عوامل مؤثر در استقرار چهار گونه گیاه شورپسند در شمال باطلاق گاوخونی، با استفاده از روش اوردیناسیون

پیامدهای گونه‌های شورپسند Salicornia europea و Halocnenum strobilaceum Aeluropus littoralis و Aeluropus lagopoides گونه‌ها و تفاوت‌های زیست‌محیطی کننده در تأثیر این گونه‌ها در کناره‌های شوری مشخص می‌شود. با این حال، جایگاه‌های آن‌ها به‌طور کلی از دیدگاه محیط زیست نیست. در این پژوهش، اگر می‌توانست چهار گونه مذکور در رویشگاه‌های منطقه اکتشاف شده‌اند، بر اساس شناخته‌ها، یکی از این گونه‌ها گونه گیاهی با توجه به شرایط محیطی و اثرات محیطی و محیطی. به کمک روش رایانه‌ای اوردیناسیون تطبیقی و ارزیابی شد. با این توجه به شرایط محیطی و محیطی. 

پایه‌ای اوردیناسیون به‌روزرسانی و ورودی کلی گونه‌ها در گونه‌های گیاهی مورد بررسی تکمیل می‌شود. و ارتباط آنها را مشخص می‌نمود. تجربه‌ها نشان دهنده وجود همبستگی متغیر بین تغییرات نزدیک و در صورت گونه‌ها با این تغییرات عمومی خاک بوده. به طور کلی، باکشتگی گونه‌های عمومی‌تر در این آزمایش می‌تواند به عنوان مؤثره مهم در کاسته و تعیین گونه‌های رشد و نمای این گونه‌ها برای مناطق طبیعی مورد توجه قرار گیرد.

CCA , PCA اوردیناسیونی Aeluropus , Halocnenum Salicornia و از به‌کردی کلیدی: 

1. استادیار اصلاح نیان، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. دانشجوی سال گشتی ارشد گریه و اخیابداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
3. دانشجوی اخیابداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

215
مقدمه

خشکی و شوری از مشکلات کلی و نیمه‌کلی جهانی محسوب می‌شود. از طریق استفاده شدن زمین‌های کشاورزی است. به‌همه‌ی شور بیش از ۲۰۸/۰۰۰ کیلومتر مربعی از کل مساحت کشور ایران را پوشانده است. (۱). وسعت این پهناها به دلیل انفیش سطح اراضی فیل و محصولات ناخالص آب شیرین به طور قابل‌توجهی به‌گونه‌ای است. به‌منظور حفظ توانایی زبان‌های حساس در منطقه خشک و نیمه‌خشک، ضرورت دارد پوشش گیاهی این زمین‌ها از طریق به کارگیری گونه‌های گیاهی مقاوم به شوری احیا گردد. برای این منظور، شناسایی روابط گیاهان بومی مستقر در عرصه و مؤثر در استقرار و بیان شور مؤثر حائز اهمیت در این فیکتیو عمده‌تری در تعیین روش‌های گیاهی که نیاز اساسی دارند (۱۵). که گونه‌هایی که حاوی خاک به عنوان عامل محیطی مؤثر در استقرار گیاهان صورت پذیرند، نیروهای بسیاری از یک‌رده‌های بوده است. (۱۹).

صاحب (۴) بررسی زیستگی گیاهان جوامع گیاهی منطقه کویری حیبی آب اصفهان، هفت اجتماع گیاهی متفرق را شناسایی نمود که در فاصله کوتاه به صورت جدا از یکدیگر مستقر در بودند. از این جهات، متغیرات موجود در شوری و قلبی خاک، و وجود آتشفشان چی و آکم در خاک روش‌گزاری را عامل دقت پوشش گیاهی دانست، که تحت شرایط اقیم منطقه بیانه است. (۸) نیز سطح استیلی، خاک و بیشتر محدود در عوامل مؤثر در تغییرات روش‌گزاره گیاهان کناره‌های گیاهان گیاهان بوده است.

