تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت

عبدوالهی رونقی، محمدرضا چاکرالحسینی و نجفعلی کریمیان

چکیده

فسفر و آهن از عناصر غذایی ضروری گیاهانه، در خاک‌های آبگیر ایران، به دلیل نیازمندی کریت‌های کلسیم و نیز ب-هاس بیلال، نیازناک استفاده آهن کم می‌باشد. همچنین، مشاهده شده‌است که نیاز کودهای فسفردار ممکن است نیاز به استفاده آهن بر کاوش دهد. هدف از این بررسی ارزیابی گلخانه‌ای تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی ذرت (Zea mays L.) بود. تیمارها شامل پنج سطح فسفر (صفر، ۱۰، ۲۰، ۳۰ و ۱۲۰ میلی‌گرم در کیلوگرم از منبع سکسترین آهنی) به صورت فاکتوریل در چارچوب طرح کاملاً تصادفی با چهار تکرار بود. گیاهان به دقت مشت هنگام یک خواص fine-loamy، carbonatic، thermic و Typic Calcixerents لومی سرتی چیکر پا تام علیمی رشد کردند.

نتایج نشان داد که کاربرد فسفر تا سطح ۸۰ میلی‌گرم در کیلوگرم سبب افزایش وزن خشک بوده و در جدید تیمارات چیکر استفاده کرده و جدید کل

فسفر با مصرف فسفر افزایش، ولی با کاربرد آهن کاهش یافته‌است. کاربرد آهن تا سطح پنج میلی‌گرم کاهش نشان داد که آن کاهش داد. فسفر و جدید کل آهن با کاربرد آهن افزایش، ولی با کاربرد نیاز کاهش یافته‌است. با مصرف فسفر، بالاتر آن را کاهش داد. فسفر بوده ولی کل آهن با کاربرد آهن افزایش، از منبع منگنز در فسفر ۴۰ میلی‌گرم در کیلوگرم افزایش و لی در سطح بالاتر کاهش یافته، کاربرد آهن فسفر، منگنز در نتیجه در تیماری کاهش داد، ولی تأثیری بر غلظت سر نداشت.

واژه‌های کلیدی: فسفر، آهن، تغذیه گیاه، رشد، کریت‌های کلسیم، ب-هاس

1. به ترتیب استادیار، دانشجوی سابق کارشناسی ارشد و استاد حاخاسی. دانشکده کشاورزی، دانشگاه شیراز
مقدمه
فسفر از عناصر غذایی مورد نیاز گیاه است. عوامل پیشگیری همچنین مقدار فسر قابل استفاده در خاک، پ-هاش خاک، کربنات کلسیم، مقدار و نوع رس، میزان ماده آلی و کانیونهای کلسیم، منیزیم، آهن و آلومینیوم بر حسب و قابل استفاده فسر در خاک مؤثر می‌باشند. (1)، (2)، (3) و (4). آن‌ها نیز از عناصر غذایی ضروری کم مصرف برای گیاهان است. خاک‌های ناحیه آخر با افزایش پ-هاش خاک کاهش می‌یابد (19). زایده فسفات در خاک، و افزایش غلظت مغنی در خاک یا گیاه نیز مستقیماً باعث برود کمبود آهن شود (10). 17، 23، 24 و 25 در خاک‌های آهنی خارجی به عنوان فراوان‌تر کربنات کلسیم، و نیز کمبود یافته با بالا، قابل استفاده آهن کم می‌باشد. سالانه مقدار پیشگیری کمبود فسفر در به این‌گونه خاک‌ها افزوده می‌شود، که عوامل بر کاهش جذب آهن، می‌تواند اصلی‌ترین شناید فسر در این‌ها کاهش گردید. در خاک‌های که غلظت فسفر قابل استفاده از حد بحرانی کمتر است، گیاهان نسبت به کمبود کودهای فسفردار پاسخ مثبت می‌دهند (3) و (7) و (6). کربنات و فلزی (26) حد بحرانی فسفر را برای درخت در خاک‌های آهنی استان فارس، 18 میلی‌گرم در کیلوگرم خاک با روش اولین و همکاران (27) گزارش نموده‌اند.

