برآورد پارامترهای زئینیکی برای عملکرد و اجزای آن در لایه‌های اینترد درت، به روش تلاقی‌های دای آلل

چکیده

به منظور برآورد میزان ترکیب پذیری، هتروژن و دیگر پارامترهای زئینیکی عملکرد دانه و اجزای آن در درت دانه‌ای، از تلاقی‌های دای آلل شکل‌لا ان شبیه استفاده شد. واقعیتی که همزمان ۱۵ دانه به اندازه ۱ دانه ترکیب اضافی در دیگر قبال طرح لاییس مربع ساده مورد بررسی قرار گرفتند. پرای تمامی خصوصیات، به استثنای طول دانه، سردمدی نسبی طرح لاییس کمتر از یک بود. لذا داده‌ها در قبال طرح بی‌خط‌هایی کاملاً تصادفی تجزیه و تحلیل شدند. با حذف زئینیکی اضافی با روش ۲ گرفتگی و مدل مختلط B مورد تجزیه و تحلیل زئینیکی قرار گرفتند.

میانگین مربعات ترکیب پذیری های عمومی و خصوصی برای تمامی صفات معنی‌دار بود. نسبت میانگین مربعات ترکیب پذیری عمومی به ترکیب پذیری خصوصی برای تمامی صفات، به استثنای تعداد ریف دانه، کمتر از یک بود، که سهم بیشتر اثر طبیعتی زنده را در کنترل زئینیکی آنها نشان داد. برآوردهای درجه غلیظی کمتر از یک و ترکیب پذیری پایین برای تمامی صفات، به استثنای تعداد ریف دانه به تعداد دانه در اپولیت ژئونتری برخوردی است. برای پیش‌بینی تعداد ریف دانه، روش‌های مبنای بر گزارشات والدین‌های جغرافیای خویی بخصوص گواهی پذیر. در دوره‌های موردنظر، تعداد دانه در ریف و وزن ۱۰۰ دانه آپور‌تری از تصویری تیپ‌هایی نشان دادند و ۹۰٪ دانه‌های ترکیب پذیری خصوصی برای تعداد دانه در ریف، وزن ۱۰۰ دانه و عملکرد دانه، در زمره ی برترین دانه‌ها محصور گردید.

واژه‌های کلیدی: درجه غلیظی، تقابل ترکیب پذیری، تقابل توارث، هتروژن

مقدمه

مطالعات گسترده‌ای به منظور تعیین همبستگی و تحلیل پارامترهای زئینیکی عملکرد دانه، از طریق اجزای عملکرد صورت گرفته است (۱۷۰۶ ۱۷۰۶). نتایج مطالعات متعدد (۱۷۰۶ ۱۷۰۶) حاکی از این است که همبستگی خصوصیات

۱. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد و استاد دانشگاه اصلاح نیات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
مواد و روش‌ها
در این مطالعه از سه نوع کشتی دای آل که غرب شکل لایین اینی در دست اصلاح موفقیت زیاد در توجه به ناهال و بذر کرچ، به شماره‌های ۲۷۵۵۸ و ۲۷۸۲۷ گزینده و به این صورت جهت ایجاد خصوصیات بارز ویژه مورد نظر که به‌طور مستقل و در محیط اقلیت می‌پردازند (۱) تولید کننده مدل مورد نظر پذیرفته شدند و در صورت شکست موفقیت در این پاسخ به نهال و بذر، گزینه بهتر در نظر گرفته شدند. و در صورت ناهال و بذر، گزینه بهتر در نظر گرفته شدند.

نظر به این که اغلب مطالعات پیش‌تر تحلیل ساختارهای انستیتو با فرض یافته اثرات ماقبل در روش‌های مختلف گزینه‌گیری در محیط اقلیت می‌پردازند (۱) و از طرفی شرایط محیطی آزمایشگاه‌های مختلف و دستیابی به آنها مفتخر است، لذا تاکنون حاصل از هر مطالعه، به دیگر موارد قابل تعمیم نمی‌باشد. در نتیجه، بررسی تعداد پارامترهای انستیتو لایی‌های حاصل از هر پرواز، اصلاحی امروزی انجام می‌پذیرد.

