بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک، با استفاده از زیرشکن تبدیلی

طرحی تیغه و مکانیزم تزریق سیوس برنج در خاک، در کاربرد زیرشکن تبدیلی

نادر ساکتیان دهکردی، پرث قبیدان و سعید مینایی

چکیده

دستگاهی که بتواند مالیه را در داخل خاک تزریق کند و توزیع و ترکیب میکرو اکسیژن مورد نظر در
طرابی و ساخت یک دستگاه زیرشکنی با تغییرات و مکانیزمی است که بتواند سیوس برنج را در خاک تزریق کند. با افزایش مورد نظر در
عملیات زیرشکنی مورد توجه ترکیب و شیوه آن از انتهای شده می تواند به عنوان روشی خاص برای تزریق سیوس مطرح گردد. دستگاهی پس از
طرحی و ساخت به آسانی به وسیله ترکیب کارگرفته شد. عملیات زیرشکنی و تزریق سیوس در هفته و مقدار مختلف در زیر خاک به
یکی انجام گرفت، این شیوه به عنوان روشی مفیدی به کمک‌داری از حفاظتی که توسط مورگان ارائه شده است، اضافه می‌گردد.

واژه‌های کلیدی: زیرشکن، رطوبت خاک، خاک وری، مالی باشی، حفاظت خاک

مقدمه

از آن جا که عملیات خاک‌وری، به منظور آماده سازی بستر
بذر، آماده سازی جایگاه ریشه و جلوگیری از رقابت گیاهان انجام
می‌شود، غالباً عملیات زیرشکنی ۳ خاک به عنوان روشی برای
سیاسی به این اهداف مورد نظر بوده است. چون عملیات
زیرشکنی، خاک را در عمیق‌های بیشتری می‌شکافد، باعث
سهولت تقویت‌کننده آب باران و تعویض بهتر ریشه می‌گردد، از
سوی دیگر، عملیات زیرشکنی در بهبود وضعیت رشد مؤثر

211
است. در نتیجه حاصله آمده است، کشت نک مخصوصی گندم رضایی به نیست. همچنین، هزینه تهیه‌دار حالت آیش تابستان برای کشت نک مخصوصی زمستان گصدن، شباهت شایستگی برای افزایش محصول نمی‌باید.

* برناکی و همکاران (۳)، در مورد طراحی و سایر ادوات خاکرژی تحلیل‌های جامعی ارائه داده‌اند، که در قابل فرمول‌ها و نمودارهای مختلف قابل دسترسی است. در زمینه استفاده از نریچرزی زیرشکنکی و استفاده از مالجسپرسی، به عنوان مثالی که در حفاظت خاک کاربردی مؤثر بوده، بر کارگری دستگاهی که توانایی مالج را در ذبای خاک توزیع کند و سرانجام بررسی نتایج حاصله می‌تواند این پروش است. بنابراین، طراحی و ساخت نرم‌افزار تزیم سپس به که از مطالعات قسمت‌های دستگاه‌های مختلفی نیز، مورد توجه قرار گرفته و ارائه گردیده است. در نهایت کاربرد زیرشکن تبدیل به عنوان روش تلفیقی حفاظت خاک معروف می‌گردد.

مواد و روش‌ها

طرافی دستگاه زیرشکن تبدیل بر پایه تزیم مالج سپس در زیر خاک صورت می‌گیرد. به این معنی که دستگاه ضمن شکستن خاک و ایجاد شیار بر روی سطح، باید طوری عمل کنند که بتوانند میزان زیرشگی خاک را در نواحی با دو سطح مقطع 7/5 و 6۵/5 سانتی‌متر، امکان‌پذیر سازد. از سیستم‌های مختلف زیرشکنی و انجام دهد، پنوان را به سیستم تراکتور کشید، و بس اکثری کاربرد داشته باشد.

از ویژگی‌های مهم در طراحی دستگاه، وضعیت تیغه و مکانیزم تزیم سپس در خاک است. با توجه به خصوصیات مورد نظر و محاسبات مربوط، قطعات طراحی گردید، و
بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک

در نهایت با ساخت آنها و پیوند به یکدیگر، دستگاه شکل گرفت.

شکل ١ ساخته نشان دهنده است.

