بررسی تنویع و تجزیه ضرایب مسیر صفات مرتبط با کیفیت نانوایی در لایه‌های اصلاحی، ارقام زراعی و بومی گندم.

فهیمه شاهین‌نیا، عبدالملک رضایی و عباس سعیدی

چکیده

به منظور بررسی میزان تنویع و مطالعه همبستگی میان صفات مرتبط با کیفیت نانوایی از طریق تجزیه ضرایب مسیر، 145 نمونه گندم نمان مربک از 90 لاک اصلی و 55 رقم بومی و زراعی مورد آزمایش قرار گرفتند. از صفات درصد پروتئین، حجم رسوپ زننی، حجم رسوب سیاهی، حجم نان، درصد رطوبت دانه و جذب آب، به عنوان میزان‌های سطحی ضرایب مستقیم برای ارزیابی کیفیت نانوایی گندم‌های استفاده شد.

صفات سختی دانه، حجم رسوپ زننی و حجم رسوب با SDS به ترتیب با ضرایب تغییرات 0.31/0.29/0.28/0.27 با حجم نان، درصد پروتئین، حجم رسوپ و حجم رسوب با SDS به ترتیب با ضرایب تغییرات 0.33/0.30/0.27/0.26 با حجم نان، درصد پروتئین، حجم رسوب و حجم رسوپ از این صفات مربوط به کیفیت نانوایی گندم‌های داد. در جدول 1، به‌طور کلی، این صفات توجه کننده مقدار زیادی از موارد وارد شدند. همچنین تجزیه ضرایب مسیر نشان دهنده اثر مستقیم و محدودیت در صفات درصد پروتئین، حجم سیب زننی، حجم نان، درصد و حجم رسوپ دانه و درصد جذب آب و حجم نان به ترتیب 0.25/0.23/0.22/0.21/0.20، به ترتیب مستقیم اثر مستقیم این صفات از طریق دانه درصد نانوایی اثرات تغییرات حجم سیب زننی و حجم رسوپ با SDS بود. تجزیه خوشه‌ای بر پایه صفات کیفی نانوایی دانه به‌طور جزئی مطلوب زننی‌های زراعی و بومی از حيث صفات مرتبط با کیفیت و کیفیت پروتئین در مقایسه با گونه‌های گرده‌های دیگر (به طور عمده لایه‌های اصلاحی) بود.

واژه‌های کلیدی: تنویع، تجزیه ضرایب مسیر، کیفیت نانوایی گندم

1. به ترتیب دانشجوی سالی کارشناسی ارشد و استاد اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
2. عضو هیئت علمی بخش غلات مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرج.
مقامه

از ویژگی‌های کفی مورد توجه در پاتولوژی پلک‌سنگ از نوع Triticum aestivum L. که بر ارزش ناتوانی مؤثر بوده و بی‌شک تحت تأثیر عوامل زننیکی می‌باشد (8، 10 و 20). گل‌پذیری طبخ‌های اصلی اندازه‌گیری می‌گردد به دلیل اعضا خاصیت ویسکولاستیک

به‌طور کلی، تغییرات مشاهده شده در ارزش ناتوانی ارقام مختلف به‌خاطر تفاوت‌های کیفی در نسبت و اجرای تکیه‌گاه‌های تشکیل دهنده گل‌های آرد می‌باشد (8، 10 و 12). با توجه به نوع کنترل زننیکی صفات مربوط به کفیت آرد گذشته ارزش ناتوانی صفت بسیار پیچیده‌ای است، و نمی‌توان کفیت هر رقم را بر حسب یک ویژگی بیان نمود (23، 24 و 26).

چند ویژگی همچون خواص شیمیایی، خواص آسیاب کرد، ویژگی‌های پخت و خواص فیزیکی خمیر در کفیت ناتوانی مؤثر بوده و حیاتی‌های می‌باشند. به‌همین روش در بررسی کفیت ناتوانی، به‌هیچ آزمایش استاندارد بخان است که به صرف وقت و هزینه نسبتاً زیاد تیار دارد. بنابراین، می‌توان از روش‌های غیر مستقیم به مظاهر ارزیابی صفات مربوط به کفیت ناتوانی به عنوان مصارف برای تحصیل ارزش ناتوانی کند در شناسایی ارقام مطابق بهره بردار (7، 8) و (25). کاربری این روش‌ها به مواد مذکور سادگی و ابزار آسانی است، هرچه می‌توان از جمله می‌باشد که از گل‌های آرد پشت این کاربری استفاده کنند.