براموش (۸) در پیش انجام در طریق روابط بیاینده اجزای انستیتو، اظهار داشته است که تغییرات غیرانتزی مدل در این پرواز به‌طور معمول توانایی داشته است. برای این، تاکنون نتایج محققان هرا را می‌توان از طریق غیرانتزی‌های انستیتو به‌صورت محیطی کریست شوند، غیرانتزی نمود. لذا مطالعه کننده انستیتو اجزای انستیتو مدل دانه، شامل تعادل دانه در رنفی در تعداد رنفی دانه، که دردیدن وزن ۵۰۲۰ و trusted توجه دارد، پذیرش و به بهترین جواب‌ها در بهبود انستیتو دانه مورد توجه پژوهشگران مختلف بوده است.

بنا بر این بررسی به منظور دست‌یابی به اهداف زیر جامعه

۱. General Combining Ability (GCA)
۲. Specific Combining Ability (SCA)

۳. حاصل مخلوطی از ۷۵ درصد کارکنان و ۲۵ درصد تیمار به نسبت ۱:۱
نتایج و بحث

میانگین مربعات SCA و GCA برای کلیه صفات مورد مطالعه معنی‌دار بوده است (جدول 1). با این حال، با توجه به عدم تعداد کافی از تعداد کسانی که استناد به تعادل و پایداری داده‌ها دارند، برای کلیه صفات، با استفاده از تعداد ردیف داده‌ها، می‌توان آن است که اثر شرایط خصوصیتی و گیاهان ناشی از درخت‌های مختلف پایین است. نتایج مطالعات پال و پردازش (19) حاکی از آن است که برای صفات عملکرد داده‌ها، تعادل در دانشجویان و طول بالاعلی، اثرات گیاهان ناشی از اهمیت تغییرات طبیعی در نیازهای وردی و پرورش. تعادل در روش با توجه به نتایج مشابهی که برای وزن 100 دانه گزارش نموده‌اند، مطالعات اسپانسری (21) نیز حاکی از اهمیت تغییرات گیاهان ناشی از دلایل هوا و باران می‌باشد. با وجود این، در بررسی از مطالب (30) این اهمیت افزایش یافته در کلتر عملکرد دانشجویان تأکید شده است.

معنی‌دار بودن نسبت میانگین مربعات تغییر عمومی به میانگین مربعات تغییر خصوصی، با وجود درجه غلیبی کمتر از یک برای تعادل و پایداری، نشان دهنده اهمیت پیشین گیاهان در کنترل کیفیت این صفت می‌باشد. لذا برای اصلاحی ساختار برگ‌هایی برای بهبود صفت در لایحه‌های ابتدا رودی ساده، از کارایی بالایی تغییرات باران و خواهش‌های از دیگر مطالب (30) نیز نتایج مشابهی گزارش شده است.

گرفت. در مراحل پنج تا یک شش پرگی، معادل 200 کیلوگرم اورد (42 درصد ازت) در هفته 7ن در بین رده‌های کاشتی بخش شده، و پلاستیک آبیاری انجام شده. در موارد لزوم و جهت علف‌های زیر، با استفاده از طریقه 1 آزمون شرایط، با کمک مطابقه‌ای از سرم لیسبن‌دین در هزار محلول، در پای طول انتخاب‌های گیاهان با خلاق آتاق، از سرموم کامپ دیازونین، به ترتیب با نسبتاً 15/1 دو در هزار استفاده شد. پس از برداشت بلوکهای 100 بوته از گونه میانه هرکنت با رعایت اثرات حساسی، عملکرد دانشجویی، اجزای عملکرد، شامل تعادل دانشجویان در روش، تعادل خونی دانشجویان، طول بالای و درصد چربی بیلا، با استفاده از میانگین یک بوته‌ها محاسبه‌گردد. تجزیه واریانس اولیه در قابل طرح‌الاگ انجام شد و رابط خصوصیاتی که سرموم نسبت نسبتاً کمتر از یک بود پس از تصحیح برای اثر بلوک ناقص، داده‌ها پس از خورد زنتوشی‌ها اضافی، به صورت طرح بلوکی‌های کامالی نصداد با دو تکرار تجزیه شدند، و پارامترهای زننده‌ی کاهش در طرح دایال‌های روش گروه‌گر، و نسل مختلط (9) از بروز‌های سنگین در SCA و GCA، دچار ایجاد و میانگین‌های مربوطه در SCA و GCA در آزمون‌های اثرات تغییرات آزمایش‌های شدن و برای آزمون‌های اثرات طبق Var(\(S_{ij}\)) و Var(\(g_{i}\)) از آزمون‌های زیر استفاده گردید:

\[Var(\(g_{i}\)) = \frac{P - 1}{P(P + \gamma)} \]

\[Var(\(S_{ij}\)) = \frac{{P \gamma} + P + \gamma}{(P + \gamma)(P + \gamma)} \] (i,j)

روش‌های حداکثر اختلاف معنی‌دار (LSD) برای آزمون معنی‌دار برودن اثرات تغییرات مقایسه شده است. در تمامی فرمول‌های فوق، P تعداد والد و \(P^{3}\) برای واریانس خطی تخمین بر تعداد نتکار می‌باشد.

1. Agrotis segetum Schiff 2. l. hexachloro Cyclohexane
3. O. (6-ethoxy - 2-wthyl - 4-Primidiny)-O, O dimethyl Phosphomithioate
4. O, O-diehyl- (2 isopropyl - 4-methyl - 6-pyrimidy) phosphorothioate

97
جدول 1. تجزیه واریانس عملکرد دانه و صفات وایست در لایه‌های ایبتر در طول‌های نازگی

| میانگین مربوط به | منابع تغییر درجه آزادی | عملکرد دانه | تعداد دانه | طول بالال | طول پالال | وزن دانه | دانه بالال | بی‌دغدغه رنگ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تلیاقی</td>
<td>20</td>
<td>22/82</td>
<td>16/82</td>
<td>5/82</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
</tr>
<tr>
<td>GCA</td>
<td>5</td>
<td>12/72</td>
<td>3/52</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
<td>16/82</td>
</tr>
<tr>
<td>15</td>
<td>12/72</td>
<td>3/52</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
<td>16/82</td>
<td>5/42</td>
</tr>
<tr>
<td>خطا</td>
<td>20</td>
<td>22/82</td>
<td>16/82</td>
<td>5/82</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
</tr>
<tr>
<td>MSGCA/MSGCA</td>
<td>5</td>
<td>12/72</td>
<td>3/52</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
<td>16/82</td>
</tr>
<tr>
<td>15</td>
<td>12/72</td>
<td>3/52</td>
<td>5/42</td>
<td>42/22</td>
<td>16/82</td>
<td>23/22</td>
<td>16/82</td>
<td>5/42</td>
</tr>
</tbody>
</table>

احتمال بک درصد مدنی دانه دردگیر. تلیاقی های 185 و 186 در قیاس با سایر تلیاقی های هتروژیس بالاتری برخورد بدند. با وجود این، به عنوان آنکه هتروژیس نسبت به واند برتر و ترکیب پذیری خصوصی برخی میانگین تلیاقی ها محاسبه گردید. لذا روند تغییرات آنها کاملاً مشابه نیست و به نظر می‌رسد که برای این صفت ترکیب پذیری خصوصی معیار دقتی تری محسوب می‌گردد. زیرا تلیاقی هایی که از بیشترین ترکیب پذیری خصوصی برخورد با دندان، بیشترین عملکرد دانه و نیز داشتند.

تعداد دانه در رنگ

میانگین تعداد دانه در رنگ در دندان لایه‌های ایبتر از 33 تا 35 و در دوره‌های حاصل از 36 تا 38 تغییر بود (جدول 2). دامنه