طراحی تیغه

طراحی تیغه بر پایه پشت و نفوذ در خاک انجام می‌گیرد. عوامل مورد توجه در طراحی، مقدار مطلوب طول تیغه و زاویه تیغه با افق محیط و محاسبه نموده با توجه به شکل ٢، با پرداختن نیروهای مؤثر، معادلاتی به دست می‌آید که به وسیله آن مقدار زاویه تیغه مشخص می‌گردد و رابطه زیر حاصل می‌شود:

\[F_n = \frac{F_r}{\mu} \Rightarrow F_r = \frac{P \cos \alpha - F \sin \alpha}{\mu} \]

\[F_r = F \cos \alpha - P \sin \alpha \Rightarrow F_r = \mu (P \cos \alpha + F \sin \alpha) \]

\[F = \frac{F_r}{\mu} = \frac{P \cos \alpha + F \sin \alpha}{\mu} \]

\[\tan \alpha = \frac{F - \mu P}{\mu F + P} \]

(۱)

رابطه ۱، حاکم‌تر مقدار زاویه تیغه را نشان می‌دهد (۱). همچنین، بیانگر آن است که مقدار زاویه به سطح به نیروی وزن خاک (P) جنس خاک (μ) و نیروی مقاوم در انتقال خاک وارد نیز باعث تغییر در انتقال خاک می‌شود. با این‌ها، تغییر در هر یک باعث تغییر در انتقال خاک می‌شود.
می‌گردد.

نیروی کششی زیرشکن برای هر سانتی‌متر عمق کار ارائه شده است (۲) و برای هر عضو مختلف محاسبه می‌گردد. اگر این نیرو برای ردیابی کشش، کل نیروی موتر بر زیرشکن \(F_0 \) (برای نیروی کشش) در عمق \(h \) سانتی‌متری، برای استفاده:

\[F_0 = F_0 \times h \]

نیروی موتر \(F_0 \) چون بستگی به عمق دارد، به صورت گسترده و مطلوب شکل ۳ بر ساختمان عمل می‌کند. برای \(F_0 \) مساحت مثبت بار خواهد بود.

\[F_0 = \frac{B \times h}{h} \Rightarrow B = \frac{\gamma \times F_0}{h} \]

با استفاده از رابطه ۲، نتیجه می‌شود:

\[B = \frac{\gamma}{\gamma} \times F_d \]

به‌طور کلی باید بر تیغه مؤثر است، با برای هر نیروی موتر بر تیغه مطلق شکل ۳ به دست می‌آید. با توجه به شکل ۱:

\[\frac{h-e}{h} = \frac{b}{h} = \frac{B(h-e)}{h} \]

\[F = \frac{(B+b) \times e}{h} \Rightarrow F = \frac{[B + \left(\frac{h(h-e)}{h} \right)] \times e}{h} \]

\[F = \frac{e \times h \times B + B \times e(h-e)}{y \times h} \]

نیروی موتر بر تیغه \(F \) با جایگزینی رابطه ۳ در رابطه نتیجه می‌شود:

\[F = \frac{F_d \left(\gamma e - \epsilon \right)}{h} \]

سطح نمای حاکی از تیغه همان سطح تیغه است، که هر \(\frac{\epsilon}{\mu} \). به سطح خاک برابریکن داشته باشد. به دلیل پوستگی ذات خاک، افزایش پیدا می‌کند. بنابراین این نوع بافت و رطوبت خاک، محل غستنی خاک معلوم نمی‌باشد. و نیمی از آن‌ها مشخص برای آن قابل شد، ولی به صورت لاشه‌ای لاشه‌ای شکسته می‌شود (۳)، که

\[\alpha = \frac{1}{\cos \alpha} \frac{F_d(\gamma e - \epsilon)}{\frac{\mu \times F_d(\gamma e - \epsilon)}{\mu \times F_d(\gamma e - \epsilon)} \times K \mu a e h \times g} \]

\[\frac{\epsilon}{\mu} = \frac{\mu \times F_d(\gamma e - \epsilon) \times \sin \alpha - K \mu a e h \times g}{\mu \times F_d(\gamma e - \epsilon) \times \sin \alpha + K \mu a e h \times g} \]

\[\frac{\epsilon}{\mu} = \frac{\mu \times F_d(\gamma e - \epsilon) \times \sin \alpha - K \mu a e h \times g}{\mu \times F_d(\gamma e - \epsilon) \times \sin \alpha + K \mu a e h \times g} \]
بررسی عوامل مؤثر در ذخیه‌سازی رطوبت خاک

