بررسی آزمایشگاهی بیماری‌زاپی فارج

Verticillium lecanii (Zimm.) Viegas

خودفرنگی [Acrithosiphon pisum (Harris)]

چکیده
برای بررسی اثر بیماری‌زاپی فارج (Acrithosiphon pisum) روی شته‌های خودفرنگی Verticillium lecanii از فرم تجاری فارج (ورتاک) استفاده گردید. پره‌های سن دوم شته‌های خودفرنگی با غلتگی‌های 10، 10، 10، 10، 10 و 10 کندی در میلی‌لیتر فارج و تیمار شاهد با آب عضو و ماده خشک کندی 80 مولی‌ولای بسته شد. غلتگی‌ها با 30 شته و در سه تکرار بررسی گردیدند. شته‌های تیمار شاهد در دما 25 درجه سانتی‌گراد، رطوبت نسبی 97% و دوره نوری 16/8 ساعت (شروع: شارکی) نگهداری و روی ساقه‌های پستی پرورش پایان‌تنه. واحدهای آزمایشی به طور روزانه و به مدت 12 روز توزیع‌پذیری و حشرات مرده و پره‌های تازه مورد شده از روی گیاه حذف گردید.

قرارآبد و رنگ انگیزی تغییری در شته‌های تیمار شاهد یافت نشد. کردن به طوری که مایکنی در حسب میدان و سیر 40/42 در فلاته 10 کنیدی در میلی‌لیتر تیمار، 40/42 در فلاته 10 کنیدی در میلی‌لیتر آب و 40/42 در فلاته 10 کنیدی در میلی‌لیتر نگهداری شده. مقادیر LT50 با استفاده از آزمون پنا برای خودفرنگی‌ها به مقادیر حداقلی از 5، 10، 15، 20، 25 و 30 ثانیه حساسیت به ویژه (R0) با افزایش کندی کاهش خشم‌گیری یافت. مایکنی‌های مقادیر R0 از 2/8 در شاهد و 28/8 در فلاته 10 کنیدی توانست در میلی‌لیتر کاملاً کاهش یابد. تاثیر نسبتی به حساسیت نشان می‌دهد که ورتاک‌ها می‌توانند به عنوان عامل کنترل کندی مؤثر برای شته‌های خودفرنگی محسوب گردند. پژوهش‌های تکمیلی در شرایط طبیعی و نیز ارزیابی این فارموده علی‌آت دیگر توصیه می‌شود.

L50، LT50، (R0) وازه‌های کلیپی: بیماری‌زاپی، خودفرنگی، فارج Verticillium lecanii

واژگان کلیدی: بیماری‌زاپی، خودفرنگی، فارج

1. دانشجوی سابق کارشناسی ارشد گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تهران
2. دانشیار گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تهران
3. استادیار گیاه‌پزشکی، مؤسسه تحقیقات جنگلی و مراتع کشور، تهران

285
شماره انجام شده در پیشرفت مورد ویروس های وابسته به ماده گیاهی.

یکی از قارچ های مهم گونه V. lecanii فرمان

V. lecanii (Deutemycetes: Moniliiales) یکی از قارچ های مهم گونه V. lecanii فرمان

V. lecanii (Deutemycetes: Moniliiales)

کمی تحقیق و درک محیطهای کشتی که دارای کربهای میکروبیت و با کیتین ناشی در محدوده های میکروبیت و با کیتین ناشی در محدوده H.1)
بیماری‌های میوه‌گیری و سیبزیتئی وراثه شده است. V. lecanii، نرم‌ترین وراثه است.

از نوع‌های معروف V. lecanii می‌توان به Encarsia formosa، Phytoseiulus persimilis، Aphis gossypii، Nasonovia ribisnigri، Hippodamia quinquesignata و Staphylinae Carabidae، Syrphidae و Forficulidae، Formicidae و اسکارگرها نیز که می‌توانند باعث بروز بیماری‌ها شوند به‌شمار رسانید.

در مطالعه‌هایی که باعث وقوع بیماری‌های میوه‌گیری و سیبزیتئی شده‌اند، نشان داده شده است که این بیماری‌ها باعث کاهش کیفیت میوه می‌شوند و باعث کاهش درآمد صاحبان و کشاورزان می‌شوند.

