ارزیابی کاربرد معادله‌های برآورد بر رسوبی در رودخانه‌های خوزستان

مهدی قمشی و حسن ترابی پویه

چکیده
برای انتخاب مناسب‌ترین معادله‌برآورد رسوب نیاز به ارزیابی و ورای آنها برای رسوبات مورد نظر می‌باشد. در این پژوهش ارزیابی معادله‌برآورد بر رسوب در ایسیگاه‌های اهواز از رودخانه كارون، با استفاده از روش توالی در، پیای پل از رودخانه کرخه، و احتمالات رودخانه ماهون بررسی گردید. انتخاب بر معادله‌های که از ارائه شده، رابطین معادله‌های موجود در این پژوهش به کار رفته، که عبارتند از: میر-چتر و مول، انیشین، پنکارد، اکلیز، درکر و رای، ایکرز و رای، و ان رایچ، واپس، ساماگا و ساماراکی، گل و
قاوش. به منظور محاسبه سریع دیگ رسوب، از روش‌های فوق یک مدل کامپیوتری تهیه گردید. در مراحل بعد، ۴۲۰ دوره داده اندازه‌گیری شده از این ایسیگاه‌ها گردآوری شد. به دلیل هم‌زمان نیستن داده‌های دانه‌های دسته‌بندی، برای داده‌های شرایط جریان در برخی از موارد، این داده‌ها
با دیگری که بصورت روزانه موجود بود، ارتباط داده داده شد و روابطی بین دانه‌های دسته‌بندی و دیگر به دست آمد.
نتایج نشان می‌دهد که بر طور کلی معادله‌های که مورد بر انتزاع نیاز جریان می‌پاشند، با اصلاح‌هایی برای رودخانه‌های خوزستان

مناسب ترند. از این معادلات، روش اکلیز و مول، جز برای ایسیگاه چی‌په‌پام در ایسیگاه‌های دیگر تخمین‌های نسبتاً خوبی داشته است. میانگین نسبت بر رسوب این روش برای رودخانه کارون ۰/۱/۴، برای رودخانه کرخه ۰/۷/۷ و برای رودخانه دز ۰/۸۰ است. همچنین، انحراف از میانگین نسبت مذکور برای این روش، در مقایسه با روش‌های دیگر، مقایسه‌بین این دیگر مقدار بیشتری می‌باشد. روش گی نیز با کاربرد ضریب
۰/۱، جز برای ایسیگاه چی‌په‌پام در سه ایسیگاه دیگر بررسی‌های مناسبی داشته است. این روش نیز نسبت میانگین، روش اکلیز و مول
دشته، و دارای میانگین نسبت بر رسوبی ۱/۳۲ برای رودخانه دز ۱/۹۴ برای رودخانه کرخه و ۲/۳ برای رودخانه کارون می‌باشد.

واژه‌های کلیدی: رودخانه، نسبت بر رسوب، دیگ رسوب

1. به ترتیب استادیار و دانشجوی سابق کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

13
مقدمه
جیران آب در سه‌تراز گرفتن در مراحل اولیه میداننده مغزی از سوکر، مقدار حرکت ثانوي بر روی دستگاه‌های بستر جیران و جنگل‌گذاری، که این فرآیند می‌تواند با آوردن روسپ گسترش می‌شود. تخمین و محاسبه مقدار موادرسوبی که حیوان مشخص قادر به حمل آن است، بی‌کی از موضوعی محصولی پژوهش‌های رسوب می‌باشد.

که در سیل‌بزی از پروژه‌های منوهایی، مانند طرح‌های و برنامه‌ریزی برای منابع آب، مورفولوژی و تغییرات بستر رودخانه، برآوردهای رسوب اتصال به آب‌گیره‌ها رودخانه، طراحی و تهیه‌کننده‌های آب‌پاش، حفاظت سواحل، لایه‌ریزی کانال‌ها و غیره، حائز اهمیت است.

در مقایسه با شاهد اکثر دیگر هیدرولوکی، پیشرفت در زمینه انتقال رسوب بسیارگسترده است. حتی آن ارتباط پیچیده‌ای زیراپیایی از پارامترهای رسوب و جیران آب است، که داخل و تأثیر تواقی آنها برای کمیت بهبود انتقال رسوب را مشکل می‌سازد.