لیبرتی و هالمارک (22) گزارش کردند که عوامل خاکی
مانند پ-هاش، کمبودهای یک یا به شکل آهنی، ماده آلی، مقدار کربنات کلسیم، نمکهای محلول و پاتسلکسانها و کاهش در حلولی آهن تاثیر بر افزایش دارد. سالانه و همکاران (40) گزارش نموده‌اند که هیپرتکه آهن عصاره‌گیر شده توسط دی‌پی‌پی با پ-هاش، منفی، و با کربن آلی و فسفر مثبت می‌باشد. شومان (23) نشان داد که با افزایش پ-هاش ناشی از افزودن آهن به خاک، شکل‌هایی تبدیل و آن‌ها آهن کاهش یافت. براون و جونس (19) نتیجه گرفتند که غلظت آهن محلول در ناحیه از 0/1 در پ-هاش 3 به 0/1 میلی‌گرم در پیلوگرم خاک در پ-هاش کم گیاه می‌یابد. کریپانو و همکاران (26)
مواد و روش‌ها
در این آزمایش، خاک کافی از افق سطحی (0-20 سانتی‌متری) سیری چیتاک واقع در 9 کیلومتری جنوب شرقی روساتای نظیر آباد شهرستان سروستان استان فارس جمع‌آوری گردید. این خاک از نوع بوده که در سیستم تاکسنومی خاک Calcic Brown Soil نوع fine-loamy carbonatic thermic Type Calciuxerupts نامیده می‌شود (8). پس از خشک کردن خاک در معرض هوا و گذشتن از الک دو میلی‌متری، برخی از وزگرهای فیزیکی و شیمیایی آن با نانه بافت روش هیدرومتری (13) کریکتات کلیسم معادل به روش خشک کردن با استفاده کالریتریک (9) قابلیت هدایت الکتریکی در عصاره اشام با هدایت سنج الکتریکی، فسفل قابل استفاده به روش انرژی همکاران (38، ب-هش) در خمیر اشام، غلظت نشان که طرفک و گیاهان، کاملاً مخلوط و سپس به کلیگرامی سه کیلوگرمی متخلخل گردید. پس از دانه‌سازی و به دست آوردن پس از دانه‌سازی، فرآیند شمار بونه داده شد. این خاک از طول رشد با آب مقطوع، از طریق توزیع گلدان‌ها در حد طریفیت مزروع صورت گرفت. پس از هشت هفته، گیاهان از محل طواف (نورهای سطح خاک) قطره و پس از شستش، در آن با دمای 26 درجه سانتی‌گراد، تا هگامت که وزن نمونه‌ها ثابت شد، خشک، و نمونه‌های گیاه از توزیع به شیب است ساییا بر قرار به پودر گردیدند. برای تجزیه گیاه، یک گرم ماده خشک گیاه در کوره الکتریکی در دمای 150 درجه سانتی‌گراد خاک‌سرد شده، و سپس پنج میلی‌لیتر آب کلاریتریک دو نرم‌ال به آن افزوده گردید. سپس نمونه حلق شده از گاذ صافی و اتمن 24 خور داده شد.

نتیجه‌گیری که بکریبات به طوری غیر مستقیم سبب ایجاد کلروفیور‌آم می‌شود، پذیرفته می‌شود که بکریبات سبب افزایش قابلیت استفاده فسفر شده که یافته‌های کاملاً تصادفی با چهار تکرار آمیخته. تیمار‌های سردی تغییرات عبارت بودند. از نظر سطح فسفر (صفر، 40، 80 و 160 میلی‌گرم فسفر در کیلوگرم خاک)، سطح فسفر به ترتیب 5.0 و 11.0 میلی‌گرم آهن در کیلوگرم خاک.) (17)

فسفر از منبع یونیسیم دی‌هیدروتاس (KH₂PO₄) (18) آهن از منبع سخت‌ترین آهن (38) (FeEDDHA) (پیش از کاشت خاک افزوده شد. از مقدار 160 میلی‌گرم در کیلوگرم خاک کاشت از منبع سیری به کلیه تیمار‌ها اضافه گردید. فسفر، آهن، آرد به صورت محیطی به دو کیلوگرم از خاک سرد آزمایش کیسه‌های پلاستیکی افزوده و سپس روتویت به وسیله آب مقطع به حد طاریفیت مزروع رسانده شد.