تغییرات ترکیب پذیری عضوی در لایه‌های ایبتر از 1/20 تا 20/199 تغییر داشت (جدول 3). به طوری که لایه شیب با داشتن ترکیب پذیری عضوی مثبت و مینی می‌شود یکی پیش‌بینی خصوصی بود که در دندان و نیز داشته‌شد. ترکیب پذیری خصوصی و هتروژیس (جدول 4) در اغلب تلیاقی‌ها در جهت مثبت تجلی یافت. این امر نماینده بود که بیشتر افراد با تلیاقی‌های زنده در بازار افزایش تعداد دانه در دندان در دندان، در دوره حاصل می‌پوشد. از آن جایی که این صفت به عنوان یکی از اجزای اصلی عملکرد
جدول ۲. ترکیب پذیری های عمومی عامل‌کرده و صفات وابسته در شش لاین اینترودر و ۱۵ دورگ های حاصل از تلاقی های دای آلول آنها

<table>
<thead>
<tr>
<th>صفات</th>
<th>عملاکرده دانه</th>
<th>تعداد رای دانه در طول بلال (گرم در بونه)</th>
<th>رشد</th>
<th>دانه (سانتی متر)</th>
<th>طول بلال</th>
<th>ونز دانه</th>
<th>وزن ۱۰۰ دانه</th>
<th>دوصد چوب</th>
<th>والد</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۶/۰۷</td>
<td>۱۶/۸۷</td>
<td>۱۲/۸۰</td>
<td>۱۸/۳۰</td>
<td>۲۹/۷۰</td>
<td>۴۸/۵۱</td>
<td>۳/۰۴</td>
<td>L۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۱</td>
<td>۱۷/۰۵</td>
<td>۱۵/۶۵</td>
<td>۲۴/۲۰</td>
<td>۳۱/۵۴</td>
<td>۶۹/۶۸</td>
<td>۳/۰۴</td>
<td>L۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷/۰۵</td>
<td>۱۷/۵۶</td>
<td>۱۷/۵۶</td>
<td>۱۹/۴۰</td>
<td>۲۸/۰۰</td>
<td>۳۱/۵۴</td>
<td>۳/۰۴</td>
<td>L۹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳. ترکیب پذیری های عمومی عملاکرده و صفات وابسته در شش لاين اینترودر

<table>
<thead>
<tr>
<th>ترکیب پذیری عمومی</th>
<th>والد</th>
<th>عملاکرده دانه</th>
<th>تعداد رای دانه در طول بلال (گرم در بونه)</th>
<th>رشد</th>
<th>دانه (سانتی متر)</th>
<th>طول بلال</th>
<th>ونز دانه</th>
<th>وزن ۱۰۰ دانه</th>
<th>دوصد چوب</th>
<th>والد</th>
<th>تلاقی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲۰/۷۴</td>
<td>۱۶/۰۲</td>
<td>۱۱/۰۰</td>
<td>۱۶/۴۰</td>
<td>۲۵/۲۰</td>
<td>۴۲/۵۰</td>
<td>۲/۸۷</td>
<td>L۱</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S.E (g)
حجم و فاصله کشواری و منابع طبیعی/جلد چهارم/نشر آدم /تاسیس 1379

تعداد رده‌های ترکیب یکیی عمومی تعداد رده‌های تعداد دانه‌ها در 7/46 تا 7/36

منشی‌بود (جدول 2) بر طوری که لاپتی ها و نیز از ترکیب یکیی عمومی مثبت مثبت و منفی دارای برای این صفت برخوردار بودند که این امر شان دهنده بود که این صفت در لاپتی ها و بالا بردن کلاسی انتخاب به منظور افزایش آن می‌باشد. میانگین این صفت در لاپتی ها از 1/64 تا 19/69 و در دوریا صاحب از 18/47 تا 21/33 متنگیر بود (جدول 2). ترکیب یکیی خصوصی و هتروژنی در تلاقی‌ها به صورت مثبت و منفی تجربه یافتند (جدول 2). به ترتیب دلیل بر اهمیت اثر یکیی عمومی زنده در کاهش و افزایش تعداد رده دانه در دوریا مطالعه بود. با توجه به این که اجهزای اصلی عملا مدار اثر حیراتی می‌باشند، لذا افزایش یکیی از آنها (اعداد دانه در رده) ممکن است در کاهش دیگری (اعداد رده دانه) مؤثر باشد. در صورتی که توانایی شرایط خاصی را تعیین نموده که بر می‌آیند افزایش تعداد رده دانه کاهش چشمگیری را در تعداد دانه در رده به دنبال نداشته باشد، افزایش تعداد رده دانه موجب افزایش عملکرد دانه خواهد شد. لذا در صورتی که افزایش این صفت منظور باشد دوریا و 1/65 تا 1/853 با برخورداری از ترکیب یکیی خصوصی و هتروژنی بالا در اولویت قرار خواهند داشت.

