ساخت و ارزیابی چرخ فلک بادی جدید برای کماین غلات

سیده‌دهدی تصریح، محمد لقوی و جواد جعفری فر

چکیده

سال‌های مقدم گذشته گندم و همان‌العابری از نقش‌آفرینی‌های مهم در این زمینه، در حال استراحت‌زدایی گندم در مراحل کاشت، داشت، برداشت، جابجایی، نگهداری و نهایتاً در مرحله تغییر و تبدیل و مصرف از بین می‌روند. اما در حال حاضر، یافته‌ها نشان می‌دهد که با کارگری خاص از تکنیک‌ها و یا بهره‌برداری از فناوری‌های جدید، امکان محصولات بهتر و افزایش تولید محصولات افراطی را به رشد می‌دهد. این امر باعث شده است که از نظر کشاورزی، از این نگاه، چنین مطالعاتی انجام شود. در این مطالعه، بررسی می‌شود که چگونه با استفاده از چنین تکنیک‌هایی، کیفیت محصولات بهبود یافته و بهره‌برداری از ناحیه‌های مختلف کشاورزی افزایش یابد.

نتایج آزمون به صورت نمودار توزیع جریان باد ارائه گردید. بر اساس این نتایج تعداد ۱۳ پکه برای کماین غلات به بخش ۴/۳ فوت به مثابه شکل کلی تحقیق داد. نتایج آزمون‌های مزرعه‌ای عملاً در نوع چرخ فلک بادی و مکانیکی ناشنا می‌دهد که تعداد چرخ فلک بادی هنگام برداشت بسیار بیشتر از نرخ توزیع باشد و اعمال کمترین ضریب به محصول کمتری از نوع مکانیکی است. با افزایش سرعت پکه، تعداد محصولات به صورت خود افزایش می‌یابد. از آن جمله در سرعت‌های دورانی ۳۴۳، ۳۴۶ روز، ۳۴۸ و ۳۵۱ شاهد افزایش بهتر محصولات است. افزایش سرعت، به‌طور مثالی، در زمینه‌های مختلف کشاورزی، افزایش کیفیت محصولات و بهبود معیارهای ساختاری و جود محصولات در این زمینه‌ها، مانند عمدتاً و مکانیکی و چرخ فلک بادی، به راحتی تأثیر می‌گذارد. بر اساس نتایج بسته آمده، به دقت، و سرعت دورانی آن در زمان‌های مختلف تا ۴۰ درصد برای کیفیت و دقت تهیه می‌شود.

واژه‌های کلیدی: کماین، مکانیکی، فلک بادی، برداشت، مکانیکی، آنتن‌های، برداشت گیاهان زراعی، گندم، مکانیکی، کشاورزی

1. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشگاه و استادیار سابق ملیه کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز
مقدمه

گندم به عنوان اصلی ترین منبع غذایی بشر در مرحله کاشت، داشت، پرداخت و حتی مصرف، از راه‌های گوناگون به‌طور می‌رود و این امر نظر خاصی را برای جلوگیری از تلفات بادی شده می‌طلبد. طبق گزارش سالنامه‌ای که انجام گرفت، سال ۱۳۷۵ میلادی، تولید کندیا حدود ۱۰ میلیون تن بوده است (۱). با داده‌های نظر غذایی سال ۵ و ۷ درصد افت کبایی به طور استاندارد، با مقدار ۷ درصد، ۵۰۰ هزار تن تلفات وجود دارد و لیا، بسیار واقعی از این مقدار استاندارد توجب‌های بسیار بر اساس تنظیم سیاست‌های مختلفی کمبایی و بهره‌برداری از آن می‌توان افت محصول را به سطح استاندارد رساند، و از تلفات اضافی جلوگیری نمود.

