ویژگی‌های جذب سطحی روی در برخی از خاک‌های زیرکشت برنج استان فارس

چکیده
از جهت که بازیابی ظاهری روی در خاک‌های معدنی (غرق‌دار و غیر غرق‌داز) ناجی می‌باشد، بررسی دقیق فرآیندهایی که باعث ایجاد روی در خاک می‌شود اهمیت ویژه‌ای دارد. لذا در یک مطالعه آزمایش‌گاهی، ویژگی‌های جذب سطحی روی در برخی خاک‌های زیرکشت برنج، با خصوصیات فیزیکی و شیمیایی متفاوت مورد بررسی قرار گرفت. بررسی‌ها نشان داد که تفاوت در ظرفیت جذب نسبت به مواد سطحی خاک‌های فرآیندی نیاز به مطالعه تعمیق‌تری در فرآیندهای زیرکشت در ریز می‌باشد. نتایج مطالعه نشان می‌دهد که تأثیرات این تفاوت‌ها روی دهی روند هموگلیت خاک نسبت به کلیسی بسیار قابل توجهی است. جزئیات بیشتر این موضوع در متن فصل دوم مقاله باشگاه می‌باشد.

تلاش‌های متوقف؛ حسن حیاتی نیا و تجیب علی کریمیان

واژه‌های کلیدی: هم‌ماده‌ای لانگ‌موری، هم‌ماده‌ای لانگ‌موری، خاک‌های زیرکشت برنج، ظرفیت جذب، کربنات کلسیم معادال، ظرفیت تبادل کاتیونی

مقیده

کمبود روش‌هایی که از شیوه‌های زیرکشت در خاک‌های آمیخته و مخلوط شده استفاده می‌کند.

کم‌سرعت کاتیونی در خاک‌های آمیخته، و مخلوط شده است.

خاک‌های زیرکشت برنج به حساب می‌آید. نتایج اصلی آن کم

1. استاد حاکم‌نژاد، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد حاکم‌نژاد، دانشکده کشاورزی، دانشگاه شیراز

179
در اراضی غریقی (شالیزارها)، این مقدار از دو رصد تجاوز نمی‌کند. این موضوع معقول و نسبتاً بسیار خاص‌های این بزرگ‌زی‌ها در ارتفاع‌های ۱۱ و ۱۲ این حال، قاری‌نما و کافری‌نما حاصل می‌باشد رای، که این بزرگ‌زی‌ها یکی از جنگ‌های فرودنی و در حالت به سطحی خاص و یا رسوبی در صورت نیزیدن به سطحهای بالاتری کم‌اندازه جامدی و غردیده است. که در مراحل فرودنی (معادله ۴) و لاجن‌واری (معادله ۶) به حساب می‌آید (۲۶ و ۲۷). از هم‌های جنگ‌ب‌یارایی مثلاً نگهداری جنگ‌ب‌یاری در خاک استفاده شده است. هر یک هم‌های رابطه میان جنگ‌ب‌یاری روی و غلظت یونه آن را در مخلوط تعداد شان می‌دهند. تاکنون معمولی‌های مختلفی برای توصیف و بیان رابطه پیشنهاد گردیده است. که در معادله فرودنی (معادله ۶) و لاجن‌واری (معادله ۴) و گرفته شده است:

\[X = kC^3 \]

\[X = -\frac{KbC}{(1+KC)} \]

در این معادله، \(X \) مقدار روی جنگ‌ب‌یاری است (میلی‌گرم در کیلوگرم) خاک، \(C \) غلظت نهایی روی در مخلوط تعداد (میلی‌گرم در لیتر) و \(n \) ۵ و \(b \) ضرایب جنگ‌ب‌یاری است (ریاضی) در این معادله به ممکن شده‌است. هر یک هم‌های رابطه پیشنهاد گردیده است. که در معادله فرودنی (معادله ۶) و لاجن‌واری (معادله ۴) و گرفته شده است:

\[\log X = \log k + \frac{1}{n}\log C \]

\[\frac{C}{X} = \frac{1}{Kb} + \left(\frac{b}{C}\right) \]