طول دانه:
طول دانه در لاپتی ها از 6/27 تا 7/28 میلی متر و در دوریا صاحب از 6/27 تا 7/05 میلی متر متنگیر بود (جدول 3). اندازه تغییرات ترکیب یکیی عمومی لاپتی ها از نظر 25/20 تا 25/00 گسترش داشت (جدول 2) به طوری که لاپتی ها از ترکیب یکیی عمومی مثبت و منفی دارای برای این صفت برخوردار بوده که این امر شان دهنده بود که این صفت در لاپتی ها و بالا بردن کلاسی انتخاب به منظور افزایش آن می‌باشد. میانگین این صفت در لاپتی ها از 6/27 تا 7/053 با برخورداری از ترکیب یکیی خصوصی و هتروژنی بالا در اولویت قرار می‌گرفتند.

طول بالان:

وزن 100 دانه:
<table>
<thead>
<tr>
<th>سال</th>
<th>ماه</th>
<th>سهیل</th>
<th>یکم</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنجم</th>
<th>ششم</th>
<th>یکم</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنجم</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>98</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>97</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

توجه: تاریخ‌ها به صورت تقویم هجری شمسی و تعیین شده‌اند.
نتیجه‌گیری

بر اساس دو درجه غلیبی بیشتر از یک، و معنی‌دار نبودن نسبت میانگین مرغوب‌ترین ترکب پذیری عمومی به ترکب پذیری خصوصی، برای نماشگاه‌های مرغ مطابق به استنتاج تعداد دو نفری دانه می‌باشد. این منابع از ترکب اثر غیرانتزایی زنها برای خصوصیات منجر به این است که هر چه در نیاز اصلی به منظور انتزایی طول بالا تشکیل می‌شود در انتزایی عمکرده دانه خواهد داشت. در نهایت ۴۸۵ و ۵۸۳ با برخورداری از ترکب پذیری خصوصی مشت با سزایی این صفت در زمیر برترین دانه‌ها محسوب می‌گردد. میزان هتروژنیس در تمامی دانه‌ها در جهت مشت معنی‌دار بوده که تأکید مهمی بر اهمیت اثر غیرانتزایی زنها در دکترال ژنتیکی طول بالا است. در نهایت ۴۸۵ با برخورداری از بالاترین ترکب پذیری خصوصی و پیشرفت‌های مصرف هتروژنیس برای طول بالا به عنوان برترین دانه از نظر اندازه‌گیری طول بالا محسوب می‌گردد.

درصد بدنش بالای دانه

درصد بدنش بالای دانه برای یکی از اصلی‌ترین عوامل حاصل از آنها به ترتیب از ۴۳/۰۵ تا ۱۹/۷۱۱۹ در سه دو و دو نیم میلی‌نگا درجه مشت، برای تعداد دو نفره دانه در جهت منفی تجییب یافته. در این امر نماینگر ویژگی چربی‌های اصلی اصلی عملکرد می‌باشد. به طوری که در این مطالعه تعداد دانه در دو و دو نیم میلی‌نگا نسبت به این نسبت به توجه عملکرد دانه در صورتی که می‌باشد. این نسبت به توجه عملکرد دانه به طور همزمان مورد نظر باشد، تحقیق بیشتری به منظور حصول شامل مناسب بررسی‌های مکرر و درصد هتروژنیس در اغلب دانه‌ها در جهت منفی معنی‌دار بوده که دلیل بر اهمیت اثر غیرانتزایی زنها در کاهش درصد جواب بالا است. در نهایت ۴۸۵ با برخورداری از ترکب پذیری خصوصی و هتروژنیس بالا و منفی (جدول ۴) برای کاهش درصد جواب بالا در اولویت قرار دارند.

متابع مورد استفاده