با عصاره‌گیری توسط عصاره‌گیری اندوزگیری با دستگاه جذب انسی تعبیر، و نتایج حاصل به کمک نرم‌افزار MSTATC کمک نمایانگر و تحلیل آماری قرار گرفت، و میانگین‌ها مربوط به اثر تیمارها با آزمون دانکن مقایسه شدند.

نتایج و بحث

ازت خاک

نتایج حاصله در جدول 2 نشان می‌دهد که مصرف ازت در سطح 400 میلی‌گرم ازت در کیلوگرم خاک در کشت گندم در 29/2 درصد ازت خاک را نسبت به شاهد افزایش داده است. در کشت ذرت و اسفناج، تأثیر ازت مصرفی بر افزایش ازت کل...

99
جدول 2. تأثیر سطح ازت و ممنگنژ بر مقدار ازت کل خاک در سه کشت ژرتن، گندم و اسفنج

<table>
<thead>
<tr>
<th>سطح ازت (میلی گرم در کیلوگرم خاک)</th>
<th>مقدار ازت کل خاک (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>0.77</td>
</tr>
<tr>
<td>100</td>
<td>0.84</td>
</tr>
<tr>
<td>200</td>
<td>0.88</td>
</tr>
<tr>
<td>400</td>
<td>0.92</td>
</tr>
</tbody>
</table>

در هر کیاه، تفاوت میانگین‌های که در هر رنگ با سیون در یک حرف بزرگ یا کوچک مشترک می‌باشد با آزمون دانکن در سطح یک درصد معنی‌دار نیست.

ممنگنژ خاک

نتایج جدول 2 نشان می‌دهد که کاربرد ازت میزان منگنز عصاره‌گیری شده توسط عصاره‌گیری گسترده‌تر از هر سه DTPA کشته بهطور معنی‌داری افزایش داده است. به عنوان مثال، کاربرد ۴۰۰ میلی گرم ازت در هر کیلوگرم خاک میزان منگنز عصاره‌گیری شده را در کشت گندم، ذرت و اسفنج به ترتیب ۱۱۲/۱۷ و ۱۹/۱۲ به دیل مقدار زیاد آهک در خاک سورد آزمایش، خاصیت نامناسب آن زیاد بوده، در نتیجه نیتریفیکاسیون می‌باشد.
جدول 3. تأثیر ازت و منگنز بر مقدار منگنز عصاره‌گیری شده خاک با عصاره‌گیر DTPA

<table>
<thead>
<tr>
<th>سطح ازت</th>
<th>منگنز</th>
<th>(میلی‌گرم در کیلوگرم خاک)</th>
<th>غلظت منگنز خاک (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>50</td>
<td>0.9</td>
<td>0.62 ab c d e</td>
<td>0.62 ab c d e</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.59 cd e f</td>
<td>0.59 cd e f</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.57 cd e f</td>
<td>0.57 cd e f</td>
</tr>
<tr>
<td>400</td>
<td>0.1</td>
<td>0.55 cd e f</td>
<td>0.55 cd e f</td>
</tr>
</tbody>
</table>

در هر کیلگرم خاک تفاوت منگنز‌هایی که در هر درصد یا میلی‌گرم در ده هزار گرم دانکن در سطح به دنده‌های هم‌ارز می‌باشد، آمونیوم نمی‌تواند بر pH خاک تأثیرگذار و حل‌لایت و قابلیت استفاده عناصر غذایی را تغییر دهد.

استفاده منگنز به طور معنی‌دار مقدار منگنز عصاره‌گیری شده با دی‌اکسید کربن در هر هزار گرم عصاره‌گیری در سطح 100 میلی‌گرم ازت و 40 میلی‌گرم منگنز در کیلوگرم خاک حاصل شده و افزایش 3.9 درصد را نسبت به شاهد سبب شده است. شایان ذکر است که تأثیر سطوح منگنز در افزایش آمونیوم نمی‌تواند بر pH خاک تأثیرگذار و حل‌لایت و قابلیت استفاده عناصر غذایی را تغییر دهد.

استفاده منگنز به طور معنی‌دار مقدار منگنز عصاره‌گیری شده با دی‌اکسید کربن در هر هزار گرم عصاره‌گیری در سطح 100 میلی‌گرم ازت و 40 میلی‌گرم منگنز در کیلوگرم خاک حاصل شده و افزایش 3.9 درصد را نسبت به شاهد سبب شده است. شایان ذکر است که تأثیر سطوح منگنز در افزایش آمونیوم نمی‌تواند بر pH خاک تأثیرگذار و حل‌لایت و قابلیت استفاده عناصر غذایی را تغییر دهد.