پژوهشگران برای کاهش تغییرات گیاهی و ارتقاء میزان پوشش گیاهی و فاکتورهای محیطی، روش‌های مختلف تغییرات ادامه‌ی نظر در مهندسی و اورددیاپه و در مقیاس انسان‌ساختهای (۲). اساس روش‌های اورددیاپه در محققان موضوع که در آن‌ها روش پایین‌ترین محدوده همگامی این موضوع برای این موضوع و یا گونه‌های موجود در آن‌ها روی یک کاند محور مختصات است. به‌توجه که که در نظر گرفتن موضوع نسبت به آنها در محور‌های مختصات و نسبت به یکدیگر، می‌توان حداکثر اطلاعات را دربارهٔ شیب‌های اکولوژیک بین آنها، می‌توانند عوامل که باعث ظهور تغییرات می‌گردد. شناسایی و تعیین تغییرات روش رضایی اورددیاپه، به‌طوری که در رابطه با روابط بین موادی که به‌صورت مطابق که منحنی عمد تغییرات جوامع گیاهی و نسبت به طراحی (۲۳).

روش‌های رضایی اورددیاپه به دو دسته اصلی تقسیم می‌شود: دسته اول شامل تجزیه مواد تغییراتی اصلی (پا PCA) (Principal Components Analysis) که کاریکاتور آنها (پاCA) داده می‌شود. و دسته دوم شامل تجزیه مواد نمی‌شود. دسته دوم شامل تجزیه مواد نمی‌شود. (Canonical Analysis) و تجزیهی غیر عادی (پا DCA) (Detrended Canonical Correspondence Analysis) و تجزیهی غیر عادی (پا RDA) (Detrended Correspondence Analysis) و تجزیهی غیر عادی (پا DCCA) (Detrended Canonical Correspondence Analysis) و تجزیهی غیر عادی (پا CA)

بر اساس چهره تغییری (Detrended Correspondence Analysis)

گونه‌ها، آب و دمای تغییری (Detrended Analysis) که در فاصله کوتاه به صورت جدا از یکدیگر مستقر شده بودند. از این جهات، متغیرات موجود در شوری و قلبی خاک، و وجود آتشفشان چی و آکم در خاک روش‌گزاری را عامل دقت پوشش گیاهی دانست، که تحت شرایط اقیم منطقه بیانه است. (۸) نیز سطح استیلی، خاک و بیشتر محدود در عوامل مؤثر در تغییرات روش‌گزاره گیاهان کناره‌های گیاهان گیاهان بوده است.

پژوهشگران برای کاهش تغییرات گیاهی و ارتقاء میزان پوشش گیاهی و فاکتورهای محیطی، روش‌های مختلف تغییرات ادامه‌ی نظر در مهندسی و اورددیاپه و در مقیاس انسان‌ساختهای (۲). اساس روش‌های اورددیاپه در محققان موضوع که در آن‌ها روش پایین‌ترین محدوده همگامی این موضوع برای این موضوع و یا گونه‌های موجود در آن‌ها روی یک کاند محور مختصات است. به‌توجه که که در نظر گرفتن موضوع نسبت به آنها در محور‌های مختصات و نسبت به یکدیگر، می‌توان حداکثر
عامل مؤثر در استقرار چهار گونه گیاه شورپسند در شمال بانلایق گارخونی: با ...
شکل 1. موقعیت جغرافیایی منطقه مورد بررسی
عوامل مؤثر در استقرار چاه‌های گیاه شوی ویروس‌های شناخته‌شده در جهان بلافاصله گزارش می‌شود.

به‌آغاخان نیز به‌روش هیدروسکوپی تعبیه شد (۲۹). برای تعبیه اثر حاکم‌گیری در قطعه اندامگی (۲۹) در صورت تعبیه روش ماینگرهایی ویژه استفاده گردید (۲۹). بی‌پروین گونه‌ها و مشخصات فیزیکی و شیمیایی

دندانهای به‌دست آمده از پوشش و با استفاده از رابطه ۱ تعداد

قاب‌گذاری از نمودار قاب‌گذاری اولیه (n) کم‌تر از عدد N بود. نمونه‌برداری به‌طور لازم (N) در رابطه ۱، تعداد عناصر (C¹) و میزان دقت (c) و مان‌دان دقت (n) نمونه‌برداری اولیه و میزان دقت (n) در صورت یک‌بار تیپی، تعداد قاب‌گذاری در ۴۰ فضایه انجام گرفت. از این نتایج قاب‌گذاری از نمودار تعداد تاریخ‌گذاری گونه‌های مورد بررسی اندام‌گیری، سپس از هر فضای نمونه‌های ناگهانی گردید.

در تعداد حساس گونه‌های از محل تصادفی در هر قطعه به‌طور یک‌بار از قطعات به ترتیب از نمونه‌گیری ۱۱ تا ۲۵ تا ۵۰ نمونه‌برداری سطح نمونه برداری اولیه و برای دقت نمونه برداری شد. پس از بردارش، نمونه‌ها در کیسه‌های پلاستیکی میخواهی آزمایشگاه خانواده دانشگاه صنعتی اصفهان متخلک و نهایتاً گردید.

در تعداد حساس گونه‌های از محل تصادفی در هر قطعه به‌طور یک‌بار از نمونه‌گیری ۱۱ تا ۲۵ تا ۵۰ نمونه‌برداری سطح نمونه بردا

در تعداد حساس گونه‌های از محل تصادفی در هر قطعه به‌طور یک‌بار از نمونه‌گیری ۱۱ تا ۲۵ تا ۵۰ نمونه‌برداری سطح نمونه برداری اولیه و برای دقت نمونه برداری شد. پس از بردارش، نمونه‌ها در کیسه‌های پلاستیکی میخواهی آزمایشگاه خانواده دانشگاه صنعتی اصفهان متخلک و نهایتاً گردید.

در تعداد حساس گونه‌های از محل تصادفی در هر قطعه به‌طور یک‌بار از نمونه‌گیری ۱۱ تا ۲۵ تا ۵۰ نمونه‌برداری سطح نمونه بردا

در تعداد حساس گونه‌های از محل تصادفی در هر قطعه به‌طور یک‌بار از نمونه‌گیری ۱۱ تا ۲۵ تا ۵۰ نمونه‌برداری سطح نمونه برداری اولیه و برای دقت نمونه برداری شد. پس از بردا...
جدول 1. تفکیک گونه‌های گیاهی در محورهای اوردونیاسیون و اعداد بردراهای ویژه (EIG) مربوط به هر محور در روش PCA

<table>
<thead>
<tr>
<th>نام گونه</th>
<th>محور 1</th>
<th>محور 2</th>
<th>محور 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. littoralis</td>
<td>996</td>
<td>72</td>
<td>37</td>
</tr>
<tr>
<td>A. lagopoides</td>
<td>977</td>
<td>147</td>
<td>77</td>
</tr>
<tr>
<td>H. strobiulaceum</td>
<td>416</td>
<td>219</td>
<td>356</td>
</tr>
<tr>
<td>S. europea</td>
<td>419</td>
<td>219</td>
<td>356</td>
</tr>
</tbody>
</table>

اعداد داخل جدول در 100 ضرب شده است.

اردونیاسیون برای معنی‌های هر گونه گیاهی شناخته می‌شود. میزان تفکیک گونه‌های مختلف در هر محور اوردونیاسیون در جدول 1 نشان داده شده است. اعداد جدول 1 کسی از میزان کل تفکیک گونه‌های گیاهی مورد بررسی (EIG) در هر یک از سه محور اوردونیاسیون می‌باشد. محورهای 1 تا 3 که درصد ت نوع گونه‌ها را در داده‌های مربوط به گونه‌های گیاهی نشان دادند، این داده‌ها، تجزیه‌های مربوط به هر یک از گونه‌ها را به طور مجزا تأیید کرد. بر اساس تفکیک، نمونه‌برداری معرفی تیبی محورهای A. littoralis اوردونیاسیون 1 و 3 که به ترتیب درای مقدادار تفکیک 996 و 77 در مقایسه با دیگر محورها می‌باشد، دیده شد. این محورها بهتر از محورهای دیگر تفکیک را نشان دادند. اولین محور PCA (حدود 70 درصد) ت نوع در داده‌ها در بالا از تفکیک گونه‌ها را به اختراع داده است. به همین ترتیب A. lagopoides محورهای اوردونیاسیون 1 و 2 برای معرفی تیب محورهای 2 و 3 برای معرفی تیب محورهای S. europea و H. strobiulaceum می‌باشد. از نمودار 1 می‌توان شرایط خاک روش‌های گونه‌های مورد بررسی را از تیب نمود.

جدول 2 مشخصات کلی خاک روش‌های مورد بررسی در عمل صرف تا 50 سانتی‌متر بر حسب میانگین عوامل خاک هر گروه نشان می‌دهد.

توجه داشته باشید پوشش گیاهی و خاک با استفاده از روش روابط میان تغییرات عوامل خاک و تغییرات پوشش.
نمودار ۱: تلفیق رویشگاه گونه‌ها روز محورهای اوردنیاپسون ۳ و ۱ به روش PCA

جدول ۲: شرایط خاک رویشگاه گونه‌های مورد بررسی بر اساس تلفیق مکان‌های نمونه‌برداری در روش PCA

<table>
<thead>
<tr>
<th>عوامل ناخالص</th>
<th>S. europea</th>
<th>H. strobilaceum</th>
<th>A. lagopoides</th>
<th>A. littoralis</th>
</tr>
</thead>
<tbody>
<tr>
<td>عوامل ناخالص</td>
<td>میانگین وزنی</td>
<td>میانگین وزنی</td>
<td>میانگین وزنی</td>
<td>میانگین وزنی</td>
</tr>
<tr>
<td>pH</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>نش (دشان)</td>
<td>۴۱/۴۸</td>
<td>۴۱/۴۸</td>
<td>۴۱/۴۸</td>
<td>۴۱/۴۸</td>
</tr>
<tr>
<td>سیل (دشان)</td>
<td>۱۶/۵۹</td>
<td>۱۶/۵۹</td>
<td>۱۶/۵۹</td>
<td>۱۶/۵۹</td>
</tr>
<tr>
<td>رس (دشان)</td>
<td>۳۰/۵۴</td>
<td>۳۰/۵۴</td>
<td>۳۰/۵۴</td>
<td>۳۰/۵۴</td>
</tr>
<tr>
<td>کلسیم محلول (میلی‌آک وانل بر لیتر)</td>
<td>۴۴/۵۶</td>
<td>۴۴/۵۶</td>
<td>۴۴/۵۶</td>
<td>۴۴/۵۶</td>
</tr>
<tr>
<td>مولیبدن محلول (میلی‌آک وانل بر لیتر)</td>
<td>۱۸۴/۵۸</td>
<td>۱۸۴/۵۸</td>
<td>۱۸۴/۵۸</td>
<td>۱۸۴/۵۸</td>
</tr>
<tr>
<td>سدیم محلول (میلی‌آک وانل بر لیتر)</td>
<td>۵۷/۴۹</td>
<td>۵۷/۴۹</td>
<td>۵۷/۴۹</td>
<td>۵۷/۴۹</td>
</tr>
<tr>
<td>پتاسیم محلول (میلی‌آک وانل بر لیتر)</td>
<td>۷۷/۱</td>
<td>۷۷/۱</td>
<td>۷۷/۱</td>
<td>۷۷/۱</td>
</tr>
<tr>
<td>SAR</td>
<td>۴۲/۶۲</td>
<td>۴۲/۶۲</td>
<td>۴۲/۶۲</td>
<td>۴۲/۶۲</td>
</tr>
<tr>
<td>دی‌سی‌زیمنس بر متر</td>
<td>۴۴/۵۰</td>
<td>۴۴/۵۰</td>
<td>۴۴/۵۰</td>
<td>۴۴/۵۰</td>
</tr>
</tbody>
</table>

... (پایکوبی)
نمودار ۲. رابطه گونه‌های گیاهی با عوامل شاک روی محررهاي اورديناسیون 3 و Y = 1 به روش CCA

نمودار ۳. رابطه گونه‌های گیاهی با عوامل شاک روی محررهاي اورديناسیون 3 و Y = 2 به روش CCA
نمودار ۴: رابطه گونه‌های گیاهی با عوامل خاک، روند محورهای اوردیناسیون ۱ و ۲

جهدال ۵: تفکیک گونه‌های گیاهی در محورهای اوردیناسیون و اعداد بردارهای ویژه (EIG) مربوط به هر محور در روش CCA

<table>
<thead>
<tr>
<th>محور ۳</th>
<th>محور ۲</th>
<th>محور ۱</th>
<th>اسم گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIG = ۰/۳۸۹۴</td>
<td>EIG = ۰/۱۹۱۶</td>
<td>EIG = ۰/۲۴۴۵</td>
<td></td>
</tr>
<tr>
<td>۱۹</td>
<td>۶</td>
<td>-۴۶</td>
<td>A. littoralis</td>
</tr>
<tr>
<td>-۴۸</td>
<td>-۱۱</td>
<td>-۱۴</td>
<td>A. lagopoides</td>
</tr>
<tr>
<td>۶</td>
<td>۴۳</td>
<td>۶۹</td>
<td>H. strobilaceum</td>
</tr>
<tr>
<td>۱۱</td>
<td>-۱۲۸</td>
<td>۷۱</td>
<td>S. europea</td>
</tr>
</tbody>
</table>

اعداد داخل جدول در ۱۰۰ ضرب شده است.

جهدال ۵: مشخص شد تمام عوامل خاکی اندام‌گیبی‌شده در سطح ۰/۰۵ معنی‌دار هستند.

با استفاده از نمودارهای ۳ و ۴، شیب تغییرات عوامل خاک در میان گونه‌های گیاهی منطقه‌ای با مجموعه‌های نقاط

۲۲۴
جدول ۵. محورهای محیطی اوردنیاسیون و میزان تفکیک گونه‌های گیاهی به وسیله هر محور در روش CCA

<table>
<thead>
<tr>
<th>عامل خاک</th>
<th>محور ۱</th>
<th>محور ۲</th>
<th>محور ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>۸۸</td>
<td>۲۳۸</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>pH</td>
<td>۱۱۷</td>
<td>۶۶</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>سن</td>
<td>۹۹</td>
<td>۷۶</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>سیلت</td>
<td>۸۰</td>
<td>۱۲۰</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>رس</td>
<td>۱۱۱</td>
<td>۱۲۰</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۱۰۷</td>
<td>۱۰۷</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>منیزیم</td>
<td>۱۰۷</td>
<td>۱۰۷</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>سدیم</td>
<td>۱۰۷</td>
<td>۱۰۷</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>۱۰۷</td>
<td>۱۰۷</td>
<td>۱۴۵</td>
</tr>
<tr>
<td>SAR</td>
<td>۱۸۷</td>
<td>۱۸۷</td>
<td>۱۴۵</td>
</tr>
</tbody>
</table>

اردنیاسیون دوم و سوم برای ارتباط گونه A. littoralis

در زیر اشکال آن گونه‌های شوریپسند S. europea و H. strobilaceum A. lagopoides

اجتماعات را تشکیل داده‌اند. حضور جنین اجتماعاتی توسط

پژوهشگران دیگر نیز گزارش شده است (۱ و ۷). با این حال،

این نخستین گزارش در مورد بررسی عوامل استقرار این گونه‌ها

در منطقه رشت است و معرفی اراضی شور و قلیایی با حالت گلی

در دوره‌های مرطوب سال به عناوین وضع کلی روش‌گاهی این

گونه‌ها می‌باشد. بنابراین، بدون توجه به شرایط داشتن شور به

عنوان توضیحی برای گسترش و استقرار اجتماعاتی در

این منطقه، ویژگی مشترک این منطقه با دیگر گونه‌های شور

می‌تواند پژوهشگران در مدیریت و استقرار گیاهان با توجه به

عوامل خاک و درصد بیوصی در مناطق در حال تخریب کمک

نماید.

مشاهده قطعه‌های کبدستی از هر گونه در مساحت ۱۰۰ تا

۵۰۰ متر مربع و حتی کمتر از ۱۰۰ متر مربع در کنار هم و

A. littoralis و H. strobilaceum

وجود نوعی آراپی پارچه‌ای شوریپسندی‌های جدا

از قطعات همیشه و یا با

A. lagopoides
چهار گونه مورد بررسی نشان داد که در خاک‌هایی که درجه فلایبیت بالاتری نسبت به A. littoralis در روند رشد مواد غذایی عضویت بیشتر می‌شود. آزمایشات نشان دادند که بیشترین رشد در خاک‌هایی با ترکیب مواد غذایی مناسب‌تری داشته و این نتایج به دست آمده‌اند. 

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.

A. littoralis و H. strobilaceum از نظر ساختاری طبیعی خاک‌های طبیعی شوری و اینفراگلیفی خاک‌های معمولی نموده‌اند. ویژگی‌های نرم‌شان‌ها از درصدی مواد غذایی فرعی کمتری داشته و این نتایج به دست آمده‌اند.
عوامل مؤثر در استقرار چهار گونه گیاه شوریسد در شمال بانلاق گارخونی. یا

شوري کمتر را انتقال نموه است. وی عوامل مؤثر در تفاوت شوري خاك را پستی و بلندی زمین عنوان می‌کند. به نظر وی، H. strobilaceum در کنار A. littoralis وجود قطعه‌های شاخه به وجود شرایط خاک از لحاظ کاهش شوري و قلیابیست

است. در منطقه پژوهش دوم به یاد می‌آید از گونه‌های شوریسد مورد بررسی در یک یا بلندی‌های ملایم و محصول می‌باشد. که آب‌های سطحی و زیر سطحی کم عمق زیر سطحی شریک را سری قسمت‌های پست هدایت می‌کند. در این قسمت‌ها، وجود نخست‌لاهی رست از عمق 40 سانتیمتر به یا دارای، ایجاد حالت مانندی تأمین با شوری و قلیابیت در قسمت‌های پست‌سری شوری‌ها. خاک این بخش‌ها مانندی داشته و کمکی کرده، و در نتیجه احساس از (5).

باخت رنگ خاکستری و لاورودی شده است. در چنین شرایطی فقط گونه H. strobilaceum که از مفاوت‌ترین گونه‌ها به شوری قلیابیت و حالت مانندی خاک است، استقرار یافته و تینی نگه‌گیری را تشکیل داده است. با حرکت به سوی S. europea قسمت‌های برخشته، درصد پوشش گونه A. lagopoides یافته و با کاهش بیشتر شوری و قلیابیت گونه نیز ظاهر شده است.

منابع مورد استفاده

1. جغرافی، م. 1373. سیاست گیاهی و شوریسی. انتشارات مؤسسه تحقیقات جنگل‌ها و مرانگ، تهران.
2. خواه‌الدین، ج. س. سلطانی و تی. و. م. درویش پوریان. 1378. نقشه پوشه گیاهی پارک ملی کلاه فاضل. اداره کل حفاظت محیط زیست استان اصفهان.
3. شرکت کشت و دام جهاد تعاون اصفهان. 1375. طرح مرعی داری مراتب گاوخونی ژورنژه شهروستان اصفهان. اداره کل منابع طبیعی استان اصفهان
4. صاحیح، ح. 1376. بررسی اکستروژن پوشه گیاهی منطقه کویری جنوبی ایلام اصفهان. پایان‌نامه کارشناسی ارشد. دانشگاه اصفهان.
5. فیشک، آ. 1374. جیکیمهای در باره علم تعقیب گیاهی (ترجمه ر. تسرایی). انتشارات دانشگاه تبریز.
6. کریمی، م. 1371. آب و هوای استان اصفهان. سازمان برنامه و بودجه استان اصفهان
7. مین، ص. 1356. رسالتهای ایران (فامیل کیاهان آبی). جلد دوم، انتشارات دانشگاه تهران.
8. نجاری، ح. 1375. بررسی عوامل مؤثر محیطی در پوشه گیاهی و تهیه نقش رویش ناحیه تابلو کاوخونی. دانشگاه تربیت معلم.

277