کرک: 1- سهمت استفاده، به طوری که بتوان شمار زیادی از ارقام را مدیت کرده‌ای ارزیابی نمود. 2- نیاز به مقدار کم آرد (حداکثر 10 تا 12 کرم) به طوری که بتوان حداقل بی‌پروانی و ارزش ناتوانی اثر می‌گردد و به‌نوبه هزینه تغییرات زیادی در دست (9، 23، 25 و 27) اندام‌گزاری‌های گل‌گزاری پرتقیبی، بنیان دانه، وزن حجمی (هکتوبر) درصد چندان آب به وسیله آرد، حجم حنجی روسپ زلنی و حجم روسپ با

مواد و روش‌ها

مواد گیاهی

مواد گیاهی مورد آزمایش با 145 زننیکی گند نان شامل 90
بررسی تنوع و تجزیه ضرایب میکروصدای برای کفیت نانویی در غلات

این اصلاح شده، جزء از کوشش‌های آمریکایی جامعه Cereal Processing (AACC) بود، که ارقام این سازمان شصت و هفتاد سال پیش در آزمایش‌های مختلف خاصی برداشت. کار ارقام از ابتدا ۱۹۷۳ در مرحله سازمان تحقیقات کشاورزی انجام شد. در این مرحله، خصوصاً در آزمایش‌هایی که به همراه سه رقم شاهد روشن، قدرت و هم‌هدر انجام شد. در این مرحله، هوش دو رقم به توسعه طول محور و فاصله ۲۰ سانتی‌متر با تراکم ۳۵ باد در مرطع مربع کشف گردید. میزان کود درصدی ۲۵۰ کیلوگرم از ۴۷.۴ درصد تبدیل و ۱۵۰ کیلوگرم فسفات آمونیوم در هفتاد ده کد، که همراه با کود ارور یک نیروی تنش از کشت و بقیه به صورت سرد در دو مرحله پنج‌دهف و سه‌دهف شکف شد. برای مبارزه با علت فاصله آتش برمی‌گردد، لازم است پیام بالا سپرسی (Augmented design) به کمک گروه دیگر از تحقیقات باستفاده از طول محور (2,4-D) اعمالی معیاری از قبیل ایبای و ویژه دستی به طور یک‌نواخت و برای معمول انجام شد.

از ارزیابی و یک‌نواختی مربوط به کیفیت نانویی

هدف اصلی این تحقیق تجزیه و تحلیل آماری می‌باشد. این تحقیق به میزان صربون مرحله‌ای صفات که به‌طور دستی معمول انجام شد، که در توجه تغییرات در صفات کفی و نشانه‌های انجام شدند. همچنین، ضرایب همبستگی فنولی بین صفات کفی محاسبه شد. با استفاده از تجزیه و تحلیل ضرایب سری، نتایجی که به مورد PDS بررسی قرار گرفت، سری‌ها از تجزیه خوش‌های به روش وارد کردن یا استفاده از منابعی استفاده نشد، و مربی فاصله اقلیدسی، به منظور گروهی از نتیجتهای پاکیزگی از اساس صفات کفی استفاده شد (۱۹). تجزیه آماری با استفاده از نرم‌افزارهای Path-1 و SPSS.SAS Excel.
برای تجربه جدول ۱ در میان صفات مورد بررسی، سخن‌های دانه، حجم روابط زنی و حجم رسوب با SDF به ترتیب با ضرایب تغییرات
۱/۰/۵۱ و ۱/۰/۳۳ درصد، از پیش‌ترین صفات مذکور نشان دهند که کیفیت و کمیت پروتئین دانه با ضریب تغییرات
۸۷ درصد قرار داشت. از آنجا که صفات مذکور نشان دهنده کیفیت و کمیت پروتئین دانه می‌باشند، نتایج گویای وجود توجه کمی و اجزای کیفی و کمی مرتب با آن در زنویپیونهی صورت بررسی، و تأثیرپذیری این صفات از آثار محیط است. بنابراین، می‌توان
از این نتایج به‌میزان بی‌توجهی زاویه ارتباط در بیش‌تری در بناهایی به‌عنوان کیفیت استفاده نمود.