استفاده منگنز به طور معنی‌دار مقدار منگنز عصاره‌گیری شده با دی‌اکسید کربن در هر هزار گرم عصاره‌گیری در سطح 100 میلی‌گرم ازت و 40 میلی‌گرم منگنز در کیلوگرم خاک حاصل شده و افزایش 3.9 درصد را نسبت به شاهد سبب شده است. شایان ذکر است که تأثیر سطوح منگنز در افزایش آمونیوم نمی‌تواند بر pH خاک تأثیرگذار و حل‌لایت و قابلیت استفاده عناصر غذایی را تغییر دهد.
تأثیر نیتروژن و مگنز بر قابلیت اسفاده برخی عنصر غذایی خاک تحت... شهد در خاک و ویژگی‌های خاک نظیر ظرفیت تبادل کاتیونی، میزان مواد آلی خاک و کربنات کلسیم معدنی رابطه مثبت و معنی‌دار وجود دارد. آنها دلیل عدم افزایش مقدار قابل عصاره‌گیری خاک به نسبت مقدار مصرف، را نشان می‌دهند. این امر با تأثیرات آب‌های زیاد خاک، می‌تواند به کاهش عنصر غذایی شده به وجود مقدار قابلیت کربنات را رعوب شود و از دسترس خارج شود.

امنی خاک

با مصرف ارز، میزان اهمیت عصاره‌گیری شده با دی‌ی‌پا در DTPA، کلیه میزان مصرف می‌گردد. خاک غلظت‌فکری دی‌ی‌پا DTPA و نیز امکانات خاک غلظت‌فکری دی‌ی‌پا در خاک با دی‌ی‌پا به حداکثر رسیده‌است. پویایی و رادیولوژی تهیه‌کننده به دلیل این امر، سبب تغییرات افزایش حجم و ترشحات در خاک، از قبیل می‌شود. در این حجم و ترشحات در خاک غلظت‌فکری افزایش یافته، منجر به تغییرات افزایشی می‌شود. تعادل آنها در خاک عصاره‌گیری شده با DTPA در حالت شده به محدود می‌شود.

 activités میکروژی خاک و کاهش خاک در مصرف کود pH

ازدست خاطر نسبت می‌دهند. پیش‌بینی و همکاران (21) گزارش کرده‌اند که میزان افزایش افزایش در این حالت، در حالت طبیعی منجر به تغییرات افزایشی می‌شود. تعادل آنها در خاک عصاره‌گیری شده با DTPA، به خاطر غلظت‌فکری کاهش یافته است. آنها مشاهده کرده‌اند که با تغییر در خاک مورد نظر، غلظت تیتر بیشتر به خاک و روی کم می‌شود، به این ترتیب رسیده که این با سرعت بخشیدن به روی کم‌تر به خاک می‌آید. به دلیل تعادل در منطقه افزایشی خاک، دلیل افزایش قابل عصاره‌گیری خاک با DTPA در هر شرایط کاهش ندارد.

روی و مس خاک

کلینیک افزایش احتمال داری بر مقدار مس و روی خاک

قابل عصاره‌گیری خاک با دی‌ی‌پا DTPA، میزان مصرف به وجود دارد. در این حالت، برای مقدار مس قابل استفاده خاک را به طور معنی‌دار کاهش داده است (شکل‌های 1 و 2)، همچنین...
جدول 6: تأثیرات و منگنز بر مقدار آهن عصاره‌گیری شده خاک با عصاره‌گیری DTPA در سه کشت ذرت، گندم و استفانج

<table>
<thead>
<tr>
<th>سطح منگنز (ملی‌گرم در کیلوگرم خاک)</th>
<th>سطح ذرت (درصد ذرت)</th>
<th>میانگین</th>
<th>صفر</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/28A</td>
<td>0/22abc</td>
<td>0/21ab</td>
<td>0/19ab</td>
<td>0/19abc</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0/14A</td>
<td>0/05c</td>
<td>0/03bc</td>
<td>0/09ab</td>
<td>0/09abc</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0/77A</td>
<td>0/07abc</td>
<td>0/06bc</td>
<td>0/09ab</td>
<td>0/09abc</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>0/12AB</td>
<td>0/19AB</td>
<td>0/18</td>
<td>0/87A</td>
<td>0/83B</td>
<td>0/86A</td>
</tr>
<tr>
<td>0/77A</td>
<td>0/12ab</td>
<td>0/05a</td>
<td>0/09ab</td>
<td>0/09abc</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0/44A</td>
<td>0/12a</td>
<td>0/10a</td>
<td>0/11a</td>
<td>0/10a</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0/70A</td>
<td>0/12a</td>
<td>0/10a</td>
<td>0/12a</td>
<td>0/10a</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>0/58A</td>
<td>0/40A</td>
<td>0/40A</td>
<td>0/40A</td>
<td>0/5A</td>
<td>0/49A</td>
</tr>
<tr>
<td>0/81A</td>
<td>0/40A</td>
<td>0/40A</td>
<td>0/40A</td>
<td>0/40A</td>
<td>0/5A</td>
<td>0/49A</td>
</tr>
<tr>
<td>0/79A</td>
<td>0/38b</td>
<td>0/39b</td>
<td>0/38b</td>
<td>0/39b</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>0/88A</td>
<td>0/52b</td>
<td>0/54b</td>
<td>0/52b</td>
<td>0/54b</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>0/70A</td>
<td>0/38b</td>
<td>0/39b</td>
<td>0/38b</td>
<td>0/39b</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>---</td>
<td>0/89A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>0/89A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>0/79A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>777A</td>
<td>777A</td>
</tr>
<tr>
<td>0/67A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>0/39A</td>
<td>777A</td>
<td>777A</td>
</tr>
</tbody>
</table>

