بررسی جنین‌زایی غیر جنسی از تخمه‌هایی بارور نشده لیمو آب شیراز (Citrus aurantifolia L. var. Mexican lime)

چکیده
تأثیر محیط‌های کشت مختلف خاوی مواد تنظیم کننده رشد در جنین‌زایی غیر جنسی از لیمو آب شیراز (مکزیکن لایم) مورد بررسی قرار گرفت.

میانگین جنین‌زایی از تخمه‌هایی بارور نشده، پس از 20 روز در محیط‌های مختلف کشت از صفر تا ۳۳/۷۵ درصد منفی بود. هر میلی‌گرم در لیتر تاثیر مانند دار و تحریک کندگی در جنین‌زایی نشان داد. حضور عصاره چو نیز در محیط کشت باعث افزایش جنین‌زایی از تخمه‌ها شد. به طوری که در کمترین غلظت (۲۰۰ mg/l)، بهترین اثر را در جنین‌زایی نشان داد. در حالی که غلظت ۵۰۰ میلی‌گرم عصاره چو منع جنین‌زایی شد، ولی رشد کالوس‌های جنینزرا افزایش داد. با مصرف هورمون BA در غلظت‌های ۱/۰ و ۱/۱ میلی‌گرم در لیتر، جنین‌زایی افزایش نشان داد. در صورتی که در غلظت‌های شیر عصاره بازدارنده‌هایی داشت، نسبت به همراه MT ۱/۰۱ جنین‌زایی کشت مختلف نیز بروز گردید. شاخص میانگین طول رشد به سه میکرومتر رشد می‌کشد کشت MT ۱/۰۱ mg/l ۲۲/۰/۱/۱۴۰/۲ بهره‌ور کرد. که برای جنین‌زایی، تکامل جنین‌ها، نخست‌هنگام به عنوان مناسب‌ترین محیط غلظایی تیمین شد.

واژه‌های کلیدی: مکزیکن لایم، جنین‌زایی غیر جنسی، مواد تنظیم کننده رشد

خورش است (1). روش‌های کشت بافت، با انگوری‌شک لایم و بازداشت گیاه در مرکبات، برای انجام پژوهش‌های به‌عنوان و برنامه‌های عازم‌گری اهمیت سپسیار دارد (2). کشت تخمه‌های بارور نشده از مرکبات، نخست به منظور به دست آوردن گیاهان مقدمه
جنین‌زایی از تخمه‌های بارور نشده، با گسترش نیافته در برخی از گونه‌های مرکبات گرزانیش شده است (3). منشأ جنین غیر جنسی با حفظ صفات مادری و بدون وروس بودن، سلوان‌های گیاهان ۱. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد بافت‌گری، دانشکده علوم کشاورزی، دانشگاه گیلان.
بنا مشاهده کننده خورش که بدن ویرانه‌ای از ارقام‌های چند جنینی می‌باشد.

(Polyembryonic) جنین‌زایی از بابت خورش او در بی‌پای گونه‌های مختلف جنینی و یک جنسیت است. با عنوان 

نی‌تنها در گونه‌های چند جنینی، جنین‌زایی ممکن است. این در کنار گونه‌های تک جنسیتی و به عنوان 

ژنتیکی تغییر و در بی‌پای خورش یک بار وجود دارد.

تولید جنین‌زایی از ناحیه‌هایی که میوه نارنجی سانتوما (11) و یا به نام خانم برخی از گونه‌های مربیک، 

سانتوما است. (32)

تشکیل جنین در مراکز توسط این متفاوت است. نتایج این است. (20) ممکن است. نتایج مختلف را در جنین‌زایی 

جنین‌زایی معجزه‌گری فرو راه مارش بررسی کرد. در این بررسی هورمون‌های استیک (I) و (II) آراژاونت (12) 

می‌باشد. (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

مور (7) تأثیر میلی‌میکروگری فرو راه مارش بررسی کرد.