پس از کاوش رطوبت، خاک موجود در داخل کیسه‌های پلاستیکی کاملاً مخلوط، و سپس به گلدان‌های سه کیلوگرمی منتقل گردید. پس از دانه‌سازی و به دست آوردن پس از دانه‌سازی، خاک کاشت شد. حدود 200 پس از کاشت، شمار بونه داده شد. این خاک از طریق توزیع گلدان‌ها در حد طریفیت مزروع صورت گرفت. پس از هشت هفته، گیاهان از محل طواف (نورهای سطح خاک) قطره و پس از شستش، در آن با دمای 26 درجه سانتی‌گراد، تا هگامت که وزن نمونه‌ها ثابت شد، خشک، و نمونه‌های گیاه از توزیع به شیب است ساییا بر قرار به پودر گردیدند. برای تجزیه گیاه، یک گرم ماده خشک گیاه در کوره الکتریکی در دمای 150 درجه سانتی‌گراد خاک‌سرد شده، و سپس پنج میلی‌لیتر آب کلاریتریک دو نرم‌ال به آن افزوده گردید. سپس نمونه حلق شده از گاذ صافی و اتمن 24 خور داده شد.
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>مقدار</th>
<th>ویژگی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>شن (درصد)</td>
</tr>
<tr>
<td>46</td>
<td>سیلت (درصد)</td>
</tr>
<tr>
<td>24</td>
<td>رس (درصد)</td>
</tr>
<tr>
<td>7/5</td>
<td>بافت</td>
</tr>
<tr>
<td>0/9</td>
<td>پ-هاش (خمیر اشباع)</td>
</tr>
<tr>
<td>10/1</td>
<td>قابلیت هدایت الکتریکی (دیسیمپرسیون بر متر)</td>
</tr>
<tr>
<td>57/5</td>
<td>ظرفیت تبدیل کاتیونی (سنتی مول در کیلوگرم خاک)</td>
</tr>
<tr>
<td>4/5</td>
<td>کربنات کلسیم معدنی (درصد)</td>
</tr>
<tr>
<td>0/54</td>
<td>فسفر محلول در کربنات سدیم (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>250</td>
<td>ازت کل (درصد)</td>
</tr>
<tr>
<td>1/0</td>
<td>پتانسیم محلول در استاندارد (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>2/2</td>
<td>ماده آلی (درصد)</td>
</tr>
<tr>
<td>0/96</td>
<td>آهن محلول در دیتیپیا (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>3/5</td>
<td>روی محلول در دیتیپیا (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/87</td>
<td>منگنز محلول در دیتیپیا (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td></td>
<td>مس محلول در دیتیپیا (میکروگرم در گرم خاک)</td>
</tr>
</tbody>
</table>

دانکن مقایسه شد.

توجه و بحث

با افزایش سطوح فسفر، میانگین وزن ماده خشک از 3/49 گرم در کل‌دادن در شاهد به 0/16 گرم در کل‌دادن در سطح 80 میلی‌گرم فسفر در کیلوگرم خاک رسیده، که افزایش برابر با 0/2 درصد را نسبت به شاهد نشان می‌دهد. تا کاربرد سطوح بالاتر فسفر سبب کاهش وزن ماده خشک گردیده است (جدول 2). کربنیک سیلیکا که افزایش در خاک‌های آهکی استان قارس از 18 میلی‌گرم در کیلوگرم خاک با روش اولین گزارش کرده‌اند. با توجه به این که غلظت فسفر در خاک مورد آزمایش از 4/5 میلی‌گرم در کیلوگرم خاک بوده است، با افزایش وزن فسفر قابل توجه است.

و حجم محلول صاف شده با آب مقطر به 50 میلی لیتر رسیده.

شد. غلظت آهن، روی، منگنز، وزن ماسی بر اساسیکه گرافی، تعمیر گردید. مقدار فسفر و آهن قابل استفاده خاک به ترتیب به روش اولین و همکاران (38 و دیتیپیا 30) عصاره گیری، و توسط دستگاه رنگ‌سنجی و جذب اتمی اندازه‌گیری شد.