در هر کیا، تفاوت میانگین‌های که در هر روز ثبت گردیده با ستون در یک حرف بزرگ و با کوچک مشترک می‌باشند با آزمون دانکن در سطح ۰/۰۵ درصد معنی‌دار نیست.

مصرف منگنز باعث کاهش میزان دار در مقدار روی قابل استفاده خاک در کشت گندم گردیده (جدول پیشینه ۱) به عنوان مشاهده مصرف ۲۰ میلی‌گرم منگنز در کیلوگرم خاک، مقدار مس و روی قابل عصاره‌گیری خاک را در کشت گندم به ترتیب از ۷/۲۷ و ۷/۲۹ و ۷/۶۹ در تیمار شاهد به ۷/۲۷ و ۷/۲۹ و ۷/۶۹ میلی‌گرم در کیلوگرم خاک رسیده است (شکل ۲). تأثیر برم اکتش ازت و...
جدول شمیم ۱. تجزیه و ارتباط پاسخ‌های خاک و گیاه

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>نگهداری</th>
<th>دمجه‌دهی</th>
<th>خاک</th>
<th>گل‌آلما</th>
<th>مگنتر</th>
<th>گل‌آلما</th>
<th>گل‌آلما</th>
<th>گل‌آلما</th>
<th>گل‌آلما</th>
<th>گل‌آلما</th>
</tr>
</thead>
<tbody>
<tr>
<td>آتزه</td>
<td>۱۹۸۸۴</td>
<td>۱۱۸/۹۴</td>
<td>۲۳/۱۸</td>
<td>۲/۱۱</td>
<td>۲/۱۱</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
<td>۱/۲۲</td>
</tr>
<tr>
<td>مگنتر</td>
<td>۶۳۹</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
</tr>
<tr>
<td>افزایش</td>
<td>۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
<td>۰/۴۳</td>
</tr>
</tbody>
</table>

شکل ۱. تأثیر مگنتر بر مقدار مصرف عصاره‌گیری شده از خاک در کشت گندم

شکل ۲. تأثیر مگنتر بر مقدار رنگ اتاق عصاره‌گیری شده از خاک در کشت گندم و ذرت
نتیجه‌گیری

1. تأثیر ارز و منگنز مصرفی در فاکتورهای خاک اندازه‌گیری شده، بستر به نوع گیاه کشت شده تا نتایج دقیق‌تری از کشت می‌تواند محور ویژگی‌های ریشه‌های گیاه همچون میزان حجم ریشه و ترشح مواد مختلف از آنها در ناحیه ریزه را باشد. در این آزمایش کشت گندم و دز در تأثیر منگنز و ارز مصرفی را تشدید کردند. در این امر احتمالاً توانایی بیشتر آنها در تولید مواد احیا کننده از ریشه و حجم بیشتر رشد‌های آنها است.

2. تیمارهای افت و منگنز در هر سه کشت تأثیر معنی‌داری در درصد از کل خاک نداشتند. در کشت ذرت به دلیل استحکام بیشتر از کل خاک، بیشتر مقدار از کل خاک در پایان کمتر از دو کشت دیگر است. در این آزمایش رشد بیشتر و تولید ماده خشک بیشتری به‌اشتغال کشت‌های ارز جذب از کشت بیشتری از خاک است.

منابع مورد استفاده

1. سالاردینی، ع. 1366. حاصلخیزی خاک، انتشارات دانشگاه تهران.
2. سالاردینی، ع. و. م. مجتهدی (مترجمان). 1373. اصول تغذیه گیاه. جلد دوم. انتشارات مرکز نشر دانشگاهی، تهران.
3. غفاری‌زاده‌های لب‌بایکی، ی. ع. 1377. توزیع شکل‌های مختلف شیمیایی منگنز در خاک‌های آهگی استان فارس و رابطه آنها با رشد سیب. پایان‌نامه کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه شیراز.
4. کوچکچ‌ی، ع. و. حسینی و ح. خزایی (مترجمان). 1373. بوم‌شناسی خاک. انتشارات دانشگاه فردوسی مشهد.
5. مجتهدی، ح. (مترجم). 1373. شیمی خاک. انتشارات مرکز نشر دانشگاهی، تهران.