معرفی یک رابطه ریاضی که یک هم‌بندی مدل تئوری به علائم تغییرات را در جهت‌های طولی و عرضی رودخانه در برگیرد، کار سیستم مشکی است. به همین دلیل، مهندسی محاسبات بالاتری از مطالعات پروازرسوب برای شیاطین ساده جیران یک‌تایی مانند در انتقال روسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد. یکی دیگر از مشکلات حکمرانی در مسائل در انتقال پروازرسوب، چه در محیط‌های بستگی به فضاهای سطحی، شناخت دقیق نیز باشد.
زینبیانی کاربرد معاشقه‌های برآورده بر روی عاداتی از وضعیت

و انتقال رسوب مایه از ایستگاه مکرر. یگولر (۴) در سال

۱۹۷۱ نظریه قدرت جریان را به صورت جدید در مباحث

رسوب مطرح نمود و لیکاف (۵۰) با بررسی جزییات روابط

تقویت مورف در انتقال در تنوری تحقیق خریوش، عامل انرژی در

بادی انتقال رسوب را بررسی نمود. انگلاند و هالسنن (۱۸) در

سال ۱۹۶۷، با استفاده از تئوری گونولند رابطه جداگانه ارائه

نمونه‌ای. یانگ (۵۸) و (۵۱) در سال‌های ۱۹۷۰ و ۱۹۷۳، با معرفی

قدرت واحد جریان، بدین‌گونه انتقال رسوب از نظر میزان انرژی

پتانسیل مصرف جریان مطالعه کرد. انگلاند و فرودو (۱۷)،

واپی (۶۱)، سلیمک و ورودی (۶۰)، روابطی بر پایه انرژی

تابالی جریان ارته نمونه‌ای. ایشتیش (۱۵) از مفاهیم آماری و

احتمال‌البای برآورده بایست انتخاب کرد. به عنوان مدل آماری

این‌ها توسط شیاره‌ها یا روبه‌روی رسوب و کاتوب (۴۰)، بانک (۴۴)، گریگ (۲۱) و نن و تودوریک (۴۳)

اول را باید کرد. بررسی در انتقال فرمول سال ۱۹۴۲ ایشتیش را

اصلاح کرد. که حاصل کار آنها اکنون به ایشتیش-براون

معروف است (۹). کلیه و همبی (۱۲) بر اساس روش

این‌ها، یا رایج اعمال را ارائه کردند. بیکار و همکاران

(۸) پشتی (۴۵) هولتراف (۳۲)، مسیری و همکاران (۲۲)

ساماکا و همکاران (۲۷)، و اینگرام و همکاران (۲۵) روابطی را

بر پایه مفاهیم آماری و احتمال را ارائه دادند.

پاره و همکاران (۵) کورپ و پیرسون (۱۳)، ویلسون و

کولمن (۵۶)، یان و هیوگین (۴۹، ۴۸)، دنی و سترلند (۴۵) کریستم

کان (۷۵)، بچار و ور (۱۹) و (۲۰)، (۷) و (۹) فاضل

روابطی بر پایه مفاهیم رگرسیون و آماری ابعاد

یک‌شکه کردند. جبیسی و سیبکال (۲۲) با پژوهش در

روطخانه ایستیلا، استفاده دارند که روش‌های متغیر بر تنوری

انزیم تفییر، متقابلت و ساده‌تر از روش‌های دیگر است.

مربیه بی‌سیوئار (۲) با برآورده رسوب برای ۵۰ دوره داده

از ایستگاه‌ها از رودخانه کارون، با استفاده از روش‌های

 Daneel, (۲۶)، و ایستگاه (۱۶)، توفلانی (۴۷)، لارسن (۲۴) و میری‌پن و مولر

مختاری که تنها رابطه لازم جواب‌های مناسب داده

است.

میکرو و روش‌ها

در این مقاله پیدا کرد، انتقال رسوب از نظر هیدرولوژیک بررسی

شد. در این مقاله نام مولفه به‌شانه که که دارای ارتباطی کمتری با

پارامترهای جریان رودخانه بوده و بیشتر در ارتباط با

یکی طی هیدرولوژی، خاک، پوشش گیاهی و وضع

زیمن‌شناختی سطح جریان است. مورد نظر فراز گردید.