افت کبایی در چهار قسمت سکویی برش۱ کوپنده، کاپوران۵ و قلب‌های۶ افت‌کمبایی در پایه‌پذیرفته‌ای انجام شده، بیشترین اکثریت کم‌بیان مربوط به قسمت سکویی برش آن بوده است (۴، ۵ و ۷) این مقیاس را حدود ۸۵ درصد کل تلفات کمبایی گزارش کرده‌اند (۸). بررسی تلفات سکویی برش در پرداخت محصول سیلوگره نشان داده که ۳/۲ درصد افت کل محصول مربوط به چرخ کرد می‌باشد. در رطوبت ۲۳ درصد بوده که این ریخت با کم شدن رطوبت ۱۳ درصد بوده به ۲/۴ درصد رسیده است. در حالی که تلفات لغزش برش به میزان ۲ درصد، با کاهش رطوبت تغییر چشمگیر نداشتند (۵).

گسترش از بزرگسایی در مورد بهترین تنظیم‌های چرخ فلک کمبایی، در مورد روش‌های جدیدتری، زر و چوب‌هایی که دور، و این‌گونه سیستم کمکی برای هدایت محصول به سمت مارپیچ نقش‌آفرینی استفاده شده است. در سال ۱۹۷۵ میلادی پژوهشگران مأمور محصول سویا انجام انجام پذیرند (۶).

۱- طبق گزارش وزیر کشاورزی در ستاد گستن لقایا کمبایی حدود ۱۰ درصد گزارش شده است (کنگره مهندسی ملی ایران، کشاورزی و مکانیک‌سازی، مرداد ۱۳۶۷).

۲- Cutting platform

۳- Threshing unit

۴- Straw walker

۵- Sieves

۶- Reel
ساخت و ارژیابی چرخ فلک بادی جدید برای کمباین غلات

شکل ۲. تصویر شماتیک از آزمون آزمایشگاهی برداشت سویا (۷)

شکل ۳. تصویر شماتیک چرخ فلک انتهایی - بادی

در عرض کمباین قرار داده، برای تولید باد استفاده شده است. سرعت چرخشی پرونده در دامنه ۱۳۰۰–۲۰۰۰ دور در دقیقه می‌باشد. به خاطر برخورد تکانه چرخ فلک و محصول، از هدر رفتن حدود ۱۲۵ کیلوگرم غندم در هکتار جلگیری اصلی شود. طرح یاد شده از نوع تجاری بوده و نتایج پژوهش علمی آن گزارش شده است.

با توجه به پروژه‌های انجام شده، طرحی با هدف کم کردن برخورد مکانیکی میان محصول و چرخ فلک کمباین برای کاستن افت مربوط به چرخ فلک ارائه شده است. در این طرح از شکل انجام شده توسط پنکه، برای خم کردن ساقه محصول و رانده آن به طرف تیغه و مارپیچ نقاهت سکوی برش محصولات ریزبانه را افزایش دهد. بادین منظور سیستمی را طراحی نموده که روی چرخ فلک نوع اگنشتی نصب گردید. برای شکل ۳ جریان ایجاد شده به طرف تیغه‌های بخش وزیده و باعث می‌شود محصول بردی شده پیدا گردد به طرف مارپیچ رانده شود. سرعت باد خروجی از افشانانه‌ها در این برسی حدود ۷/۳ متر در ثانیه بود (۳۲). طبق پژوهش‌های چهارساله دانشگاه لیبلینز این طرح می‌توانست حدود ۶۲ درصد از افت محصول جلگیری کند.

در سال ۱۹۹۱ با استفاده از جریان هوای یک چرخ فلک به نام ورتسکت توسط یک شرکت کانادایی ساخته شد. مطالب بخش ۴۳ از یک پنکه نوع جریان مماسی، که در یک محفظه سراسری

1. Vortex air reel
کمپین استفاده شده است.
هدف از طراحی سیستم چرخ فلک بادی، گسترش فناوری آسانتر و همچنین استفاده از یک دستگاه ارزان‌تر است که با نیاز‌های کشاورزی و سازندگان ما هم‌خوانی داشته باشد. به طور کلی در این پژوهش اهداف زیر مورد نظر بوده است:
الف) کاهش هزینه نسبت به چرخ فلک ورنکس ب) کاهش (دوربین) محسول در مقایسه با چرخ فلک مکانیکی
ج) کاهش مقدار كل تلفات کمپینان
د) دیجیتال برق رایانده کمپینان
ه) نصب آسان سیستم بدون تغییر در سکوری بر

مواد و روش‌ها
آزمون‌ها در دو قسمت آزمایشگاهی و مزرعه‌ای انجام شد.