پاسخ‌های گیاهی، شامل وزن خشک اندام هوابی گیاه، غلظت آهن و فسفر جذب کل آهن و فسفر در هر کل‌دادن (حاصل ضرب وزن ماده خشک در غلظت عصر غذایی)، غلظت و جذب کل روی، منگنز و مس به وسیله روش‌های F آماری و برناه کاپیولویی MSTATC و با استفاده از آزمون F مورد نظریه و ارزیابی قرار گرفته و میانگین‌های مربوط به آخر اصلی هر یک از عامل‌ها و برهم‌کنش آنها استنتاج و با آزمون
جدول 2. تأثیر سطوح مختلف فسفر و آهن و برهمکش آنها بر وزن خشک اندام هوایی. غلظت و جذب کل فسفر در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>8/09</td>
<td>8/09</td>
</tr>
<tr>
<td>3/20</td>
<td>3/20</td>
</tr>
<tr>
<td>2/40</td>
<td>2/40</td>
</tr>
<tr>
<td>2/60</td>
<td>2/60</td>
</tr>
<tr>
<td>2/80</td>
<td>2/80</td>
</tr>
<tr>
<td>3/00</td>
<td>3/00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک اندام هوایی (گرم در گلدان)</th>
<th>60</th>
<th>80</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>60</td>
<td>80</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>غلظت فسفر (میکروگرم در گرم ماده خشک)</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جذب کل فسفر (میلی گرم در گلدان)</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

در یک آزمایش گلخانه‌ای نشان داد که وزن ماده خشک و غلظت فسفر در ذرت با افزودن فسفر به خاک افزایش می‌یابد، به طوری که وزن ماده خشک گیاه در سطوح 48 و 79 میلی گرم فسفر در کیلوگرم خاک به حدایکرده بیشتر می‌رسد. ولی مقدار پیشرفت فسفر سبب کاهش وزن ماده خشک گیاه می‌گردد. در آزمایش 49 (میانگین)، 000 و 000 میلی گرم فسفر در کیلوگرم خاک، وزن ماده خشک گیاه در ذرت را به طور معنی‌داری افزایش داده، ولی میزان افزایش در بای خشکی سطح فسفر، غلظت و جذب کل فسفر افزایش معنی‌داری پایه است، به گونه‌ای که در سطح 150 میلی گرم ضایع و همکاران (48) در یک آزمایش گلخانه‌ای نشان دادند که وزن ماده خشک و غلظت فسفر در ذرت با افزودن فسفر به خاک افزایش می‌یابد، به طوری که وزن ماده خشک گیاه در سطوح 48 و 79 میلی گرم فسفر در کیلوگرم خاک به حدایکرده بیشتر می‌رسد. ولی مقدار پیشرفت فسفر سبب کاهش وزن ماده خشک گیاه می‌گردد. در آزمایش 49 (میانگین)، 000 و 000 میلی گرم فسفر در کیلوگرم خاک، وزن ماده خشک گیاه در ذرت را به طور معنی‌داری افزایش داده، ولی میزان افزایش در
آن بار کرده‌ی ست که فسفر بر آثر تغییرات با سیسته‌نیم، بیشتری و نظر به آن انتقال‌های او منجر به اندازه‌گیری این برای فسفور به ساده‌تری در حدود 179 و 144 درصد نسبت به شاهد داشته است (جدول 2). با توجه به تاثیر فسفر بر وزن ماده نشکسته‌های کیسه ذرت، این نتیجه‌ها در مورد جذب فسفر در کل فسفر در اندازه‌گیری نمایندگان آن در کل فسفر چنین تجربهٔ در جذب فسفر افزوده شده به خاک غلظت و جذب کل فسفر توسط ذرات را به طور معنی‌داری افزایش داده است. میانه و احمد (34) دریافتند که میزان فسفر مصرفی غلظت فسفر را در ذرات به طور معنی‌داری افزایش داده و این افزایش در خاک‌های غلظت نیز کاهش یافت. است. مقياس‌های غلظت و جذب میانگین غلظت و جذب کل فسفر در گیاه شده است (جدول 2). یکی از دلایل احتمالی کاهش غلظت فسفر در گیاه یا نقطه بنی گرم آهن در کل فسفر شاخ را می‌توان تأثیر رفتاری از اثری که تأثیر کاربرد میزان غلظت و جذاب کل فسفر به طور معنی‌داری کاهش یافته است. مقایسه میانگین‌های غلظت و جذاب کل فسفر نشان دهند بهره‌مندی معنی‌داری افزایش باید، ولی در سطوح بالا فسفر، جذب کل آهن کاهش پیدا کرده است (جدول 2). بررسی بهره‌مندی فسفر و آهن بر غلظت و جذاب کل فسفر می‌باشد (جدول 2). به طوری که در تمام سطوح مصرفی، با افزایش غلظت آهن، میزان غلظت و جذاب کل فسفر به طور معنی‌داری کاهش یافته است (جدول 2). ولی در مورد غلظت فسفر در گیاه، کاربرد آهن، غلظت فسفر را در سطوح 40 و 30 بیشتر از 120 و 160 میلی گرم فسفر در کل فسفر نشان داده است. مقایسه میانگین غلظت آهن نشان می‌دهد که کاربرد فسفر به طور معنی‌داری سبب کاهش غلظت آهن در گیاه شده است، و بیشترین کاهش در سطح 160 میلی گرم فسفر در کل فسفر خاک بوده است. که می‌تواند این جدول‌ها، متعلق به سایر باهشان کاهش اندازه‌گیری آهن از ریشه به سعی کرده است. (جدول 2). جوزف و لوکی (21) یافت که کاهش غلظت آهن در گیاه ذرت توسط فسفات‌های تری‌بیزلاردنگی فسفر در جذب آهن به وسیله ریشه و یا با اندازه‌گیری آهن از ریشه به سعی کرده است.
جدول 3: تأثیر سطح مختلف فسفر و آهن و برهمکش آنها بر غلظت و جذب کل آهن و نسبت فسفر به آهن در ذرت