از آنجا که این پژوهش از نمایندگانی درآماد

اطلاعات موجود به‌عنوان اثر بررسی از روی گردید. بنابراین، می‌توانند، که دارای ارتباطی کمتری با

آب‌سنجی موجود، این‌ها از ارتباطی با رودخانه‌های کارون، یا پل

از رودخانه کرخه، تمامی آنها را در سال‌های مارون و بازمار

روجدان درد، به دلیل برخوردی با جمعه آبیاری کول

برگرده شده، و امر روابط هیدرولوژیک و روابط آنها از

مراکز مربوط جمع آوری گردید. چون آزمون تمام فرمولهای

انتقال رسوب مقدار نبود با استفاده از آنها قابل منشأ

شده فاضل (۴۹) و (گ) (۷) رایج ترین روابط انتقال رسوب، و

نیز فرمولهایی که در سال‌های اختیار توسط پژوهشگران ارائه

گردیده است، انتخاب شده و مورد بررسی قرار گرفته‌اند. این

روابط عبارتند از: میری‌پن و مولر (۲۱) ایشتیش (۱۶)، یگول

(۴)، ایشتیش-همانسن (۱۸)، توفلانی (۴۷)،یانگ (۴۹) و (۴۸)

وانیک (۷۵)، و (۹) فاضل (۱۹) جدول ۱ خلاصه‌ای از

دامنه‌ی ورودی برای انتخاب شده برآورده رسوب را

شناسانده.

به نظر شرکت‌های رویت‌گرای پژوهش‌های شدید، عمک کرده‌اند، این رویت‌گرای

با استفاده از ۴۴ دوره داده، آنها گزارش شده و مورد بررسی قرار

گرفت. هم‌چنین، شامل اطلاعات دانش‌مند، دیپ جربان،

شبک رودخانه، سطح مقطع جریان، محتوای خیس شده،

عرض مقطع رودخانه و درجه حرارت آب می‌باشد. نتیج بار

Downloaded from jshnar.iut.ac.ir at 19:21 IRST on Wednesday March 4th 2020
جدول 1. خلاصه‌ای از داده‌های ورودی برای روابط انتخاب شده برآورد رسوپ

<table>
<thead>
<tr>
<th>پارامتر متقل</th>
<th>شرایط جریان</th>
<th>وزن‌های سیال</th>
<th>وزن‌های رسوپ</th>
<th>معادله‌های انتقال رسوپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_b)</td>
<td>(D, S, V)</td>
<td>(d_b, d_s, \gamma_s)</td>
<td>میر-پتر و مولر</td>
<td></td>
</tr>
<tr>
<td>(Q_b, Q_a)</td>
<td>(B, D, S)</td>
<td>(d_b, P_{D}, \gamma_s)</td>
<td>انگلین و هنّسن</td>
<td></td>
</tr>
<tr>
<td>(Q_a, Q_b)</td>
<td>(B, D, S, V)</td>
<td>(d_p, \gamma_s, d_s)</td>
<td>بکولت</td>
<td></td>
</tr>
<tr>
<td>(Q_b)</td>
<td>(B, S, V)</td>
<td>(\gamma_s, d_s)</td>
<td>تونقانی</td>
<td></td>
</tr>
<tr>
<td>(Q_b, Q_a)</td>
<td>(B, D, S, V)</td>
<td>(d_{ps}, \gamma_s)</td>
<td>ایکر و وايت</td>
<td></td>
</tr>
<tr>
<td>(Q_a)</td>
<td>(B, D, S)</td>
<td>(\gamma_s, d_s)</td>
<td>یانگ</td>
<td></td>
</tr>
<tr>
<td>(Q_b, \gamma_s)</td>
<td>(B, D, S, V)</td>
<td>(d_s, \gamma_s, d_{ps})</td>
<td>واندریجن</td>
<td></td>
</tr>
<tr>
<td>(Q_b)</td>
<td>(V, R, S)</td>
<td>(\gamma_s, d_s)</td>
<td>سامگاک و همکاران</td>
<td></td>
</tr>
<tr>
<td>(Q_b, Q_a)</td>
<td>(B, S, Q)</td>
<td>(\gamma_s, d_s)</td>
<td>وایف</td>
<td></td>
</tr>
<tr>
<td>(Q_b)</td>
<td>(V, S)</td>
<td>(\gamma_s, d_s)</td>
<td>بک</td>
<td></td>
</tr>
<tr>
<td>(Q_b)</td>
<td>(V, S)</td>
<td>(P_{D}, d_s, \gamma_s)</td>
<td>فاصل</td>
<td></td>
</tr>
</tbody>
</table>