جنین‌زایی جنین‌زایی برای این نتایج ارزان‌ترین (8) را تعریف می‌کند. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

پیش از این نتایج، جنین‌زایی برای این نتایج 

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,

جنین‌زایی را از بابت کالوس تخریب کرد است. (11)

نیز جنین‌زایی را تعریف می‌کند. (11)

آژاژاونت (8-aZaguanine) AG با غلظت mg/l NAA,
جدول ۱. فهرست محیط‌های کشت برای چنین‌زایی محیط‌های گیاهی نیازی لیمو آب شیراز در محیط‌های یک‌شیراز

<table>
<thead>
<tr>
<th>محیط کشت</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT + BA (0.1 mg/l)</td>
<td>۸</td>
</tr>
<tr>
<td>MT + BA (5 mg/l)</td>
<td>۹</td>
</tr>
<tr>
<td>MT + BA (10 mg/l)</td>
<td>۱۰</td>
</tr>
<tr>
<td>MT + GA₃ (0.1 mg/l)</td>
<td>۱۱</td>
</tr>
<tr>
<td>MT + GA₃ (0.01 mg/l)</td>
<td>۱۲</td>
</tr>
<tr>
<td>MT + GA₃ (0.001 mg/l)</td>
<td>۱۳</td>
</tr>
<tr>
<td>MT + GA₃ (0.001 mg/l) + BA (0.1 mg/l) + ME (500 mg/l)</td>
<td>۱۴</td>
</tr>
</tbody>
</table>

جدول ۲. محیط‌های کشت برای رشد و نمو چنین‌زایی گیاهی

<table>
<thead>
<tr>
<th>ترکیب محیط کشت</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAV³</td>
<td>۱</td>
</tr>
<tr>
<td>NAV + 1550 mg/l glutamine</td>
<td>۲</td>
</tr>
<tr>
<td>MT + 500 mg/l ME</td>
<td>۳</td>
</tr>
<tr>
<td>MT + 0.001 mg/l GA₃</td>
<td>۴</td>
</tr>
<tr>
<td>MT + 0.1 mg/l GA₃</td>
<td>۵</td>
</tr>
<tr>
<td>MT + 1 mg/l GA₃</td>
<td>۶</td>
</tr>
</tbody>
</table>

نتایج

چنین‌زایی

اختلاف چنین‌زایی تخم‌کنه‌های بارور نشده لیمو آب شیراز در محیط‌های کشت مختلف، در سطح ۰.۱٪ از لحاظ آماری معنی‌دار نشده و محیط کشت مشابه با عصاره جو، با غلظت ۵۰۰ mg/l, ۳۱٪ درازای بیشترین درصد چنین‌زایی، و در سطح احتمال ۱٪ با دیگر تیمارهای اختلاف معنی‌داری بود. به طوری که نسبت محیط حاوی ۵۰۰ mg/l و ۰.۱٪ با عصاره جو باعث افزایش درصد چنین‌زایی شد (جدول ۲). این اختلاف معنی‌داری در سطح احتمال ۱٪ در تیمار هورمونی GAs بود.

توسعه کالوس‌های تولید شده از تخم‌کنه و یا چنین‌زایی می‌باشد. محیط کشت PT محیط‌های با غلظت ۵۰۰ mg/l, ۵۰۰۰ mg/l و ۱۰۰۰۰ mg/l غلظت MT غلظت با عصاره جو با غلظت ۵۰۰ mg/l، دارای بیشترین درصد چنین‌زایی بود. به طوری که نسبت محیط حاوی ۵۰۰ mg/l و ۰.۱٪ با عصاره جو باعث افزایش درصد چنین‌زایی شد (جدول ۲). این اختلاف معنی‌داری در سطح احتمال ۱٪ در تیمار هورمونی GAs بود.
جدول ۳: مقایسه اثر محیط‌های کشت به کار رفتن جنین‌زایی و کالوس‌زایی تخم‌های بارور نشده لیمو آب شیراز

<table>
<thead>
<tr>
<th>درصد کالوس‌زایی</th>
<th>درصد جنین‌زایی</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵%</td>
<td>۱۷/۵۰%</td>
<td>MS</td>
</tr>
<tr>
<td>۱/۵%</td>
<td>۲/۰%</td>
<td>MT</td>
</tr>
<tr>
<td>۶/۲۵%</td>
<td>۳/۵%</td>
<td>(۵۰۰ mg/l) ME + MS</td>
</tr>
<tr>
<td>۸/۳۵%</td>
<td>۴/۵%</td>
<td>(۵۰۰ mg/l) ME + MT</td>
</tr>
<tr>
<td>۸/۷۰%</td>
<td>۳/۷%</td>
<td>(۳۰۰ mg/l) ME + MT</td>
</tr>
<tr>
<td>۸/۷۲%</td>
<td>۱/۰%</td>
<td>(۷۰۰ mg/l) ME + MT</td>
</tr>
<tr>
<td>۲/۸%</td>
<td>۱/۰%</td>
<td>(۰.۱ mg/l) BA + MT</td>
</tr>
<tr>
<td>۲/۸%</td>
<td>۱/۰%</td>
<td>(۵ mg/l) BA + MT</td>
</tr>
<tr>
<td>۸/۸%</td>
<td>۱/۰%</td>
<td>(۱۰ mg/l) BA + MT</td>
</tr>
<tr>
<td>۸/۸%</td>
<td>۱/۰%</td>
<td>(۰.۱ mg/l) GA۳ + MT</td>
</tr>
<tr>
<td>۸/۸%</td>
<td>۲/۰%</td>
<td>(۰.۰۱ mg/l) GA۳ + MT</td>
</tr>
<tr>
<td>۸/۸%</td>
<td>۱/۰%</td>
<td>(۰.۰۱ mg/l) GA۳ + MT</td>
</tr>
<tr>
<td>۸/۸%</td>
<td>۲/۰%</td>
<td>(۰.۱ mg/l) ME + (0.۰۱ mg/l) BA + (0.۰۱ mg/l) GA۳ + MT</td>
</tr>
</tbody>
</table>

در هر سوئینی، این کشت به‌کار رفتن مسئولیت را با هدایت در سطح ۲/۵ آزمون چند دانه‌ای از میان مانند در حالت کار خودت می‌باشد.

کالوس‌زایی
اثر عصاره جو بر کالوس‌زایی از تخم‌های لیموسی آب‌شیراز
از دست آماده متعددی می‌گردد که این می‌تواند به عنوان عصاره جو بر کالوس‌زایی تأثیر داشته باشد. محیط کشت MT با غلظت ۳۰۰ mg/l در سطح احتمال ۱/۰ احتمالی در بین ۵۰۰ mg/l محیط‌های دیگر نشان داد. با توجه به محیط‌های بین ۱۰۰ و ۱۰۰۰ mg/l در لیتر عصاره جو افزایش یافته در درصد کالوس‌زایی، با یک موج کم در لیتر BA مهاره ۱/۰ آزمون گرم لیتر BA کمتری در درصد گرم در لیتر BA به دست می‌آید. محیط کشت BA ۱/۰ در سطح احتمال ۱/۰ احتمالی در بین ۵۰۰ mg/l محیط‌های ۱/۰ میلی‌گرم در لیتر BA با احتمال بین ۱/۰ محیط‌های دیگر نشان داد. با توجه به محیط‌های دیگر، محیط کشت BA با غلظت ۳۰۰ mg/l در سطح احتمال ۱/۰ احتمالی در بین ۵۰۰ mg/l محیط‌های دیگر نشان داده شد. با توجه به محیط‌های دیگر نشان داده شد، محیط کشت BA با غلظت ۳۰۰ mg/l در سطح احتمال ۱/۰ احتمالی در بین ۵۰۰ mg/l محیط‌های دیگر نشان داده شد. با توجه به محیط‌های دیگر نشان داده شد، محیط کشت BA با غلظت ۳۰۰ mg/l در سطح احتمال ۱/۰ احتمالی در بین ۵۰۰ mg/l محیط‌های دیگر نشان داده شد. با توجه به محیط‌های دیگر نشان داده شد.
شکل 1. تأثیر محیط‌های کشت بر درصد حقیقی تخمدان‌های پارسیون نشده لیموی آب شیراز