مطالعه

در این مطالعه، تعدادی از ویروس‌های میوه‌گیری و سیبزیتئی در مزارع مختلف بررسی شد. نتایج این مطالعه نشان داد که در جمعیت‌های مختلف میوه‌گیری و سیبزیتئی، تعداد زیادی از ویروس‌ها و بیماری‌ها وجود دارد.

نتایج

نتایج این مطالعه نشان داد که در جمعیت‌های مختلف میوه‌گیری و سیبزیتئی، تعداد زیادی از ویروس‌ها و بیماری‌ها وجود دارد.

بحث

یافته‌های این مطالعه نشان داد که بیماری‌های میوه‌گیری و سیبزیتئی می‌توانند باعث کاهش کیفیت میوه و کاهش درآمد صاحبان و کشاورزان شوند. به همین دلیل، لازم است که به بهبود بهداشت محیطی و کنترل بیماری‌ها توجه شود.

درک بررسی‌های آینده

یافته‌های این مطالعه نشان داد که بیماری‌های میوه‌گیری و سیبزیتئی می‌توانند باعث کاهش کیفیت میوه و کاهش درآمد صاحبان و کشاورزان شوند. به همین دلیل، لازم است که به بهبود بهداشت محیطی و کنترل بیماری‌ها توجه شود.

مراجع

1. Encarsia formosa
2. Phytoseiulus persimilis
3. Aphis gossypii
4. Nasonovia ribisnigri
5. Hippodamia quinquesignata
6. Staphylinae Carabidae
7. Syrphidae
8. Forficulidae
9. Formicidae
10. اسکارگرها
نوری مورد استفاده قرار گرفت. SAS تجزیه آماری داده‌ها با استفاده از نرم‌افزار آماری (Statistical Analysis System) مقادیر $R_0 = \frac{\ln N}{\ln x}$ رابطه شده که در رابطه با استفاده $R_0 = \frac{\ln N}{\ln x}$ و یک مدل به بهینه‌سازی شکل‌گیری می‌تواند با توجه به شرایط و روش‌های مختلف و مدل‌های لاتین و L_2 و L_{20} و L_{20} در (PROC PROBIT) و تجزیه بازماندی مورد لیفتست استفاده شد.

نتایج و بحث

شهادت رشته فیلاریمی از سطح بدن حشره تا زمان پیش از R_0 با استفاده از استریومگروسکوب و دیگر دیگر به دلیل پایین بودن دقت یافته‌ای که ممکن است به دریافت نتایج به شتاب سالم وجود داشته. مهم‌ترین تغییرات در شته‌های آنها که نه در مراحل حاد بیماری، بنده حشره، به ویژه با، در پاسخ به ترکیبات گیاهی داشت.

شمار حشرات مورد در هر تیمار، پس از انتهای این که آلودگی به وسیله فیلاریمی از روز بر این، ثبت شد. برای آلودگی از روش مشاهده بالاتسیئورامه فیلاریمی در هموفیل حشره، استفاده شد. این روش آلودگی فیلاریمی نسبت به بررسی روستا از جمله مشاهده رشد ریشه فیلاریمی در سطح بدن حشره مربوط مدل است، زیرا در حالات مختلف ممکن است مکار پرتو با وسیله عوامل زندگی گیر نزدیک دیگر بر اثر $V. lecanii$ بر روی کند و، فیلاریمی به صورت سپروفتی از سطح بدن حشره رشد پیدا کند، و این باعث ایجاد در نمونه می‌شود.

شمار و توزیع سالمند، متولد و متولد نبوغ و تشکیل پیوسته، در نتیجه این جایگاه $V. lecanii$ با رشد و بی‌توجهی به ضرورت‌های فیلاریمی و انتقال $V. lecanii$. به دلیل وابستگی به وسیله میکروسکوب در بازماندی مورد لیفتست در سطح بدن حشره رشد پیدا کند، و این باعث ایجاد در نمونه می‌شود.
بررسی آزمایشگاهی یپسیراژایی فارج

بروکسیلیکیمیا (Zimm.) Viegas

درصد مرغ و میر در شاهد و غفلت‌های
10، 10 و 10 کنیکدی در میلی لیتر به ترتیب
7/5، 8/7 و 8/7 میلی لیتر/ ساعت و
5/0، 5/0، 5/0 به دست آمد. تجویز و اریازی للقات با گیاکرای
متغیر دهن مرغ و میر شته نخوردلگی با افراشی غفلت
قاری بود (V. lecanii)

برای انجام
مقاومت میلانگیا در روش مقایسه مستقل به معاوض استفاده
شد که پایه آن در 1 جدول 1 آمده است.

برای محاسبه LC50 درصد للقات شته و غفلت‌های قاری
V. lecanii تحت تجهیز پروپت قرار گرفت (P=0.01)

به 100% تلقیه در یکی از تکرارهای
غلبت 10 کنیکدی در میلی لیتر تحریم آمیز برای این غفلت
فقط با دو تکرار انجم شد. مقدار LC50 محاسبه شده
کنیکدی در میلی لیتر با حدود اطمینان 1/44 نا
با ان حال در آزمایشی با استفاده از جادهای آن
لتقات از Stibion avenue V. lecanii
قاری شته

نخستین روز آزمایش آغاز شد.

مواد و روش

مقاوبر محاسبه شده برای V. lecanii
از طریق آزمون پاراماتر تغییر گردید که تابیت آن در
جدول 2 آمده است.

مقاوبر محاسبه شده برای LC50 و به ویژه
آزمایش‌های زیست‌سنجی، نشان دهنده شدت بیماری‌زایی ماده
موردن آزمایش است. با این حال، این مورد برای شدت ان در
میزان تحت تأثیر عامل پراپت گیا می‌گردد. از این عوامل
می‌توان به سرعت نشان کندی و میزان اسپورزایی و فعالیت
از آنزیم سلولر زیست‌سنجی برای این کنیکدی است.

اندازه‌سنجی وابسته به سرعت راهیت حمله به نیروی
نامیدن (Propagule)

وزن‌گیاه میزان نیز در بروز و شدت بیماری ایجاد شده
تأثیر دارد. نشان ایجادی چرب آزاد با ذچوگیر کشد و موجود در
کوککول برخی حشرات در جل‌گیری از نیروی راهیتی
قاری V. lecanii با اثرات رشدی است. در کوککول شده

49
جدول 1. مقایسه میانگین‌های درصد مرگ و میر شه شاخه‌های مختلف فاصله (A. pismum) در غلظت‌های مختلف فاصله (V. lecanii)

<table>
<thead>
<tr>
<th>P</th>
<th>F</th>
<th>درجه آزادی</th>
<th>مقایسه</th>
<th>مقایسات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/106</td>
<td>7/76</td>
<td>1</td>
<td>100.7</td>
<td>100.7</td>
</tr>
<tr>
<td>0/175</td>
<td>3/95</td>
<td>1</td>
<td>100.7</td>
<td>100.7</td>
</tr>
<tr>
<td>0/177</td>
<td>3/95</td>
<td>1</td>
<td>100.7</td>
<td>100.7</td>
</tr>
<tr>
<td>0/490</td>
<td>4/78</td>
<td>1</td>
<td>100.5</td>
<td>100.5</td>
</tr>
<tr>
<td>0/1000</td>
<td>4/872</td>
<td>1</td>
<td>104.4</td>
<td>104.4</td>
</tr>
</tbody>
</table>

جدول 2. مقاید LT50 محاسبه شده برای غلظت‌های مختلف فاصله V. lecanii (ورتاکل) روی پروره‌های سن دوم شته (A. pismum) نخودرونگی

<table>
<thead>
<tr>
<th>غلظت (کیلودی در میلیلتر)</th>
<th>LT50</th>
<th>خطای استاندارد</th>
<th>حد بالای یا پایین</th>
<th>حد بالا</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-5</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>10^-6</td>
<td>10</td>
<td>3/75</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>10^-7</td>
<td>8</td>
<td>3/35</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>10^-8</td>
<td>77</td>
<td>3/34</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10^-9</td>
<td>0</td>
<td>3/28</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

* روز

شکل 1. نمودار خط رگرسیون غلظت‌های فاصله V. lecanii (ورتاکل) و پروپیت مرگ و میر پروره‌های سن دوم شته نخودرونگی (A. pismum) 12 روز پس از آلوه‌مسازی

250
بررسی آزمایشگاهی پی‌سازی‌ای ندار "Verticillium lecanii" (Zimm.) Viegas در مدت ۱۲ روز پس از آلودگی (A. pismum) روی پوشهای سی دوم شته نخودفرنگی بنها مقدار کمی اسید چرب با زنجبیر کرونیه پاف‌ شده است و در درخشش‌های تولید سیریکول و عملکرد لنگه شته اسیدهای آمینه آزاد و مونوساکاریدهای پیدا شده اشته، که محیط مناسب برای تکامل ولتهای تندیسی جدایی‌های خاصی می‌باشد (۱). مقاومت میزان Conidiobolus obscurs می‌تواند در نیز در پرویش و شکست پی‌سازی قارچی تأثیر برای پی‌سازی دارد، به طوری که قارچی Entomophthora obscura روی دو جمعیت متفاوتی شته نخودفرنگی نهایی کامل‌تکاملی نشان داده است (۴۴).

پوره‌های اکثر با سیله‌ای افزاده شده طی روزهای اول آزمایش به دست آمده تیمار شده و تعداد متوسط آن برای ۴۰ شته محاسبه گردیده که تا تایان آن در شکل ۳ آمده است. شته‌های مورد آزمایش به تدریج از روز قرارداد آلودگی به سن بلوغ رسیده و تولید کردن شده. با افزایش غلظت کننده‌ای قارچ تولید نگاه کامل پای کرده مقاومت میانگین Rb برای شاهد و غلظت‌های ۱۰ میلی‌لیتر به ترتیب ۲۸/۲۰/۸۱/۸۶/۳/۸۰/۱۲/۱۶/۱۱/۱۱/۹۱/۸۴/۷۱/۸۲/۲۳/۱۷/۱۳/۸۵ محاسبه گردیده است. تجزیه واریانس مقادیر Rb گروه‌ی کاهش معیار دار آهنگ تولید مثل با افزایش غلظت قارچ بود (p<۰/۰۱). تراکم مقایسه میانگین‌ها به روش مستقل یا متعدد در جدول ۳ خلاصه شده است.

هر چند افزایش غلظت کننده ۷/۰ به ۱۰/۰ کننده در میلی‌لیتر رکش کاهش معیار دار در تولید تناج نشده وی در مجموع با افزایش غلظت قارچ، کاهش معیار دار در تولید پوره توسط شته‌های آلوده مشاهده گردید.

بازار خط رگرسیون بین غلظت قارچ و مقادیر Rb استفاده از لگاریتم آعداد صورت گرفت و داده‌های مربوط به شاهد از تجزیه حدف گردید. تجربه این تجزیه نشان دهنده معنی‌دار بودن شیب خط رگرسیون بود (p<۰/۰۱). p=۰/۰۵=np=۰/۰۱.

هر چند با افزایش غلظت کننده فازی کاهش معیار دار در شمار تولید تناج مشاهده گردید. ولی مقادیر Rb در طول انجام آزمایش‌ها به یک و یا پایین نیز از آن کاهش می‌پیدا می‌باشد.
جدول 3 مقایسه میانگین مقدار R_0 میزان نخودفرنگی (A. pism) در غلظت‌های مختلف کنیی میلیارد در $V. lecanii$ (ورتالک)

<table>
<thead>
<tr>
<th>P</th>
<th>F</th>
<th>آماره</th>
<th>درجه آزادی</th>
<th>مقايسات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/01</td>
<td>7/07</td>
<td>4/07</td>
<td>1</td>
<td>10^7</td>
</tr>
<tr>
<td>0/03</td>
<td>7/07</td>
<td>4/07</td>
<td>1</td>
<td>10^7</td>
</tr>
<tr>
<td>0/05</td>
<td>7/07</td>
<td>4/07</td>
<td>1</td>
<td>10^7</td>
</tr>
<tr>
<td>0/07</td>
<td>7/07</td>
<td>4/07</td>
<td>1</td>
<td>10^7</td>
</tr>
<tr>
<td>0/09</td>
<td>7/07</td>
<td>4/07</td>
<td>1</td>
<td>10^7</td>
</tr>
</tbody>
</table>

![Graph 1](#)

شکل 3. شمار پوره‌های تولید شده به وسیله 30 شته نخودفرنگی (A. pism) طی 12 روز پس از آلودگی با غلظت‌های مختلف قارچ $V. lecanii$

![Graph 2](#)

$y = \frac{2}{7} - \frac{1}{114}x$

$R^2 = 0.99$

شکل 4. تأثیر غلظت‌های مختلف قارچ $V. lecanii$ قارچ نخودفرنگی (A. pism) در کاهش آمنگ خالص رشد R_0 (ورتالک)
دریافت و دریافت‌پذیری آفات و بیماری‌های گیاهی: انتشارات دانشگاه تربیت معلم تبریز. ۱۶۷ صفحه.