آزمون آزمایشگاهی
در این آزمون یک پرده نوع گریز از مرکز با تیغه‌های به چلو خمیده با قطر 0.2 سنتری متراً انتخاب و پس از نصب روی شاسی، توسط موتور الکتریکی بگردش در اوره شد. سرعت
چرخش شانه موتور 1230 دور در دقیقه بود، که به وسیله دو
فرورده مرکب سه وضعیت روی محرورهای موتور و پنکه، دامنه
سرعتی برای 0.2-1230 دور در دقیقه ایجاد گردید (شکل 5).

جنس فرورده‌ها از پلاستیک فشرده، و بر اساس اندازه‌های

شکل 4. طریق کارکرد چرخ فلک ورنکس

شکل 5. شماتیک دستگاه مورد استفاده در آزمون آزمایشگاهی

محاسبه شده برای آزمون مزرعه‌ای ساخته شد. از میان 9 حالت
سرعت دورانی قابل تنظیم، پنج سرعت 2272، 2552، 2860، 3218 و 3932 دور در دقیقه انتخاب گردید. این انتخاب به
گونه‌ای صورت گرفت که میانگین سرعت باد تولید شده توسط
پنکه در مدت متوسط سرعت دورانی (2272 دور در دقیقه) برابر 9/2
متر در ثانیه، و پیش از سرعت باد به پووهش 1972 (7) باشد.
پرای خروجی پنکه (از نمای بالا به صورت دورنده) یک
قابل تغییر ساخته شد. این قاب دارای دو شاسی دورنده بود
که توسط پنج جفت تیره عمودی به یکدیگر متصل شده
بودند. فاصله تیره‌ها در هر دویف با ر половی بعدی 10 سانتی‌متر
انتخاب گردید (شکل 6).
روی نیروگاه‌های عمودی، در هر روز شیب‌های توسط نخ
نazorک با فصله یک سانتی‌متر ایجاد شد. یک‌پای این شیب‌های در
ردیف اول، زدیک دهانه پنکه، سه سانتی‌متر، و در رابطه پنج
11 سانتی‌متر بود. هم‌چنین، روی هر روز نخ، در فواصل
مسایل علامتگذاری شد (شترنگی کردن هر روز در) پس از
قرار دادن این قاب جلوی دهانه پنکه در رأس‌های چهارخانه‌ای
ایجاد شده، سرعت باد توسط سرعت سنگ حرارتی 1 آناده‌گیری
شد. این کار در سرعت‌های مختلف با سه تکرار انجام گردید، و
برای شکل‌های 2 تا 4 فریم سرعت باد جلو دهانه و در
فاصله 6 سانتی‌متری از آن (در سرعت دورانی 277، 368 در
دقیقه) به کمک نم‌افزار گزارش 1 رسم شد.

براساس این پروتکل‌ها نمودار افت سرعت باد در فاصله
سانتی‌متری ترسیم گردید (شکل 11). با توجه به مقادیر
پنکه سرعت باد خروجی در جلو دهانه پنکه (9/1 متر در
ثانیه)، و در فاصله 6 سانتی‌متری از آن (9/12 متر در ثانیه) در
سرعت دورانی 242 و 162 در دقیقه، میزان افت در این فاصله
حدود 95 درصد محاسبه شد. با به دست آوردن توزیع هوای
خروجی و اندازه‌گیری‌های داده شده پنکه به نظر پوشش تمام بهینه کم‌پایان لازم تشخیص
داده شد. در این آزمون مزان باد خروجی پنکه با توجه به