شکل 4. نیروی مقاوم مؤثر بر تیغه

شکل 5. تأثیر گوشه خاک بر تیغه

شکل 6. حجم تقسیم‌بندی خاک
زمین گرد به عنوان پارامتر اصلی در نظر گرفته می‌شود. اگر قطر چرخ ۶ سانتی‌متر باشد، می‌یابیم مقدار پیش‌روی (Lw) در یک دورگردش چرخ خواهند بود. بنابراین:

\[Lw = \frac{40 \times \pi}{4} = 42.5\text{ cm} \]

یکی از پارامترهای مهم نظر این پژوهش نوارسازی سیبوس با قطر ۵/۳ سانتی‌متر است. بنابراین، محاسبات برای دستیابی به این هدف است. سپس با تغییر چرخ دندان‌های ارتباطی، ریزش برای قطر ۵ سانتی‌متر نیز تنظیم می‌گردد.

با توجه به شکل ۸، حجم سیبوس تزریق شونده در زیر خاک را به ازای یک دور چرخ زمین گرد محاسبه می‌شود.

\[Vw_1 = S \times Lw \Rightarrow Vw_1 = \frac{40 \times \pi}{4} \times 125/6 = 5500\text{ cm}^3 \]

حجم سقوط سیبوس است که با توجه به یک دور چرخ زمین گرد در خاک تزریق گردیده و با سطح مقطع نوار سیبوس است. برای طراحی مکانیزم تزریق کندنه از یک پیچ ارشمیدس‌های مخصوص نیز استفاده می‌شود.

حجم گام هلبس، یا حجم جابجایی شونده در یک دور هلبس

\[Vh = \left(\frac{10 \times \pi}{3}\right) \times \frac{40}{4} \times 5/3 = 444\text{ cm}^3 \]

برای قرارگیری بود به:

\[Vw_1 + Vh = N \]

\[N = 5500 + 444 = 5944\text{ سانتی‌متر مکعب سیبوس} \]

بنابراین، برای یک دور چرخ، با پایین‌مایی کردن سیبوس تزریق کننده ۱۶/۵ دور باید تا نواری به قطر ۵/۳ سانتی‌متر سیبوس در زیر خاک پیدا آید.

مکانیزم محور هلبس، به وسیله یک جعبه دندان به صورت شکل ۵ طراحی گردید.

با استفاده از روابط مثلثاتی، رابطه ۹ به صورت زیر خواهد شد:

\[\mu (1 + \mu) \left((k.a.e.h.r.p.g) \frac{F_d}{(10 \times (\gamma e - c)^\frac{5}{4}) \sin^2 \alpha} \right) \sin^2 \alpha = \frac{F_d}{(k.e.h.r.p.g) \sin \alpha} \]

آستانه ۱۰، یک رابطه کاربردی خواهند بود که در آن:

\[\alpha = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[F_d = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[F_d = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[h = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[e = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[\mu = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[a = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[g = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[\rho = \frac{\gamma e - c}{k.e.h.r.p.g} \]

\[k = \frac{\gamma e - c}{k.e.h.r.p.g} \]

سیستم تزریق سیبوس

سیستم تزریق سیبوس با یک به‌گونه‌ای طراحی گردیده که بتواند پوشش تزریق با قطر ۵/۳ سانتی‌متر را پیاده‌سازی نماید. منظور از این مقدار این است که میزان سیبوس با قطر ۵/۳ سانتی‌متر با توجه به حکمت تراکتور ۱۹۶۵ سانتی‌متر مکعب، معمولاً 423 کیلوگرم، و با قطر ۵/۳ سانتی‌متر 247 کیلوگرم و با قطر ۵/۳ سانتی‌متر مکعب، معمولاً 325/۲ کیلوگرم در هر متر چوب‌پیچ توسط دستگاه‌ها در خاک نوارسازی گردیده. شکل ۷ نمایی از دستگاه‌های زیرکشک و چگونگی ریزش سیبوس است. در زیر خاک کشک می‌دهد.