نتایج تجربه عامل‌ها در صفات مرتبط با کیفیت در جدول
۲ آمده است. این تجربه در صفحات سه عامل به پنهانی و
تیبین ۸۰/۳ درصد از آنها گردیده و معنی معنی‌دار
پهمر تجربه، بار عامل ذرات داده شد. عامل اول مهم‌ترین می‌باشد.
و زیادی در دو پروتئین، حجم روابط زنی و حجم رسوب با SDF
داست. نتایج پژوهش‌ها مختلط (۳، ۴، ۹، ۱۲ و ۱۰).

آزمون سرسبز را به عنوان معیار غیر مستقیم بیاورد کند.
خطر فیزیکی خوری شامل کشش، چسبندگی، تورم و مقاومت
گل‌دان در محیط اADIUS عنوان کرد. جای‌گیرین کردن
سیستم دوستسپاه (SDF) به جای ارتباط‌پایان روش
زنی، بسیار وکنش‌های پروتئین‌ها با کادگر و با دات
آرد، و ایجاد یک زل پروتئین در محلول استدی‌اکتیک، و در
نهایت تشکیل رسوب خاوه‌اش داده شد. میزان رسوب به ذرات
متعلق کلیوپیدار ارتباط داشت و به کیفیت پروتئین از همبستگی
از دیگر نمونه‌رده‌ها داشت که به‌میزان کنده
است. این عامل با توجه به نقش صفات توجه
کنده‌اند که باعث شکستن دانه‌های نامیپه. در تیبین عامل
دوم، صفات در دو رطوبت دانه، درد جذب آب، حجم نان
و سختی دانه به‌عنوان بود. توجه به این که حجم زرده نان
نان درد جذب طرفی پیش‌تر آرد بی‌جذب آب و حبیسه
توسط گل‌دان مانند کیفیت ارگام‌ها و همبستگی در سطح
بی‌توجه به نتایج حاصل از رگرسیون مرتبط با همبستگی
برای پخت نان دانه (۶، ۷، ۸) به کار نشده است. نامیده
شد. بنابراین، افزایش عامل‌های دانه و دوم منجر به به‌هور افزایش
نابودی خواهد شد.

نتایج رگرسیون مربوط به هر یک از صفات کیفی به
عنوان متن‌نویس و صفات دیگر کیفی به عنوان متن‌نویس مستقل در
جدول ۳ آورده شده است. به طور کلی، در توجیه تغییرات
صفات کیفی از طریق رگرسیون مربوط به، درصد پروتئین در
مراقب اول با دوم رگرسیون با ضریب تیبین شایان، توجه نهایی برای
توجه تغییرات صفات دیگر وارد مدل شد. در نظاهر خواص
کیفی گندم، آرد بار فایل شکست خمیر، زمان فر
گردن خمیر و مقاومت آن در بالا بردن، شدت خشک
فارنگ‌روگان، عداد برخی و اکثر مقاومت حجم رسوب با

SDF درصد (جدول ۴) دریافت رای مشابه که در جدول
نتایج دانه در دو رطوبت دانه و جذب آب، حجم نان، حجم
رسوب زنی و حجم رسوب با SDF مثبت و معنی‌دار بود.
همچنین، همبستگی بین حجم رسوب با SDF و دیگر صفات کیفی دیده شد. در توجه روابط صفات مذکور،
بلکه می‌پایین (۴) عنوان کرده که به دلیل پیش‌شناسی
خلای بین سلولهای انداوری بر ذرات پروتئینی، گندم‌های با
دانه سخت و شیب‌های نسبت به گام‌های دم در دو رطوبت
پروتئینی به‌ایست. بنابراین، سختی دانه به طور مستقیم با
میزان پروتئین و برخی از خواص فیزیکی خمیر، مثل کثرت‌سالی
و مقاومت در مقابل مخلوط شدن و ثبات، همبستگی معمول
در نشان می‌دهد و به‌طور غیر مستقیم میان جذب آب به
ومسیله آرد و حجم نان، و نیز حجم رسوب با SDF
مؤثر خواهد بود. به‌طور توجه به نتایج حاصل از رگرسیون مربوط به و همبستگی
در این آمار توزیعی مربوط به صفات کیفی در زمینه های مورد بررسی