1. Hot-wire anemometer 2. Grapher

185
شکل 7. پروفورل سرعت پاد در طول دهانه پنکه (سرعت دورانی پنکه 2477 دور در دقیقه)

شکل 8. پروفورل سرعت پاد خروجی در پهنای دهانه پنکه (سرعت دورانی پنکه 2477 دور در دقیقه)

شکل 9. پروفورل سرعت پاد خروجی در طول دهانه پنکه (در فاصله 40 سانتی‌متری از دهانه، سرعت دورانی پنکه 2477 دور در دقیقه)
شکل 10. پروفیل سرعت پاد خروجی در پهنای دهانه پنکه (در ناصله 40 سانتی‌متری از دهانه، سرعت دورانی پنکه 247 دور در دقیقه).

\[Y = 8/9 \times \exp(-0.03) \]

فاصله از دهانه پنکه (سانتی‌متر)

شکل 11. سرعت پاد خروجی در فواصل مختلف از دهانه پنکه (سرعت دورانی پنکه 244 دور در دقیقه).

شکل 12. دستگاه طراحی شده برای آزمون مزروعی
نتایج
زاره ۱۰ درجه
در این زاویه بافقی افزایش سرعت پنکه مقدار ریزش دانه بیشتر شده است (شکل ۱۳). میانگین ریزش در چرخ فلک ماکانیکی ۱۵۳ درجه در ۱/۰ متر بر ثانیه می‌باشد. تحقیق آمیز نیز اختلاف میان دارای ریزش دانه با فاصله ۵۰ دی‌سانتی‌متر. نتایج است (شکل ۱۴).

زاره ۲۰ درجه
در مقداره با حالت قبل، میانگین ریزش در سرعتهای مناطق افزایش یافته است. هنوز مثال منطقه، سرعت ۳۹۲۳ در دی‌سانتی‌متر در میانگین ریزش ۵۸۷ درجه است. در حالت که در هنگام سرعت تقریباً ۵۰ هر زاویه ۱۰ درجه میانگین داشته می‌باشد. همینطور سرعت گروه‌های ۲۰۰ در دی‌سانتی‌متر به گونه‌ای انتخاب شده که سرعت‌های یک توان انتظار سرعت دقیقه در حدود مقداری دارد. به شدت پرورش‌های پیشین باشد (۴۸ و ۷۳). همینطور، زاویه طوری پیش‌بینی شده که با تولید جدید از پنکه در گستره زیر سیستم به خوشگل‌ها برخورد نماید. با محاسبه افت کمیابی و افت زاویه، کدامکسی از مقدارهای جمع‌آوری شده برای مدل، افت خاصل چرخ فلک‌های بادی و ماکانیکی محاسبه گردید.

مقداره به دست آمده از پانزده نمودار و شک میانگین از هر تیمار، برای بررسی نهایی و مقایسه میانگین داده‌ها توسط آزمون تکیک در طرح بلوک کاملاً تصادفی به جدول‌های مختصر ممکن شد. وسیعی پر نیز به صورت استاتیکی (از جلو دهانه پنکه) برای دو سیستم جدایگذار انداء گیری و به منظور بررسی آماری در جدول‌های مختصر دیده شد. وارد شده گنبد مورد آزمایش تغییر و ساخت مزرعه آزمایشی ۳۰۰ متر مربع بود.
جدول 1. مقایسه میانگین تلفات دانه در چرخ فلک بادی و مکانیکی در سطح 5%*

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>میانگین مشاهدات</th>
<th>زاویه وزش باد (درجه)</th>
<th>سرعت پنکه (دور در دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>49.6</td>
<td>2947</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>47.9</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>45.0</td>
<td>2160</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>42.1</td>
<td>1820</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>39.2</td>
<td>1480</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>36.3</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>33.4</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>30.5</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>27.6</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

نحوه نمودار: تعداد تلفات دانه توسط چرخ فلک مکانیکی و بادی در یک مترمربع، بر حسب دور پنکه.