<table>
<thead>
<tr>
<th>میانگین سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم ماده خشک ذرت)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>غلظت آهن ١٠٠</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>٥٧/٢٠٠٤٠</td>
</tr>
<tr>
<td></td>
<td>٤٧/٣٠٠</td>
</tr>
<tr>
<td></td>
<td>٤٧/٣٠٠</td>
</tr>
<tr>
<td></td>
<td>٤٧/٣٠٠</td>
</tr>
</tbody>
</table>

برای هر یک از پاسخ‌های گیاهی، میانگین‌هایی که در هر جدول در یک حرف کوچک مشترک هستند، طبق آزمون داوانی در سطح پنج درصد قانونی محسوب می‌شوند.

نسبت فسفر به آهن در گیاه

<table>
<thead>
<tr>
<th></th>
<th>نسبت فسفر به آهن در گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>٩٧/٠٠</td>
</tr>
<tr>
<td></td>
<td>٨٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٧٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٦٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٥٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٤٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٣٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>٢٠/٠٠</td>
</tr>
<tr>
<td></td>
<td>١٠/٠٠</td>
</tr>
</tbody>
</table>

نحوه نگاشت. طبق جدول ٤، جذب کل رنگ تا سطح ٨٠ میلی‌گرم فسفر در کیلوگرم خاک آفرایش، گریه با معافیت برخوردار است و بقیه آهن است. سطح ٥٠ میلی‌گرم فسفر در کیلوگرم خاک کاهش یافته است.

افراشیش این نسبت می‌تواند به معنی نبود آهن یا فروندی فسفر و یا کاهش آن دلیل سبیل آهن و یا کمبود اختیارالسیر فسفر باشد. کاشی راد و مارشتر (٢٨) افراشیش نسبت فسفر به آهن در سطح درت را نتیجه افراشیش فسفر در سطح درت و همچنین کاهش انتقال آهن از ریشه به ساقه می‌دانند. به افراشیش سطح فسفر، غلظت روي در گیاه کاهش یافت و جذب کل آهن یا کم‌تر کاهش یافت.

(جدول ٤) هرچند که به غلظت روي در سطح ٤٠ با ٤٠ و ٢٠ با ٢٠ ۱٢٠ با ۱٢٠ میلی‌گرم فسفر در کیلوگرم خاک تفاوت معنی‌داری
جدول ۴: تأثیر سطوح مختلف فسفر و آمی و پره‌مکت آنها بر غلظت و جذب کل روی و نسبت فسفر به روی در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آمی (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰ میانگین</td>
<td>۱۰۰ میانگین</td>
</tr>
<tr>
<td>۱۵/۸/۴</td>
<td>۱۴/۷/۴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>غلظت روی (میلی‌گرم در کیلوگرم ماده خشک ذرت)</th>
<th>جذب کل روی (میکرو‌گرم در گلدا)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۶/۳</td>
<td>۱۱۴/۳</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نسبت فسفر به روی</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸</td>
<td>۰/۸</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌ها که در هر ردیف آنها در هر سنر در کیک حر فورت شده و به میانگین‌ها که در میان جدول در کیک حر کاروشک مشترک هستند، طبق آزمون دانگان در سطح نجه دقیق تفاوت معنی‌دار ندارند.

توجه کنید، که در طبق تحقیق و تحقیق در رابطه با فسفر مصرفی، که نیاز فسفر به روی رابلته، به ترتیب با اختلال مشابه‌کننده تهیه‌کننده از اثر فسفر در پیداکارا علامت‌های کمبود روی نشان می‌دهد. در نسبت فسفر به روی کمتر از ۴۰۰ مقادیر روی در گیاه کافی بوده و در نسبت های بالاتر از ۴۰۰، گیاه دچار کمبود روی شده است. بررسی میانگین غلظت، جذب کل روی و نسبت فسفر به روی در جدول ۴، نشان می‌دهد که با کاربرد آمن مقدار این سه ویژگی در ذرت کاهش یافته است، به طوری که اوراوه اوراوه و همکاران (۳۹) با بررسی اثر فسفر بر جذب روی در خاک‌های آبی که می‌تواند به صورت بررسی و جذب کل روی توسط ذرت با افزایش فسفر، افزایش بیافته آن، در نتیجه در رایزنی‌های روی در گیاه می‌تواند آن را رفت باشد.

کاربرد فسفر سپس افزایش معنی‌دار نسبت فسفر به روی در تمام سطوح فسفر مصرفی نسبت به شاهد است (جدول ۴). همچنین، تفاوت معنی‌داری بین این نسبت در سطوح
تأثیر فسفر و آهن بر رشد و تربیت شیمیایی ذرت

فسفر کاهش یافته است (جدول 6). جذب کل مونتریک بیش از در مورد غلظت روي. در تمام سطوح آهن مصرفی تفاوت معمولی در نسبت به شاهد وجود دارد. از سویی، مصرف 2/5 یا 5 میلی گرم آهن در کیلوگرم خاک باعث افزایش معنی‌دار جذب کل روي نسبت به شاهد شده است. میانگین نسبت فسفر به روی در تمام سطوح آهن مصرفی با یکدیگر، و همچنین با شاهد تفاوت معنی‌داری دارند.

یکی از آثار مصرف فسفر، افزایش نسبت فسفر به روی است که می‌تواند در نسبت یال‌های بالا بروز کمبود رودر در گیاه شود. در پژوهش‌هایی که اثر آهن مواد کاهش نسبت فسفر به روی گیاه شده است (جدول 5)، و در نتیجه تأثیر سوی، فسفر را در کاهش غلظت روي تقلیل داده، به عنی‌هیه طور غیرمستقیم سبب افزایش غلظت نسبی روی در گیاه گردد. است

و ارناک (41) که برهمکنش آهن و روی در ذرت بررسی کرده است، گزارش نموده که گیاه درک به اثر مصرف فسفر زاید دچار کمبود روی شده بود، یعنی سبب افزایش مقدار زاید آهن در خوردن با این کمبود مغایره‌ی تلخی. سالاری و مورفی (41) گزارش کرده که در حاکی با کمبود آهن، کاربرد آهن به صورت FeEDDHA گزارش گرفته‌های گیاه صورت مصرف در سطوح خاکی و کاهش مصرف افزایش داده است. کاربرد آهن به صورت FeEDDHA تهیه گردیده است (جدول 4). در سطوح صفر و 40 میلی گرم فسفر در کیلوگرم خاک کاربرد آهن تا سطح 40 میلی گرم آهن در کیلوگرم خاک باعث کاهش آن گردیده است. حالان که در دو سطح سطوح فسفر، کاربرد سطوح مختلف آهن سبب کاهش جذب کل روی شده است. کاربرد آهن در کیلوگرم سطوح فسفر مصرفی (به استثنای شاهد) موجب کاهش معنی‌دار نسبی فسفر به روی شده است (جدول 4). غلظت میانگین در گیاه به صورت 40 میلی گرم فسفر در کیلوگرم خاک نسبت به شاهد افزایش، ولی در سطوح بالاتر
جدول ۵. تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل منگنز، و نسبت آهن به منگنز در ذرت