جدول 1. آمار توزیعی مربوط به صفات کیفی در زمینه های مورد بررسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>میانگین</th>
<th>واریانس</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>ضریب توزع</th>
</tr>
</thead>
<tbody>
<tr>
<td>سختی دانه</td>
<td>55/87</td>
<td>58/13</td>
<td>0/000</td>
<td>1/000</td>
<td>0/001</td>
</tr>
<tr>
<td>حجم رسوب زنی (میلی لیتر)</td>
<td>32/81</td>
<td>30/05</td>
<td>21/000</td>
<td>42/000</td>
<td>0/003</td>
</tr>
<tr>
<td>حجم رسوب با SDS (میلی لیتر)</td>
<td>30/85</td>
<td>32/05</td>
<td>15/000</td>
<td>23/000</td>
<td>0/003</td>
</tr>
<tr>
<td>درصد بروتین</td>
<td>10/56</td>
<td>10/02</td>
<td>1/000</td>
<td>1/000</td>
<td>0/001</td>
</tr>
<tr>
<td>درصد رطوبت دانه</td>
<td>83/52</td>
<td>80/03</td>
<td>0/000</td>
<td>0/000</td>
<td>0/001</td>
</tr>
<tr>
<td>وزن هکتولیتر</td>
<td>0/12</td>
<td>0/05</td>
<td>0/000</td>
<td>0/000</td>
<td>0/001</td>
</tr>
<tr>
<td>حجم نان</td>
<td>51/45</td>
<td>50/06</td>
<td>0/000</td>
<td>0/000</td>
<td>0/001</td>
</tr>
<tr>
<td>درصد جذب آب</td>
<td>81/07</td>
<td>80/05</td>
<td>0/000</td>
<td>0/000</td>
<td>0/001</td>
</tr>
</tbody>
</table>

جدول 2. بار عامل‌های دوران یافه و واریانس‌های نسبی و تجمعی تجزیه عامل‌ها برای صفات کیفی

<table>
<thead>
<tr>
<th>صفات</th>
<th>نسبی واریانس</th>
<th>تجمعی واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن هکتولیتر</td>
<td>0/16</td>
<td>0/17</td>
</tr>
<tr>
<td>درصد بروتین</td>
<td>0/94</td>
<td>0/95</td>
</tr>
<tr>
<td>حجم رسوب زنی</td>
<td>0/89</td>
<td>0/90</td>
</tr>
<tr>
<td>حجم نان</td>
<td>0/81</td>
<td>0/82</td>
</tr>
<tr>
<td>درصد رطوبت دانه</td>
<td>0/71</td>
<td>0/71</td>
</tr>
<tr>
<td>سختی دانه</td>
<td>0/61</td>
<td>0/61</td>
</tr>
<tr>
<td>حجم نان</td>
<td>0/54</td>
<td>0/54</td>
</tr>
</tbody>
</table>

ملاحظه می‌گردد، از میان صفات کیفی مورد بررسی، صفات

- درصد بروتین
- حجم رسوب زنی
- حجم نان
- درصد رطوبت دانه
- وزن هکتولیتر
- سختی دانه
- حجم نان
- درصد جذب آب
- حجم رسوب با SDS