تریب عبارتند از:
- \(Q_b \) (Q): دیس رسوپ ماهی‌شه به دبیر رسوپ اندادگرگیری شده (Q)، شیب سطح آب |
- \(S \): مقغل جریان (S) |
- \(V \): عرض سطح آب |

دهندا، این روش اندادگرگیری شده تعریف می‌شود، به عنوان می‌مایر برای بررسی میزان دقیقه روش به کار برده شد. واضح است که هرچه \(\lambda_{m} \) محسوب شده به یک تریب‌کرتر باشد نشان دهنده پیش‌بینی بیشتری از شده.

کامپیوتری به‌هیچ‌یک دلیل مدل به زبان پی‌سیک تضویرویی بوده و در محیط ویندوز قابل اجرای است. داده‌های اندادگرگیری شده رسوپ و داده‌های شرایط جریان و رسوپ و دانه‌بندی بستر قابل ترکیبی هستند. مدل به‌ساسه شکل رسوپ به روش‌های مختلف، نسبت اختلال‌ها \(l_1 \) نیز برای هر روش محسوب می‌گردد، و نتایج را به صورت شکل و جدول ارائه می‌نماید.

داده‌های مورد نیاز به منظور ترکیب قابل ترکیبی به‌وسیله مدل ب‌‌
نیواد استخراج گردید. برای به دست آوردن محتوای خیس شده مقطع جریان بااید داده‌های مربوط به شکل مقطع عرضی رودخانه را داشته باشد. با توجه به این پژوهش، شبه‌پیگیری، رودخانه‌ای مورد نظر یک برنامه کامپیوتری نوشتاری شده. در این برنامه با وارد کردن داده‌های سطح مقطع و اشکال سطح آب، محتوای خیس شده می‌توان محاسبه نمود.

روی هر رفت، تعداد 130 دوره داده انسداد‌گی سه‌زده در استگاه‌های بیش از 99 دوره از استگاه‌های پای بال، 130 دوره از استگاه‌های انسدادگی و 160 دوره از استگاه‌های بیش از 3 گردیده که خلاصه وضعیت داده‌ها موجود در هر استگاه در جدول 2 نشان داده شده است.

معمولاً بر روی رود پرورش‌گاه شده، فقط مطلق و شامل قطعه بالا و زیر استگاه‌های مورد نظر گردیده. بنابراین، پرورش‌گاه بسته با در رودخانه‌ها به سمت به شرایط رودخانه‌های مورد نظر (بزرگ‌ترین رودخانه‌های کوهستانی)، به تعداد 25 درصد در نظر گرفته. در این پژوهش، برای تعیین درصد پرورش‌گاه بسته به مطلق انسداد‌گی سه‌زده در رودخانه‌های خوزستان نکات زیر مورد توجه قرار گرفت:

الف) مدل به ترتیب برای نسبت‌های به‌بخش 100، 50؛ 25 درصد اجرا شد و نتایج حاصل بررسی گردید.

مشاهده شد که نسبت اختلاف برای این استگاه‌های مذکور تغییر محاسبه ندارد.

ب) استاد علي عسکری (1) بررسی خوی دیگران این درصد را برای رودخانه‌های کارون در استگاه‌های انسدادگی و رودخانه‌های کرخه در استگاه‌های کوهستانی حداکثر پنج درصد برآورد کرده است. با توجه به این، نسبت بین 10 درصد، 1/2 به شرایط انسداد‌گی انتخاب شده مقدار نظر قرار گرفت.