مقدار ریزش سیبوس با توجه به سرعت پیش‌روی دستگاه‌های می‌گردد. گردش چرخ زمین گردیده، که روی دستگاه نصب می‌شود، نیروی داشته باشد که تا زمان می‌روید می‌گردد. در محاسبات مربوطه، محیط چرخ

[۱۰]

سیستم تزریق سیبوس
پروسه عوامل مؤثر در ذخيره سازی رطوبت خاک

شکل 7. چگونگی ریزش سبوب

شکل 8. میزان ریزش سبوب به ازای یک دور چرخ زمین گرد

شکل 9. پیچ تروریک کننده سبوب
$n_5 = n_4 \Rightarrow n_5 = 2/8$

tعداد دندان‌هایی که دندان شماره ۴-۱۰ عدد انتخاب می‌شود،

$N_4 \times N_5 = n_4 \times n_5 \Rightarrow 2/8 \times 1 = 1 \times N_4 \Rightarrow N_4 = 28$

tعداد دندان‌هایی که دندان شماره ۵-۱۶ هم محرور با چرخ زمین گرد است. از سه‌ای دیگر، برای تزیین سیروس با قطر ۸ سانتی‌متر، نتایج محاسبات به صورت زیر خواهد بود.

$n_4 = n_5 \Rightarrow n_4 = 2/14$

$n_0 \times N_0 = n_0 \times N_4 \Rightarrow 28 \times 2/14 \times N_0 \Rightarrow N_0 = 22$

چرخ دندان شماره ۱۷ دارد ۲۳ دنده بوده و مطالب شکل ۱۱ با چرخ دندان‌هایی که دندان شماره ۱۲ و ۶ هم محرور خواهد بود.

نتایج و بحث

نتایج طراحی تیغه

با استفاده از رابطه ۱۰، می‌توان برای پایه‌بندی میکسر بر تیغه و برخی پارامترهای انتخابی، زاویه آن را محاسبه نمود. نیروی کشش بر حسب عمق کار برای خاک‌های مختلف بین ۱۲۰ تا ۲۸۰ نیوتن (N/cm) متفاوت است (۲)، از آخرین چا هم ۲۸۰ نیوتن.

جمه‌ده دنده‌دازی دو چرخ دنده مخروطی با تعداد ۹ و ۱۶ دنده انتخاب گردیده است. بنابراین، تعداد دور محور افقی (۵) به می‌آید:

$n_1 \times N_1 = n_4 \times N_4 \Rightarrow 12 \times 5 \times 9 = 16 \times n_4 \Rightarrow n_4 = 7/5$

تعداد دور محور چرخ دنده ۱۶ دنده‌ای خواهد بوده که به ازای یک دور چرخ زمین گرد می‌گردد.

با توجه به قطر چرخ زمین گرد و با استفاده از چرخ دندان‌های مناسب، تعداد دور مورد نیاز به می‌آید (چرخ دندان شماره ۶) با چرخ دندان شماره ۲ هم محرور است، در نتیجه دوران یکسان است. موقعیت سایر چرخ دندنها در شکل ۱۱ نشان داده شده است.

$n_0 = n_4 \Rightarrow n_0 = 7/5$

تعداد دندان‌هایی که دندان شماره ۶۵ عدد دارد، و چرخ دندان شماره ۴۵ عدد انتخاب شده است. در نتیجه تعداد دور چرخ دندان ۵ به می‌آید:

$n_2 \times N_2 = n_0 \times N_0 \Rightarrow 7/5 \times 22 \times 10 = 25 \times n_0 \Rightarrow n_0 = 2/11$

چرخ دندان شماره ۲ با چرخ دندان شماره ۵ هم محرور است، در نتیجه:

۳۱۸
جدول 1. نتایج طراحی تیغه (k برابر 5)

<table>
<thead>
<tr>
<th>اندازه</th>
<th>ضریب (μ)</th>
<th>قطعه</th>
<th>طول تیغه</th>
<th>عرض تیغه</th>
<th>جدایی نیروی کشش در خاک</th>
<th>جدایی عمق در خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>48/2</td>
<td>0/8</td>
<td>زاویه تیغه 13/4</td>
<td>سانتی‌متر</td>
<td>سانتی‌متر</td>
<td>15/2 kN</td>
<td>40 سانتی‌متر</td>
</tr>
</tbody>
</table>

جدول 2. نتایج α زاویه تیغه در اثر تغییرات μ (بر حسب درجه)

<table>
<thead>
<tr>
<th>k برابر 20</th>
<th>μ</th>
<th>α برابر 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>0/8</td>
<td>48</td>
</tr>
<tr>
<td>44</td>
<td>0/7</td>
<td>44</td>
</tr>
<tr>
<td>40</td>
<td>0/6</td>
<td>40</td>
</tr>
<tr>
<td>36</td>
<td>0/5</td>
<td>36</td>
</tr>
<tr>
<td>32</td>
<td>0/4</td>
<td>32</td>
</tr>
<tr>
<td>28</td>
<td>0/3</td>
<td>28</td>
</tr>
<tr>
<td>24</td>
<td>0/2</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>0/1</td>
<td>20</td>
</tr>
</tbody>
</table>

شکل 11. موقعیت چرخ دندان‌ها

برای هر سانتی‌متر عمق استفاده شده است (این مقادیر جدایی در خاک در می‌رسی است). اگر پارامترهای دیگر برای طراحی به شرح زیر انتخاب شوند:

\[\frac{\text{N}}{\text{cm}} (\text{عمق}) = 380 \] \text{cm} = h
\[a = c \]
\[\frac{\text{cm}}{a} = \mu \]
\[\frac{9}{\text{N/kg}} = g \]
\[\frac{1}{\text{gr/cm}^3} = \rho \]
\[k = 5 \]

یا گذرگشتن در رابطه 10، زاویه تیغه، و در نتیجه طول آن به دست خواهد آمد:

\[\alpha = 20 \quad \alpha = 20 \]

درجه 28/28/296

\[\alpha = 28/296 \]

درجه 28/296

\[\alpha = 48/21 \]

می‌پذیرد، اگر برای طراحی پارامترهای میزانی که قبل آن اشاره شد در نظر گرفته شوند، برای تغییرات μ مقدار زاویه α مطالب جدول 1 به دست خواهد آمد.

نتایج حاصل در جدول 1 آمده است.

بنا بر محاسبات انجام شده، اگر زنجبیل روي چرخ دندان شماره 6 سوار شود دستگاه تزریق با قطر 7/5 سانتی‌متر را انجام می‌دهد، و اگر روی چرخ دندان شماره 7 سوار شود دستگاه
شکل 12. روشهای حفاظتی در زمین‌های کشاورزی

شکل 13. روشهای حفاظتی در زمین‌های شهری
نحوی تیزیزهای عملیات را پاسخگو بوده و کاملاً دارای وزیگی‌های کاربردی است. در طراحی تیغه، رابطه ۱۰ به عوامل یک رابطه کاربردی می‌تواند مورد توجه قرار گیرد. نتایج به دست آمده در جداول ۱ و ۲ به خوبی ارتباط زاویه تیغه را با پارامترهای مرتبط با خاک تایید می‌کند. بنابراین صورت که تزیین با قطر ۵ سانتی‌متر را انجام خواهد داد. تمامی جریان‌های ناهنجاری با گام یک کانال، و با استفاده از زنجیر صنعتی نامر ۲۵ به کارگرفته می‌شود.

بررسی نتایج در آزمایش‌های زیرشکنی تبدیلی در عملیات مزرعه‌ای، نشان داد که طراحی ابعاد و مکانیزم‌های دستگاه، به...
مشاهده می شود، هر چه باند خاک سخت‌تر باشد، زاویه تیغه‌ها در مورد توان کمتری را به راحتی کنترل گرفت. در افزایش نریزی وزن خاک، که ارتباط با بافت و رطوبت خاک دارد نیز، زاویه تیغه می‌تواند کمتر باشد. پیشینه است، در نتیجه یک وضعیت مطلوب برای تیغه در نظر گرفته می‌شود. بنابراین بیشتر مورد توجه این پژوهش بوده است. به‌نظر راهبردهایی ارائه شده در آزمایش به عمل آمده، سیستم‌های بسته سبوس کم‌کم رضایت بخش بود. برای اینکه بیشتر می‌توان سیستم‌های چرب‌زیمن گردا ماندن را بر یک پایه استفاده از محور توان دهی تراکتور مورد

منابع مورد استفاده

1. تابش، ف. 1359. شناخت نظری و عملی ماسه‌های کشاورزی، انتشارات دانشگاه تهران.
2. شفیعی، س. ا. 1371. اصول ماسه‌های کشاورزی (تأثیر کنترول کیفیت بهتر کیفیت محصول).