نکته شایان توجه است که در این جنگ‌ب‌یاری مثلاً در این ۴، به علت هم‌های فیزیکی دو ثابت آن یعنی
ویژگی‌های جذب سطحی روی در برخی از خاک‌های زیر کشف پر کرده است. فارس

هدف‌های تحقیق حاضر عبارت بود از: ۱) بررسی میزان جذب روی در تعدادی از خاک‌های آمیزه زیر کشت برنج در استان فارس، با اندازه‌گیری از میدان‌های جذب زنده و

لانگ می‌مود، ۲) تعمیم ضرایب جذب سطحی روی در این خاک‌ها، با ارزیابی رابطه بین میزان این ضرایب و بعضی از

ویژگی‌های فیزیکی و شیمیایی خاک‌های تحت مطالعه.

مواد و روش‌ها

خاک‌های مورد استفاده در این تحقیق، از امکان صفر تا ۳۰ سانتی‌متر ارتفاع شلتوک کاری شده است. فارس تجهیز گردید. این خاک‌ها که برنج کشت بوده‌اند، پس از انتقال به آزمایشگاه با آب خشک و سپس از کدو میلی‌مری به هم بسته شده‌اند. بعضی از خصوصیات فیزیکی و شیمیایی، از قبیل تجزیه مکانیکی به روش هیدرومترب (۶) ماده آلی به روش واک و بیلکی (۲۹)، په‌های خیار اشام، تسویه کرارجد، تئودر شیبانی، ظرفیت تبادل کاتیون‌ها به وسیله روش جانشینی کاتیون‌ها با استان سدیم (۸)، کربنات کلسیم معادل به روش خشک گردن با اسید کلسیم‌بردوزک (۲) تعمیم شد. ضمانت مصرف و روی قابل جذب، به ترتیب به وسیله پی برندات سدیم (۲۸) و دی‌تی‌پای (۲۷) از خاک عصاره گیری شده و غلظت آنها به ترتیب با استفاده از دستگاه رگن‌سنجی و جذب انیمی

تعمیم گردید (جدول ۱).

مدارات دو گرم خاک در داخل لوله سانتریفزی به رخت، به آن

۴۰ میلی‌لیتر از محلول‌های روی با هشت خلقش قرار گرفت (۵) ۱۰۰، ۲۰۰، ۵۰۰، ۱۰۰۰ و ۲۰۰۰ میلی‌گرم در لیتر) به صورت سولفات روی و دو قطره نتیجه (۶) منظور جلوگیری از ریز جانداران، اضافه شد. برای ثابت نگه‌داشتن تغییر قدرت

یونی، محلول‌های روی در کلسیم کلرید ۰/۱ مولار تهیه گردید. همین‌طور به مدت ۳۰ دقیقه در به همزمان مکانیکی تکان داده شد، و پس از دفع می‌سکو در ظرف ۱۵ دقیقه سانتی‌گراد مجددا به مدت ۳۰ دقیقه دیگر به همزمان شد. پس از آن لوله‌ها به مدت ۱۰ دقیقه در حمام ۹۰ گرم سانتریفزیور و

-۱۲۱/۳+۲\cdot ۶/۵EC R^2=۰.۹۲ [۵]

در این میزان در آزمایشگاه کمیکس (سختی مول بر کیلوگرم خاک) می‌باشد، و به ترتیب ده کمیکس افزایش یافته که شدت می‌شود. همان طور که ۱ نشان می‌دهد، میدان‌های جذب زنده و لانگ می‌مود، در این تحقیق به صورت بکیس‌های اندازه‌گیری شده‌اند. تعداد کاتیون‌ها، تعداد روی، و دو قطره نتیجه (۶) منظور جلوگیری از ریز جانداران، اضافه شد. برای ثابت نگه‌داشتن تغییر قدرت یونی، محلول‌های روی در کلسیم کلرید ۰/۱ مولار تهیه گردید. همین‌طور به مدت ۳۰ دقیقه در به همزمان مکانیکی تکان داده شد، و پس از دفع می‌سکو در ظرف ۱۵ دقیقه سانتی‌گراد مجددا به مدت ۳۰ دقیقه دیگر به همزمان شد. پس از آن لوله‌ها به مدت ۱۰ دقیقه در حمام ۹۰ گرم سانتریفزیور و

-۱۲۱/۳+۲\cdot ۶/۵EC R^2=۰.۹۲ [۵]

در این میزان در آزمایشگاه کمیکس (سختی مول بر کیلوگرم خاک) می‌باشد، و به ترتیب ده کمیکس افزایش یافته که شدت می‌شود. همان طور که ۱ نشان می‌دهد، میدان‌های جذب زنده و لانگ می‌مود، در این تحقیق به صورت بکیس‌های اندازه‌گیری شده‌اند. تعداد کاتیون‌ها، تعداد روی، و دو قطره نتیجه (۶) منظور جلوگیری از ریز جانداران، اضافه شد. برای ثابت نگه‌داشتن تغییر قدرت یونی، محلول‌های روی در کلسیم کلرید ۰/۱ مولار تهیه گردید. همین‌طور به مدت ۳۰ دقیقه در به همزمان مکانیکی تکان داده شد، و پس از دفع می‌سکو در ظرف ۱۵ دقیقه سانتی‌گراد مجددا به مدت ۳۰ دقیقه دیگر به همزمان شد. پس از آن لوله‌ها به مدت ۱۰ دقیقه در حمام ۹۰ گرم سانتریفزیور و
سائل نشان دهنده روند دمای محلول گرد و غلظت در نتایج ۱ تا ۸ خاکهای زیرکشت برجی استان فارس
جدول 2: ضرایب مربوط به پراش داده‌های جذب روی

<table>
<thead>
<tr>
<th>ضریب تبیین</th>
<th>شماره خاک</th>
<th>k</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98**</td>
<td>1</td>
<td>497</td>
<td>0.98</td>
</tr>
<tr>
<td>0.96*</td>
<td>2</td>
<td>491</td>
<td>0.96</td>
</tr>
<tr>
<td>0.99**</td>
<td>3</td>
<td>472</td>
<td>0.99</td>
</tr>
<tr>
<td>0.97*</td>
<td>4</td>
<td>411</td>
<td>0.97</td>
</tr>
<tr>
<td>0.99*</td>
<td>5</td>
<td>650</td>
<td>0.99</td>
</tr>
<tr>
<td>0.99*</td>
<td>6</td>
<td>1004</td>
<td>0.99</td>
</tr>
<tr>
<td>0.97*</td>
<td>7</td>
<td>800</td>
<td>0.97</td>
</tr>
<tr>
<td>0.98*</td>
<td>8</td>
<td>928</td>
<td>0.98</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی‌دار در سطح 1% و 5% درصد

سطحی با معادله فرودنیجیک همگنی داشته و به صورت یک قسمتی هستند. نتایج مشابهی توسط پژوهشگران دیگر (27 و 28) نیز گزارش شده است. ولی درجه (1) با پراش داده‌های جذب سطحی روی دقت نمونه خاک آهکی غرفه‌بندی با معادله فرودنیجیک، به دو قسمتی را گزارش نموده‌اند.

به نظر نمی‌رسد که نکات سطحی روی را در چند نمونه از خاک‌های هندوستان، با بافت‌های مختلف صورت پیگیری گردد.

در این تحقیق مقدار جذب شده در تمامی نمونه خاک‌ها به‌طور کل مطابقت دارد. در نمونه‌های خاک‌های کاتانویسی (و)، 0.75 تخمین، در حالی که برای نمونه‌های سرسبز 0.75 تخمین. در این نمونه، با معنی‌دار تفاوت بین تحقیق خودکار با تحقیق‌های قبل، قادرنده روز را ایمن نموده‌اند.

درجه (1) برای جذب سطحی روی در تعدادی از خاک‌های آهکی غرفه‌بندی زیر درصد است. در این نمونه، به ترتیب ضریب مناسب با انرژی پرونده (Kp) و به ترتیب گرنگی محصول اول (Kc) به مراتب بزرگتر از تابع مناسب با برآورد پرونده در محصول دوم می‌باشد (جدول 3). این نتایج با توجه به جذب سطحی به نظر نمی‌رسد که نکات سطحی روی را در چند نمونه از خاک‌های هندوستان، با بافت‌های مختلف صورت پیگیری گردد.

در این تحقیق هر چند پراش داده‌های جذب سطحی روی با هم‌دماهای جذب نگاری هم‌مقداری نشست، اما مشاهده شد که هم‌دماهایی در سطحی (معادله 6) بهتر می‌توانند این داده‌ها را توصیف نماید:

\[X = \left[(Kb \cdot C / (1 + Kc \cdot C)) + (Kb \cdot C / (1 + Kc \cdot C)) \right] \]

در معادله، \(Kp \) و \(Kc \) به ترتیب ضریب مناسب با انرژی پرونده (Kp) و به ترتیب گرنگی محصول اول (Kc) به مراتب بزرگتر از تابع مناسب با برآورد پرونده در محصول دوم می‌باشد.
شکل ۲. برآورد داده‌ها با نمودارهای ریاضی جذب لاغری مویر در خاک‌های ۱ تا ۴

الف: غلظت محلول تعادل کمتر از پنج میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از پنج میلی‌گرم در لیتر

الف
ب

غلظت نیش روی در محلول تعادل (میلی‌گرم در لیتر)
شکل ۳. پردازش داده‌ها با مدل‌های دومیکشی جذب سطحی لانگ مویر در خاک‌های ۸-۵ تا ۸-
الف: غلظت محلول تعادل کمتر از نهایت میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از نهایت میلی‌گرم در لیتر.
جدول 3 تغییر مقیاس به پرازش داده‌های جذب روي با حمایت لانگ مورر در سطحی

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>R^T_2</th>
<th>R^T_1</th>
<th>K_3/K_1</th>
<th>b_3/b_1</th>
<th>K_3</th>
<th>K_1</th>
<th>b_3</th>
<th>b_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/94</td>
<td>0/94</td>
<td>0/27</td>
<td>0/60</td>
<td>0/64</td>
<td>0/64</td>
<td>0/52</td>
<td>0/52</td>
</tr>
<tr>
<td>2</td>
<td>0/99</td>
<td>0/99</td>
<td>0/24</td>
<td>0/42</td>
<td>0/39</td>
<td>0/39</td>
<td>0/57</td>
<td>0/57</td>
</tr>
<tr>
<td>3</td>
<td>0/99</td>
<td>0/99</td>
<td>0/23</td>
<td>0/45</td>
<td>0/29</td>
<td>0/29</td>
<td>0/41</td>
<td>0/41</td>
</tr>
<tr>
<td>4</td>
<td>0/88</td>
<td>0/88</td>
<td>0/24</td>
<td>0/46</td>
<td>0/56</td>
<td>0/56</td>
<td>0/39</td>
<td>0/39</td>
</tr>
<tr>
<td>5</td>
<td>0/99</td>
<td>0/99</td>
<td>0/24</td>
<td>0/46</td>
<td>0/72</td>
<td>0/72</td>
<td>0/31</td>
<td>0/31</td>
</tr>
<tr>
<td>6</td>
<td>0/99</td>
<td>0/99</td>
<td>0/24</td>
<td>0/46</td>
<td>0/67</td>
<td>0/67</td>
<td>0/39</td>
<td>0/39</td>
</tr>
<tr>
<td>7</td>
<td>0/99</td>
<td>0/99</td>
<td>0/24</td>
<td>0/46</td>
<td>0/29</td>
<td>0/29</td>
<td>0/57</td>
<td>0/57</td>
</tr>
<tr>
<td>8</td>
<td>0/99</td>
<td>0/99</td>
<td>0/24</td>
<td>0/46</td>
<td>0/14</td>
<td>0/14</td>
<td>0/20</td>
<td>0/20</td>
</tr>
</tbody>
</table>

سطحی روي در تعادل در محیط خاکی به کمک لانگ مورر (سیستم کلیی) به ترتیب در غلظت‌های کم و زیاد روي در محلول تعادل

K_3 و K_1 ضریب نیبی تصادفی با انرژی پایداری به ترتیب در غلظت‌های کم و زیاد روي در محلول تعادل

R^T_2 و R^T_1 ضریب نیبی متعادل‌ها به ترتیب در غلظت‌های کم و زیاد روي در محلول تعادل

منبع: در سلطه دیک درصد

در بخش پایین منحنی هم‌دما در خاک‌های آبی و سبز، با زاید شدن پ- خاک خاک افزایش می‌یابد. بارو (2) نیز افزایش نگهداری روي را با زاید شدن پ- خاک خاک در دمای مختلف گزارش کرده است.

اسپوزیتو (32) معقید است نبایستی از پرازش داده‌های تجربی هم‌دما جذب لانگ مورر برای تعیین مکانیسم جذب استفاده نمود. وزیرا می‌توان از طریق ریاضی ثابت کرده که جمع

دو بخش هم‌دما لانگ مورر و چهار ضریب آن با همدیا هم‌دما به صورت (1) قابل پرازش است. با این وجود، نخست

ظرفی زیا در حالیکه، پروپتologies متعادلی از هم‌دما جذب لانگ مورر به منظور تعیین مکانیسم جذب عنصر غذایی، از

جمله روي استفاده کرده‌اند.

پرای کسب اطلاع بیشتر در مورد مکانیسم نگهداری روی در

خاک‌های مورد آزمایش در این تحقیق، و تأثیر یوگاه‌ی خاک

بر جذب سطحی این عنصر، بین هم‌دماهای لانگ مورر (جدول 3) و خصوصیات خاک (جدول 1) مورد بررسی

است. نتایج مشابهی به وسیله دان و شبکلا (10) و پرلاس و

ساراکیم (32) گزارش شده است. اینگاه یا راجا (13) ملاحظه کرده‌اند خاک جذب سنگ به مقدار کمتری از پایینتر قرار می‌گیرد.

وی زاید بودن ضریب انرژی پایینی در این بخش را با جذب روي توسط ماده آلی خاک مرتب می‌داند. بارو و همیشان (5)

در بررسی جذب سطحی روی در هشته خاک آلی فلو و ورتی

سول مشاهده کرده‌اند به هم‌دماهای جذب در این خاک‌ها با

مداده لانگ مورر متناسب به شکل خاصی است. به همین

حذافک جذب در خاک‌های مختلف متفاوت است که ناشی از

اختلاف پ- خاک این خاک‌ها می‌باشد. کیفیت و معاوضه‌بان

یا مداده لانگ مورر همان‌گونه داشته و به صورت خصی

روی با مداده لانگ مورر همان‌گونه داشته و به صورت خظی

است. این مطالعه مشابهی به وسیله دان و شبکلا (10) و پرلاس و

ساراکیم (32) گزارش شده است. اینگاه یا راجا (13) ملاحظه

کرده‌اند خاک جذب سنگ به مقدار کمتری از پایینتر قرار می‌گیرد.

1. L-curve isotherm
ببخش اول منحني (b(0))، با هر یک از ویژگی‌های خاک، همبستگی معنی‌داری دارد به جز نما. حالت آنکه ضریب تبیین معنی‌داری مقدار حداکثر جذب روى در فاصله دوم منحني (b(1)، با چندین از خاصیت‌های خاک ملاحظه گردید:

\[b_2 = 0.0150 \pm 0.50^a \]

\[b_3 = 0.0410 \pm 0.075^a \]

\[b_4 = 0.0112 \pm 0.062^a \]

\[b_5 = 0.033 \pm 0.063^a \]

در این مدل معادل (Clay, CEC) به ترتیب درصد رس و P به ثابت می‌گیرند. شرایط کلیسی معادل (1) و (2) و کرومیکس (3) و غلظت فسفر قابل استفاده بومی خاک (60 میلی‌گرم در کیلوگرم خاک) می‌باشد. شرایط CEC، بالا برای شرایط عرضه است. از طرفی در حداکثر کادم از مدل معادل (7) هر متغیر مستقل دیگر سبب تغییر معنی‌دار ضریب تبیین نگردید.

حداکثر جذب روى در بخش دوم (b(1)) با رس مثبت همبستگی معنی‌دار دارد. نتایج مشابه (توسط درجه (1)) و کرومیکس (2) و غلظت فسفر قابل استفاده بومی خاک (60 میلی‌گرم در کیلوگرم خاک) می‌باشد. شرایط CEC، بالا برای شرایط عرضه است. از طرفی در حداکثر کادم از مدل معادل (7) هر متغیر مستقل دیگر سبب تغییر معنی‌دار ضریب تبیین نگردید.

مورد استفاده در این تحقیق، مقدار فسفر بومی قابل استفاده گیاه، رس، ظرفیت نیل پانل کاتیونی و کربنات کلسیم تحت میزان این دو بان‌ها، در این بخش‌ها، نوع خاک، نوع ۱-۲ بردار (درصد کلیسی معادل (2) و (3) می‌باشد. در این بخش‌ها، نوع خاک به دلیل فاصله بین دو کربنات کلسیم معادل، معمولاً به دلیل رطوبت بودن اندازه ذرات کربنات شیءی، که سبب کاهش فضه جذب کننده روی شده است.

از آن جا که در نگه‌داشت و ابزار روی در خاک‌های آمریکی مورد استفاده در این تحقیق، مقدار فسفر بومی قابل استفاده گیاه، رس، ظرفیت نیل پانل کاتیونی و کربنات کلسیم تحت میزان این دو بان‌ها، در این بخش‌ها، نوع خاک، نوع ۱-۲ بردار (درصد کلیسی معادل (2) و (3) می‌باشد. در این بخش‌ها، نوع خاک به دلیل رطوبت بین دو کربنات کلسیم معادل، معمولاً به دلیل رطوبت بودن اندازه ذرات کربنات شیءی، که سبب کاهش فضه جذب کننده روی شده است.

بعضی از بازارهای بازاریابی، روش‌های مختلفی را برای تهیه سیاله‌های خاک‌های آمریکی، در این بخش‌ها، نوع خاک به دلیل رطوبت بین دو کربنات کلسیم معادل، معمولاً به دلیل رطوبت بودن اندازه ذرات کربنات شیءی، که سبب کاهش فضه جذب کننده روی شده است.

1. B. E. T.
نیست، مصرف مواد آلی و یا مواد به‌هاسازی غنی شده با روی

تو خیال می‌شود:

1. کاهش پ - هاش ریزوسفر (خاک ریشه) با مصرف مواد

اسید ساز

2. استفاده از گونه‌ها و ارگانیک یا کاراکتریک که با تراوه‌ها می‌تواند

یا مواد کلیتی کننده سبب انزایی خلال‌یاری ریزه بروی و مصرفی

می‌شود.

3. از آن جا که کاربرد

به عمل جرات می‌بینه و صرفه Zn EDTA

متابع مورد استفاده

1. دوچرخه زده. ۳۶۸۸. ارزیابی و ضعیت سطحی قابل استفاده‌گیاه به روش‌های آزمایشگاهی و گل‌خانه‌ای در خاک‌های منطقه زیر سد درودزن

استان فارس. پایان نامه کارشناسی ارشدی دانشکده کشاورزی دانشگاه شیراز، شیراز.

Soil Analysis. Part II, Am. Soc. Agron., Madison, WI.

35: 48-54.

Analysis. Part II, Am. Soc. Agron., Madison, WI.

Mortvedt et al. (Eds.), Micronutrients in Agriculture. Soil Sci. Soc. Am. Inc., Madison, WI.

13. Iyengar, B. R. V. and M. E. Raja. 1983. Zinc adsorption as related to its availability in some soils of

1. Zn efficient