شکل 13. تلفات دانه توسط چرخ فلک مکانیکی و بادی در ۱/۰ مترمربع، بر حسب دور پنکه.
جدول ۲. مقایسه میانگین انحراف ساکه از خط قلم در چرخ، فلک باد و مکانیکی در سطح ۵%

<table>
<thead>
<tr>
<th>میانگین</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت پنکه (دور در دقیقه)</td>
<td>زاویه ورشه باد (درجه)</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵<sup>b</sup></td>
</tr>
<tr>
<td>۲۵۴۷</td>
<td>۲۵<sup>b</sup></td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۵<sup>b</sup></td>
</tr>
<tr>
<td>۶<sup>b</sup></td>
<td>۲۵<sup>b</sup></td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵<sup>b</sup></td>
</tr>
<tr>
<td>۲۵۰۳</td>
<td>۲۲<sup>ab</sup></td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۲<sup>b</sup></td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۲<sup>b</sup></td>
</tr>
<tr>
<td>۲۸۴۰</td>
<td>۲۴<sup>b</sup></td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۴<sup>b</sup></td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۴<sup>b</sup></td>
</tr>
<tr>
<td>۳۲۱۸</td>
<td>۲۸<sup>ab</sup></td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۸<sup>ab</sup></td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۸<sup>ab</sup></td>
</tr>
<tr>
<td>۳۹۳۲</td>
<td>۲۱<sup>a</sup></td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۱<sup>a</sup></td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۱<sup>a</sup></td>
</tr>
<tr>
<td>چرخ فلک مکانیکی</td>
<td>۳۲/۴<sup>a</sup></td>
</tr>
</tbody>
</table>

حرف مشابه اختلاف معنی‌داری را نشان نمی‌دهد.

![جدول ۲. مقایسه میانگین انحراف ساکه از خط قلم در چرخ، فلک باد و مکانیکی در سطح ۵%](image)

شکل ۱۲. انحراف ساکه توسط چرخ فلک مکانیکی و بادی بر حسب دور پنکه

![شکل ۱۲. انحراف ساکه توسط چرخ فلک مکانیکی و بادی بر حسب دور پنکه](image)
بحث و نتیجه‌گیری

در زاویه ۱۰ درجه، که با درایه قسمت‌های بالای ساقه به‌روزرسانی شده‌اند، می‌کند و نفوذ مناسب را در توده محصول‌دار نداده، خم‌کردن ساقه به ساقه‌ای محوّل می‌گردد. با توجه به این که ارتفاع ساقه‌های گندم در سطح مزرعه‌باین نیست و ارتفاع چرب فکل بر پایه میانگین ارتفاع تنظیم می‌شود، باید این امر را در حالت تغییر خواهد بود. این مسئله آن‌ها را به دنبال خواهد داشت.

در زاویه ۳۰ درجه نیز نسبت به زاویه‌های ۱۵ و ۲۵ درجه، باد از قدرت کمتری برخوردار است، چون در این زاویه باد به قسمت‌های پایین محصول به‌روزرسانی می‌ماد. در زاویه ۳۰ درجه باید اثر مستقیمی بر فاصله‌ها نداده، در حالی که در زاویه‌های ۱۵ و ۲۵ درجه باد به‌روزرسانی می‌شود، است. در توده‌های بالا در زاویه ۳۰ درجه نسبت به زاویه‌های دیگر در حداقل افزایش افتاده، این موضوع به تعقیب می‌تواند با مقایسه مقدار انحراف ساقه و نمودار رشد آنها در زواياى گوناگون مشاهده نمود. برای این، به توجه به مطالعه حاصل شده می‌توان چنین اظهار نمود که:

منابع مورد استفاده:

۱. وزارت کشاورزی. ۱۳۶۷. نگاهی به زراعت و بازیابی در ایران. اداره کل آمار و اطلاعات، معاونت برنامه‌ریزی و پشتیبانی.