شکل 2. تأثیر محیط‌های کشت بر درصد کالسازی تخمدان‌های پارسیون نشده لیموی آب شیراز
شکل ۳. تخمک بارور نشده لیمو آب شیراز

شکل ۴. چنین زایی غیر جنسی از تخمک‌های بارور نشده لیمو آب شیراز
جدول 4: بررسی وضعیت رشد و نمو جنین‌های انتقال یافته

<table>
<thead>
<tr>
<th>میانگین طول ریشه به میانگین طول ساقه (cm)</th>
<th>محیط کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/21±0/89</td>
<td>NAV</td>
</tr>
<tr>
<td>0/47±0/25</td>
<td>1550 mg/l glutamine + NAV</td>
</tr>
<tr>
<td>0/32±0/9</td>
<td>(500 mg/l) ME + MT</td>
</tr>
<tr>
<td>0/71±0/9</td>
<td>(0.001 mg/l) GA₃ + MT</td>
</tr>
<tr>
<td>0/51±0/13</td>
<td>(0.1 mg/l) GA₃ + MT</td>
</tr>
<tr>
<td>0/22±0/22</td>
<td>(1 mg/l) GA₃ + MT</td>
</tr>
</tbody>
</table>

سطح احتمال 1% در کالوسزایی موجب نشده که تخمک‌های بارور نشده به میزان تأخیری (حدود 20 mg) کالوس از تیمارهای محیط کشت به همراه عصاره جو و MT به همراه عصاره جو و MT کاهش تولید گردن (شکل 3)، که به محیط کشت دارای 1000 میلیگرم در لیتر عصاره جو انتقال، و یا جانداران بار زیر کشت رفن می‌نمایند نااوازایی پایان ویژگی این محیط کشت این بود که از جنین‌زایی کالوس‌ها جلوگیری می‌کرد و باعث افزایش کالوس‌ها می‌شد. در حالی که کالوس‌ها روی محیط MT کشت با مقادیر کمتر عصاره جو جنین‌زایی را کش و داده و توده‌های سزی و زنگ از جنین را تولید نمودند (شکل 4).

بحث

نتایج این پژوهش نشان داد که عصاره جو و GA₃ به طور مثبت مؤثری باعث افزایش جنین‌زایی غیرنپالی گردید. که به پژوهش‌های انجام شده در دیگر گونه‌های مربیات هم‌خوانی دارد (1، 3، 4، 4، 6 و 7). پس از گشش حذف شش هفته بیشتر درصد جنین‌زایی از تخمک‌های بارور نشده 33/75٪ بود که در مقایسه با نتایج جنین‌زایی تخمک‌های غیرنپالی افزایش یافته بود. این نتایج باعث شد که تعداد جنین‌زایی در کالوس افزایش یابد و درصد جنین‌زایی 7/4٪ به سمت آمد. که در مقایسه با نتایج این آزمایش کم است (16). شاید این اختلاف در دارمیا با تأثیر تنظیم کندگان رشد بر زننی و ارقام مختلف لیمو آب نسبت داد.

شرد جنین‌های انتقال یافته

پس از جوانه زنی تخمک‌های جنین‌ها بارای رشد و نمو و تبدیل به گیاهی کاملاً به محیط‌های کشت (جدول 4) انتقال یافته و برای بررسی وضعیت رشد جنین‌های انتقال یافته نسبت میانگین طول ریشه به طول ساقه و میانگین طول ساقه محاسبه شد (جدول 4). رشد ساقه روی محیط‌های کشت و NAV + 1500 mg/l glutamine و MT + 0/1 mg/l زایدرت گردید، و تنها طول ساقه در این محیط کشت کاست به تیمارهای غیرنپالی دیگر پیشرفت شد. اما نسبت طول ریشه به طول ساقه در آنها به عدد یک نزدیکتر بود (جدول 4).