پایین به این نکته که به دلیل ناهم‌بینی قرار گرفته در اندازه و عدم اطمینان از پارامترهای انسدادگی سه‌زده، (خصوصاً در رودخانه‌های طبیعی) نمی‌توان دیگر روس را دقت‌آمیز محاسبه کرد. روابطی که حداکثر 20 درصد از تعداد
جدول ۲. خلاصه وضعیت داده‌های موجود

<table>
<thead>
<tr>
<th>میانگین</th>
<th>بیشتر</th>
<th>کمتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>مارون</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>گرخه</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>کارون</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>پیشنهاد</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>میانگین</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>بیشتر</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>کمتر</td>
<td>37/2</td>
<td>37/2</td>
</tr>
<tr>
<td>دیگر</td>
<td>37/2</td>
<td>37/2</td>
</tr>
</tbody>
</table>

ظرفیت متوسط درات (ستر) (mm)
- سرعت جریان (mm)
- عرض سطح آب (m)
- عمق جریان (m)
- درجه حرارت
- شب

نمودار ۱-۱. روش ایشینی، رودخانه گرخه

نمودار ۱-۲. روش ایشینی، رودخانه مارون

نمودار ۱-۳. روش ایشینی، رودخانه کارون

روش همان که در نمودارها دیده می‌شود، دارای پراکندگی کم‌می‌باشد، و نقاط رسم شده در نمودارها تقریباً به موانع ۱-۲ یا ۱-۳ هستند. چنان‌که نشان می‌دهد با یک ضریب ۱۰ این روش نتایج خوبی به دست می‌دهد (یادی ممکن که هر عددی که از محاسبه به دست آمده در جدول ۵ تا ۷ نشان داده شده است، که در مقایسه با جوابهای مشابه در جدول ۲ و ۳، نشان دهنده این است که این روش با حدود زیادی اصلاح شده است. با مقایسه
جدول ۳: مقدار پار رسوب

<table>
<thead>
<tr>
<th>روش محاسبه</th>
<th>Lₘₐᵋ (بار مطلق)</th>
<th>Lₘₐᵋ (بار بستر)</th>
<th>Lₘₐᵋ (بار کل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کارون مارون کرخه در</td>
<td>کارون مارون کرخه در</td>
<td>کارون مارون کرخه در</td>
<td></td>
</tr>
<tr>
<td>ماده انتخابی</td>
<td>ماده انتخابی</td>
<td>ماده انتخابی</td>
<td></td>
</tr>
<tr>
<td>اینلیشن (بار مطلق)</td>
<td>اینلیشن (بار بستر)</td>
<td>اینلیشن (بار کل)</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۱</td>
<td>۱</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۸</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۷</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۶</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۵</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۴</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۳</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

روش نیز با استفاده از ضریب ثابت اصلاح نماید. بنابراین، اضافه‌ای این روش توصیه نمی‌گردد. متوسط نسبت پار رسوبی و انحراف از معیار این روش در جدول ۴ نشان داده شده است.
جدول 4. میانگین نسبت بار رسوبی و انحراف از میانگین آن در روش‌های پراوردگی بار رسوب

<table>
<thead>
<tr>
<th>کرخه</th>
<th>کارون</th>
<th>مارون</th>
<th>روشن</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین نسبت بار رسوب</td>
<td>انحراف از میانگین</td>
<td>میانگین نسبت بار رسوب</td>
<td>انحراف از میانگین</td>
</tr>
<tr>
<td>ایشتن</td>
<td>23/2</td>
<td>0/21</td>
<td>1/3</td>
</tr>
<tr>
<td>بگندل</td>
<td>0/14</td>
<td>0/31</td>
<td>0/273</td>
</tr>
<tr>
<td>ساساگا</td>
<td>3/71</td>
<td>0/42</td>
<td>1/125</td>
</tr>
<tr>
<td>توکانی</td>
<td>0/21</td>
<td>0/79</td>
<td>0/150</td>
</tr>
<tr>
<td>هانسن</td>
<td>9/68</td>
<td>0/91</td>
<td>0/05</td>
</tr>
<tr>
<td>دون‌ار</td>
<td>0/71</td>
<td>0/05</td>
<td>0/71</td>
</tr>
</tbody>
</table>