<table>
<thead>
<tr>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوگرم)</th>
<th>غلظت منگنز (میلی‌گرم در کیلوگرم جذب کل منگنز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰</td>
<td>۶۰</td>
<td>۱۶۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>منگنز</th>
<th>۱۶۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰</td>
<td></td>
</tr>
<tr>
<td>۸۰</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جذب کل منگنز (میکرو‌گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۴۸/۵۸۱۹۲⁹۰⁶ج</td>
</tr>
<tr>
<td>۶۵۱/۹۶۱۹۲⁶ج</td>
</tr>
<tr>
<td>۳۳۴/۱۹۲⁶ج</td>
</tr>
<tr>
<td>۷۹۱/۱۹۲⁶ج</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>منگنز</th>
<th>۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰</td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>تیمار</th>
<th>۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، منگنز‌هایی که در هر سانتی‌متر در یک حرف برگ از موجود است، طبق آزمون دانکن در سطح پنج درصد مقاومت معنی‌داری ندارند.

جدول ۶. تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل منگنز در ذرت

<table>
<thead>
<tr>
<th>جذب کل منگنز</th>
<th>غلظت منگنز (میکرو‌گرم در کیلوگرم خاک)</th>
<th>سطح فسفر (میلی‌گرم در کیلوگرم خاک)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴/۵۰۶</td>
<td>۱۰</td>
<td>۲۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۸۶/۵۰۶</td>
<td>۸۰</td>
<td>۸۰۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۰/۵۰۶</td>
<td>۷۲</td>
<td>۸۰۰</td>
<td>۰</td>
</tr>
<tr>
<td>۷۳/۵۰۶</td>
<td>۶۰</td>
<td>۸۰۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آهن</th>
<th>۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td></td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، منگنز‌هایی که در هر سانتی‌متر در یک حرف برگ مشترک می‌باشند، طبق آزمون دانکن در سطح پنج درصد مقاومت معنی‌داری ندارند.

منبع: تیم مانی. ۱۳۸۱

۶۲
تأثیر فسفر و آهن بر رشد و ترکیب شیمیایی درت

یافته‌های مشاهده کردن که میزان مس قبل استفاده در خاک‌کاهش یافته.

نتایج گیری

کاربرد فسفر تا سطح 80 میلی‌گرم و آهن تا سطح 5 میلی‌گرم در کیلوگرم خاک سبب افزایش وزن ماده خشک خوردن داد. ولی سطح بالای این عناصر عمکرد ماده خشک را کاهش داد.

هرچند که تأثیر برهمکنش فسفر و آهن بر این پارامتر رشد منفی بود، اما به نظر می‌رسید نسبت غلظت فسفر به آهن در گیاه معیار مناسبی برای ارزیابی وضعیت این عناصر در ذرت باشد.

متابعات مورد استفاده

1. چراتی آراتی، ع. 1375. تأثیر فسفر و ماده آلی بر رشد و جذب روی به سطح‌های جه و شکل‌های شیمیایی روی در دو خاک آهکی. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز.
2. حقیری، ع. 1379. استفاده می‌تواند می‌تواند می‌تواند. انتشارات دانشگاه آزاد اسلامی واحد رشت.
3. سالاری، ع. 1370. خاصیت‌های خاک. انتشارات دانشگاه تهران.
4. سالاری، ع. 1372. خاک‌شناسی. انتشارات دانشگاه تهران.
5. قنبری، ع. 1379. آزمایش‌های غلظت‌های آزمایش‌های غلظت‌های عناصری جنین عصاره‌گیر جهت تعیین فسفر قالب استفاده در بعضی از خاک‌های آهکی مهم استان فارس. پایان‌نامه کارشناسی ارشد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز.
6. کرامی، ع. 1372. چکیده‌ای در خاک‌شناسی. انتشارات دانشگاه تهران.
7. ملکوتی، م. ج. و ع. ریاضی. 1379. خاصیت‌های خاک. انتشارات دانشگاه تهران.
25. Jackson, M. L. 1975. Soil Chemical Analysis. Advanced course, Univ. of Wisconsin, Madison, WI.