متأخری صفات کیفی مؤثر بر آن در شکل 1، و ترتیب حاصل از

paring: در جدول 5 آورده شده است. همان‌گونه که

81
جدول 3: رگرسیون مدل‌های برای صفات کیفی

<table>
<thead>
<tr>
<th>ضریب رگرسیون</th>
<th>متغیره</th>
<th>میانگین مربعات عرض از مبدأ</th>
<th>ضریب نیمی (درصد)</th>
<th>متغیره وارد شده به مدل</th>
<th>نیمی (درصد)</th>
<th>مدل نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1$</td>
<td>0.177**</td>
<td>4/192</td>
<td>100.58</td>
<td>75/13</td>
<td>4/13</td>
<td>(X) SDS</td>
</tr>
<tr>
<td>$X_2$</td>
<td>0.12**</td>
<td>3.54</td>
<td>05/50</td>
<td>80/28</td>
<td>6/25</td>
<td>(XV)</td>
</tr>
<tr>
<td>$X_3$</td>
<td>0.64**</td>
<td>2/31</td>
<td>79/64</td>
<td>81/33</td>
<td>1/25</td>
<td>(XVI)</td>
</tr>
<tr>
<td>$X_4$</td>
<td>0.39**</td>
<td>0.33</td>
<td>151/58</td>
<td>75/13</td>
<td>4/13</td>
<td>(XVII)</td>
</tr>
<tr>
<td>$X_5$</td>
<td>0.72**</td>
<td>0.93</td>
<td>79/26</td>
<td>76/32</td>
<td>2/3</td>
<td>(XVIII)</td>
</tr>
<tr>
<td>$X_6$</td>
<td>0.53**</td>
<td>0.33</td>
<td>112/66</td>
<td>48/25</td>
<td>10/25</td>
<td>(XIX)</td>
</tr>
<tr>
<td>$X_7$</td>
<td>0.57**</td>
<td>0.11</td>
<td>32/66</td>
<td>32/66</td>
<td>0/15</td>
<td>(XX)</td>
</tr>
<tr>
<td>$X_8$</td>
<td>0.65**</td>
<td>0.17</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXI)</td>
</tr>
<tr>
<td>$X_9$</td>
<td>0.36**</td>
<td>1/17</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXII)</td>
</tr>
<tr>
<td>$X_{10}$</td>
<td>0.42**</td>
<td>0.36</td>
<td>56/10</td>
<td>48/28</td>
<td>9/25</td>
<td>(XXIII)</td>
</tr>
<tr>
<td>$X_{11}$</td>
<td>0.28**</td>
<td>0.36</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXIV)</td>
</tr>
<tr>
<td>$X_{12}$</td>
<td>0.30**</td>
<td>0.44</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXV)</td>
</tr>
<tr>
<td>$X_{13}$</td>
<td>0.25**</td>
<td>0.44</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXVI)</td>
</tr>
<tr>
<td>$X_{14}$</td>
<td>0.20**</td>
<td>0.44</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXVII)</td>
</tr>
<tr>
<td>$X_{15}$</td>
<td>0.15**</td>
<td>0.44</td>
<td>10/85</td>
<td>10/55</td>
<td>0/10</td>
<td>(XXVIII)</td>
</tr>
</tbody>
</table>

** به ترتیب معنی دار در سطوح احتمال 0.01 و 0.05

\[ \hat{Y} = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_5 X_5 + b_6 X_6 + b_7 X_7 + b_8 X_8 + b_9 X_9 + b_{10} X_{10} + b_{11} X_{11} + b_{12} X_{12} + b_{13} X_{13} + b_{14} X_{14} + b_{15} X_{15} \]
جدول 4 ضرایب همبستگی میان صفات کیفی

<table>
<thead>
<tr>
<th>حجم</th>
<th>وزن رسوبر</th>
<th>حجم نان</th>
<th>حجم رسوبر زنی</th>
<th>دانه</th>
<th>سختی دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
<td>0.54</td>
<td>0.437</td>
<td>0.19</td>
<td>0.53</td>
<td>0.437</td>
<td>0.35</td>
<td>0.25</td>
<td>0.33</td>
<td>0.25</td>
<td>0.35</td>
<td>0.25</td>
<td>0.33</td>
<td>0.25</td>
<td>0.35</td>
<td>0.25</td>
<td>0.33</td>
</tr>
</tbody>
</table>

ق. حجم رسوبر و SDS (Y) با SDS و مؤثرین صفات کیفی

شکل 1. دیاگرام تجزیه ضرایب مسر حجم رسوبر با SDS است 

**Y**

(جدول 3 نتایج بهبود)

زره‌هگام شمار زیادی زنتیپ در نسل‌های اولیه در حال تفکیک برای صفات مرتبط با ارس نان‌ای است (9، 11 و 14). نتایج حاصل از تجزیه خورشایی و بر پایه آزمون T کاذب هستند و معیار توان سوم گروهها (جدول 4، زنتیپ‌های کنترل) است برای ارزیابی و گروهی SDS به عنوان معیار مناسب برای ارزیابی و گروهی

83
جدول 5. برآورد آثار مستقيم و غیر مستقيم صفات کیفی بر حجم رسبوب با SDS


tabular data

<table>
<thead>
<tr>
<th>صفت</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد پروتئین (X₁)</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
</tr>
<tr>
<td>حجم رسبوب زنی (X₂)</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
</tr>
<tr>
<td>حجم نان (X₃)</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
</tr>
<tr>
<td>درصد رطوبت دانه (X₄)</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
</tr>
<tr>
<td>درصد جذب آب (X₅)</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
<td>0/295*</td>
</tr>
</tbody>
</table>

* به ترتیب معیار در سطوح احتمال 5 و 1 درصد

ثابت مقدار T 1 کاذب هوتئینگ و معيار دو دم گروه‌ها (سی. سی. سی.)

<table>
<thead>
<tr>
<th>تعداد گروه</th>
<th>متغیر گروه‌ها</th>
<th>اتصال گروه‌ها</th>
<th>کاذب T</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد گروه</td>
<td>مساحت</td>
<td>گروه</td>
<td>گروه</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

مورد بررسی یا به چنگ گروه مستقل تفکیک نمود. برای تحلیل پنجم گروه، دندرونگرام حاصل (شكل 2) در فاصله 4/0 در مقیاس تغییر یافته گروه‌ها قطع شد.

در گروه‌های بالا گروه T2 و گروه T1 مستقل همدیگر قطع شدند. نتایج حاصل از تجزیه واریانس و مقایسه میانگین‌های صفات مختلف گروه‌ها (جدول 7) و وجود تفاوت بسیار معنی‌دار بین گروه‌ها بود، که می‌توان حامل صحیح قطع دندرونگرام و تعداد مناسب پنجم گروه در طبقه‌بندی زنون‌های داشته باشد.

شمار زیانی
شکل 2. دندورگرام حاصل از تجربه خورشید از کامپیوتر بر اساس صفات کیفی شماره‌های 1 تا 65 2 87 88 89 91 101 و ارقام زراعی خارجی، و بیش از ارقام زراعی و بومی ایران هستند.
<table>
<thead>
<tr>
<th>مدل</th>
<th>نرخ بهره (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/2</td>
<td>6/5/4</td>
<td>4/3/1</td>
<td>2/1/5</td>
<td>0/0/0</td>
<td>5/6/7</td>
<td>3/4/5</td>
<td>2/3/4</td>
<td>1/2/3</td>
</tr>
<tr>
<td>90/3</td>
<td>7/8/9</td>
<td>6/5/4</td>
<td>5/4/3</td>
<td>4/3/2</td>
<td>3/2/1</td>
<td>2/1/5</td>
<td>1/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>100/4</td>
<td>8/9/0</td>
<td>7/6/5</td>
<td>6/5/4</td>
<td>5/4/3</td>
<td>4/3/2</td>
<td>3/2/1</td>
<td>2/1/5</td>
<td>1/0/0</td>
</tr>
</tbody>
</table>

توجه داشته باشید: این جدول نمونه‌ای از مدل‌های مختلف است که به‌صورت دقیق تر می‌توانند در بخش‌هایی از طراحی و ساخت و ساز به کار برده شوند.
بررسی تنوغ و تجزیه ضرایب مسر صفات مرتبط با کیفیت نانوایی در لایه‌های...

به طور خلاصه، نتایج حاصل از گروه‌بندی دوال‌های نشان دهنده لزوم توجه به ویژگی‌های ارزشمند و پهنای ارتفاع زراعی و بومی به عنوان منابع بالقوه تنوغ زننده، و نقش مفید زرمپلاسم مورد بررسی در برنامه‌های اصلی اصلاح برای کیفیت نانوایی کندم است. بنابراین، می‌توان در برنامه‌های تلاشی، انتخاب جامعه والد را بر پایه صفات مطلوب و مورد نظر گروه‌های حاصل از تجزیه خوشه‌ای انجام داد. همچنین، با توجه به تلاش پژوهنده‌گان برای کاهش حجم داده‌ها در ارژیابی زرمپلاسم، به مقبولیت کاهش و زمان ارزیابی از مجموع صفات کیفی مورد بررسی در این پژوهش، نقش بسیاری درصد پروتئین

منابع مورد استفاده