جدول 5. خلاصه نتایج حاصل از اعمال ضرایب اصلاحی در روابط برای رودخانه دز

<table>
<thead>
<tr>
<th>نسبت بار رسوب</th>
<th>میانگین محاسبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>μ</sub></td>
<td>L<sub>μ</sub></td>
</tr>
<tr>
<td>انحراف میانگین</td>
<td>انحراف میانگین</td>
</tr>
<tr>
<td>0/42</td>
<td>0/87</td>
</tr>
<tr>
<td>0/71</td>
<td>0/85</td>
</tr>
<tr>
<td>0/19</td>
<td>0/65</td>
</tr>
<tr>
<td>0/1</td>
<td>0/3</td>
</tr>
<tr>
<td>0/05</td>
<td>0/23</td>
</tr>
</tbody>
</table>

جدول 6. خلاصه نتایج حاصل از اعمال ضرایب اصلاحی در روابط برای رودخانه کرخه

<table>
<thead>
<tr>
<th>نسبت بار رسوب</th>
<th>میانگین محاسبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>μ</sub></td>
<td>L<sub>μ</sub></td>
</tr>
<tr>
<td>انحراف میانگین</td>
<td>انحراف میانگین</td>
</tr>
<tr>
<td>2/26</td>
<td>0/65</td>
</tr>
<tr>
<td>0/87</td>
<td>0/85</td>
</tr>
<tr>
<td>1/07</td>
<td>0/46</td>
</tr>
<tr>
<td>0/1</td>
<td>0/39</td>
</tr>
<tr>
<td>0/05</td>
<td>0/23</td>
</tr>
</tbody>
</table>
جدول 7. خلاصه نتایج حاصل از اعمال ضرایب اصلاحی در روابط پراوردگی برای رودخانه کارون

<table>
<thead>
<tr>
<th>نسبت بار روسری</th>
<th>روش محاسبه</th>
<th>انحراف معیار</th>
<th>متغیر ماتičین</th>
<th>1/0</th>
<th>0.75</th>
<th>0.5</th>
<th>0.25</th>
<th>0.1</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>بگنولد با ضریب 1/5</td>
<td>58</td>
<td>50</td>
<td>47</td>
<td>37</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>0.71</td>
<td>وایف با ضریب 0/75</td>
<td>61</td>
<td>55</td>
<td>39</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>0.74</td>
<td>انگلیاند و هانسن با ضریب 1</td>
<td>72</td>
<td>66</td>
<td>41</td>
<td>33</td>
<td>27</td>
<td>22</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>0.76</td>
<td>بگ با ضریب 0/25</td>
<td>67</td>
<td>61</td>
<td>41</td>
<td>33</td>
<td>27</td>
<td>22</td>
<td>19</td>
<td>16</td>
</tr>
</tbody>
</table>

نمودار 2-1/5: روش بگنولد، رودخانه کارون

نمودار 2-0.75: روش بگنولد، رودخانه کارون

نمودار 2-0.5: روش بگنولد، رودخانه کارون

نمودار 2-0.25: روش بگنولد، رودخانه کارون

نمودار 2-0.1: روش بگنولد، رودخانه کارون

دو روش وایف دارای روند برآورد روسری بهتری نسبت به دیگر روشهای است. همچنین، رسوپ برآورد شده توسط این روش در رودخانه دیزبر را کاهش می‌دهد. این روش در رودخانه کارون کرخره نسبتاً مناسب بوده و در رودخانه‌های دیز و کارون نیز با به کار بردن ضریب 0.25 اصلاح شده که نتایج این اصلاح در جداول 5 تا 7 نشان داده شده است.

نمودارهای 3-0.75 تا 0.1 و جداول 3 و 4 نشان می‌دهد که روش انگلیاند و هانسن در سه رودخانه در کرخره و کارون برآوردی نسبتاً خوبی داشته است و در مقایسه اندازه‌گیری دارای پراکندگی زیادی بود. مانگنین نسبت بار روسری و انحراف از معیار این روش در جدول 4 دیده شود. تا 0.05 تا 0.4 و جداول 3 و 4 نمی‌توان نتیجه گرفت که مقادیر برآورد شده توسط روش وایف‌شناسی به‌طور مانگنین به رودخانه‌های مارون و کرخره زیادتر از مقادیر اندازه‌گیری شده است. این روش در رودن برآورد روسری دارای پراکندگی زیادی بوده و قابلیت اصلاح با ضریب نشان داده که نمودارهای 6-0.75 تا 0.1 و جداول 3 و 4 نشان می‌دهد که
نمودار ۲-۱. روش ساماگا، رودخانه نامانون
نمودار ۲-۲. روش ساماگا، رودخانه کارون
نمودار ۴-۱. روش توافقی، رودخانه نامانون
نمودار ۴-۲. روش توافقی، رودخانه کارون

شده در رودخانه مارون کمتر از حد میانگین. در هر صورت این روش در مقایسه با روش‌های دیگر، پاسخ‌های خیلی جدیدی که خود نشان داده است. این روش را نمی‌توان با استفاده از ضریب چادرول ۳ اصلاح نمود.
روش با ضریب 0/1 اصلاح شد و نتایج بسیار خوبی را نشان داد. که نتایج آن در جداول 1 تا 7 آورده شده است. همچنین نمودارهای 9-10 تا 11-12 حالت اصلاح شده این روش را نشان می‌دهد.
همان گونه که پیشتر گفته شد، برنامه کامپیوتری توسط شده، می‌تواند روش‌ها را با تغییر ضرایب ثابت اصلاح نماید. باید اجرای برنامه برای تمام روش‌ها، نتهای برخی از روش‌ها با به کار نمودار 8-3. روش پانگ، رودخانه کارون

نام: نمونه‌های 10-10 نتایج می‌دهد که روش فاصله بنا بر ابهام مناسب نداشته و قابلیت اصلاح را نیز ندارد.

24
بردن ضرایب ثابت برآوردهای بهتری داشتند، که این روشهای جدیدی در جدول 5 تا 7 ارائه شده است. این جدول نشان می‌دهد که سه روش بگولوی، وايف و انگلند و هانسن به ترتیب با ضرایب ۰.۳۰ و ۰.۱۵ (بدون اعمال ضریب تناسب) تفاوت یافته‌اند.
نمودار 11-3: روش بگ اصلاح شده، رودخانه کارون
نمودار 11-4: روش بگ اصلاح شده، رودخانه مارون
نمودار 11-5: روشن بگ اصلاح شده، رودخانه کارون
نمودار 11-6: روشن بگ اصلاح شده، رودخانه کارون

نتیجه‌گیری
1. روش انگلند-هانسن، بدون به کار بردن ضریب در سه ایستگاه با مدل رودخانه دز، پای پل از رودخانه کارون، و امواج از رودخانه کارون، پاسخ‌های نسبتاً خوبی را از خود نشان داده است.
2. روش بگ با به کار بردن ضریب 1/2، پاسخ‌های خوبی در ایستگاه‌های بامدز، پای پل و امواج به دست داده است.
3. با توجه به جدول 5، می‌توان نتیجه گرفت که روشن‌های مثبت بر انرژی تبادل جریان، با اصلاحات برای رودخانه‌های خوزستان مناسب‌ترند.

موضوع در روش‌های دیگر دیده نشد. به عنوان مثال، می‌توان نمودار 2-که روشن نشان دهنده برای رودخانه کارون برای نمودار 2-که روشن نمایش دهنده مقایسه نمود. در نمودار 2-که نقاط دارای پراکنده‌گی زیادی هستند، ولی در نمودار 2-که نقاط دارای پراکنده‌گی کم به موازات خط 1 با رسم شده‌اند. به‌این‌وین، می‌توان به طور کلی نتیجه گرفت که عمدهاً روشن‌هایی که می‌توان بر انرژی تبادل جریان مثبت، با اصلاحات در برآورد بار وسیع مناسب‌ترند.

منابع مورد استفاده
1. استاد علی عسکری، م. 1379. بررسی عملکرد روش اصلاح شده انتی‌می در برآورد بار کل رسوبات رودخانه‌های کارون و کارکرد است. در ایستگاه‌های اهواز و حمیدیه، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز.
2. میریبگ سیزوری، ن. 1379. بررسی روش‌های برآورد بار رسوب و محاسبه رسوبات رودخانه کارون در ایستگاه اهواز. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه شهید چمران اهواز.
7. Beg, M. 1995. The prediction of total bed material load transport in streams: management of sediment. Sixth Inetenen Symp. on River Sedimentation, New Delhi, India.
15. Einstein, H. A. 1942. Formulae for the transportation of bed load. Trans., ASCE 107:

