پاسخ سویا به کاربرد آهن و نسفر در یک خاک آمکی

محمدرضا چاکرالحسینی، عبدالرضا رونقی، منوچهر مفتون و نجف‌علی کریمیان

چکیده

قابلیت استفاده آهن در خاک‌های آمکی ایران به دلیل فراوانی کلسیم کربناته و ب-هاش زیاد، کم است. ممکن است مصرف بیش از نیاز کودهای نسفدار می‌تواند به آب‌نگاری کلسیم کربنیک و تأمین آن در خاک باعث افزایش تولید [Glycine max (L.) Merrill] گیاه‌های نیازمند آهن گردد. نسفر نیز به همراهی لیزری و گرد و غبار در افزایش مصرف آهن در خاک می‌تواند کمک کند. در این مطالعه با استفاده از طرح کامل تصادفی به چهار ترکیب گیاهان به سه سطح فرس (0، 0.5 و 1 میلی‌گرم در کیلوگرم از موجب گردش در افزایش خاصیت از آهن به سیستم گیاهی با نسبت فاکتوریل (9×3) سطح آهن و سطح فرس در شرایط طبیعی در بخش‌های گیاهی مختلف بالا و پایین گیاه کاهش گرفت. نتایج نشان داد که کاربرد نسفر می‌تواند به بهبود درآورنده‌ای در پرداختن آهن در خاک کمک کند. رشد کردن Fine-foamy، carbonatic، thermic، Typic، Calixerepts هشته بهبود یافت. فرمولی: \(P>0.05 \) وزن خشک تخمین داده شد که کاربرد نسف در سطح 0.5 میلی‌گرم در کیلوگرم سبب افزایش می‌شود. به‌طور کلی کاربرد آهن به‌صورت بهبودی‌زا می‌تواند به بهبود درآورنده‌ای در پرداختن آهن در خاک کمک کند.

واژه‌های کلیدی: نسف، آهن، نسبت کوردودی، سویا، کلسیم کربنیک، ب-هاش، غلاف، جذب، ماده خشک

1. به ترتیب دانشجوی سالیک کارشناسی ارشد، دانشیار و استادان خاکشناسی، دانشکده کشاورزی، دانشگاه شیراز

91
مقدمه

در خاک‌های آهکی ایران به علت فراوانی کلیستر کردن و پهلوی زیاد، قابل استفاده آن به کم است. سالانه مقداری چسب‌گیری کودهای افسونی به این گونه خاک‌ها انرژه می‌شود که علاوه بر بهبودی (Euritification) و یا (EU) کمبود آهن، می‌تواند منجر تجمعِ فسفر در اندام‌های گیاهی گردد. در خاک‌هایی که غلظت فسفر قابل استفاده از حد بحرانی کمتر است، گیاهان نسبت به کاربرد کودهای فسفردار پایین تری معاملاتی را انجام می‌دهند (1، 2، 3). سامبا (4) در کشت گلخانه‌ای سوسیا تجربه کرده که یک میلی‌گرمی این ماده به خاک سوسیا سبب افزایش فسفر افزایش باشد. بهترین عملکرد ماده خاک سوسیا با استفاده از 100 گرم مخ آهن گیاه‌های خاک با دست آمد که به ترتیب گیاه‌های برزبری۴۳ و درصد بیشتری به شاهد داشت.

لیندسا و شوپ (5) نشان دادند که در کاهش کمبود آهن، FeDTPA و FeEDDAH مزایایی یافتند از FeEDTA که به بهترین راه و یا یک دیگر در FeDTPA باشد. آنان علت را پدیداری پیشرفت FeEDTA که به ظرفیت چنداهامان در محدوده ب‌هالس ۴ تا ۱۰ ذکر کردند. روی زده و کریم‌پی (6) در FeDTPA انرژه خاک‌های آهکی مورد آزمایش به طور عمدی دارای باعث افزایش غلظت آهن در سوسیا شده، ولی غلظت مخ افسونی دیلی ایجاد اختلالی در انتقال آن از خاک به ریشه و یا از ریشه به قسمت گیاهی گیاه‌های‌دادنی نشان دادند. همگانی و همکاران (7) گزارش کردند که شرایط کاهش FeEDTA در برخی از خاک‌های آهکی جنوب ایران ممکن است منجر به کمبود عناصر کم‌افسردی و سعی در نگهداری و تهیه خاک کاهش فسفر به‌طور کلیستریک خاک کافت از افق سطحی (200 سانتی‌متری) سری چیتگر واقع در شهرستان سروستان استان فارس جمع آوری گردید. این خاک از نوع Calcic Brown soil بوده و متراژی آن در سیستم Fine-loamy, carbonatic, threamic, Typic تاکسونومی خاک می‌باشد. (8). پس از خشک کردن خاک در Calciexerupts می‌باشند. (5) پس از خشک کردن خاک در محض هوا و بی‌بوی از الک دو میلی‌متری، برخی از ویژگی‌های فیزیوپاتی و شیمیایی آن نظریه بانف به روش هیدرومتر (9)، کلیستر کردن مداوم به روش خشک کردن با اسید کلون‌پیک (10)، قابلیت هدایت الکتریکی در عصره‌ای اشاعر با ویتریت سنگ الکتریکی، فسفر قابل استفاده به روش اوولس و همکاران (11، 12) اغلاب کرده که نسبت فسفر به آهن در گیاه‌های نامی‌سازی برای پایان وضعیت آهن در گیاه است. بررسی این نسبت به معنی کمبود آهن با فزونی فسفر و کرومیک آن گیوهای سفید آهن و یا احتمالاً کمبود فسفر می‌باشد.

مواد و روش‌ها

خاک‌هایی که از Forecast می‌باشند، از این نوع محض هوا و بی‌بوی یک دو میلی‌متری، برخی از ویژگی‌های فیزیوپاتی و شیمیایی آن نظریه بانف به روش هیدرومتر (9)، کلیستر کردن مداوم، به روش خشک کردن با اسید کلون‌پیک (10)، قابلیت هدایت الکتریکی در عصره‌ای اشاعر با ویتریت سنگ الکتریکی، فسفر قابل استفاده به روش اوولس و همکاران (11، 12). در نتیجه کردن آهن در گیاه شد. زیاد گزارش کردن کمبود آهن و در نتیجه آهن در گیاه که نسبت فسفر به آهن در گیاه پایین. نمایه مناسبی برای بیان وضعیت آهن در گیاه است. بررسی این نسبت به معنی کمبود آهن با فزونی فسفر و کرومیک آن گیوهای سفید آهن و یا احتمالاً کمبود فسفر می‌باشد.
پاسخ سویا به کاربردهای آن و فسفر در یک خاک امکان‌پذیری است.

(10) و پاسیم عصاره‌گیری شده با استفاده از امونیوم (20) تهیه گردید. ویژگی‌های فیزیکی و شیمیایی
خاک در جدول 1 نشان داده شده است.

ازمانی در شرایط گل‌گیاهان (مانند دمای روز و شب به ترتیب 24 و 14 درجه سانتی‌گراد) به صورت فاکتورول 5 در
چارچوب طرح کاملاً تصادفی با چهار تکرار اجرا شد.
تیمارهای مورد استفاده عبارت بودند از یک سطح فسفر (صفر، 50، 100 و 150 میلی‌گرم فسفر در کیلوگرم خاک) و چهار
سطح آن (صفر، 5/15 و 10 میلی‌گرم آهن در کیلوگرم
خاک). فسفر از منبع پیتیس دهه‌های فسفات (KH₂PO₄) و
آهن از منبع سکستین آهن (FeEDDA) به خاک انواع گردنگی تبخیر و توزیع به مقدار 70 میلی‌گرم پیش از
کاشت و 50 میلی‌گرم فسفر در کیلوگرم خاکی به عنوان سرکر به کلیه تیمارها اضافه شد. هفت بار بذر سویا، رم و پیچلی در عمق 2
ت سانتی‌متری از سطح خاک کاشت شد.

در حذف و هم‌پیوستگی کشت، شمار بودن آن به سه عدد کاهش داده شد. اثرات گل‌گیاه‌ها در طول رشد با آب مفرط تا حد ضریب مزرعه، از طریق توریز قطعات یافت، گرفت.
پس از هشت هفته، گیاهان از محل طوفان (تزدیک سطح خاک) قطع و پس از شستشو در آن در ماهی درجه سانتی‌گراد
نا ثابت شد و وزن نمونه‌ها خشک گردیدند. نمونه‌های گیاهی
از توریزین به وسیله سیب‌برقی بی‌پوستی شد. به منظور تجزیه
گیاه، پک گرم ماده خشک گیاه با پک خشک‌سازی خشک گردید. (Dry ashing)
روی منظوره سیب‌برقی شکسته شده و فشار صورت درآورد و. غلظت آهن
روع می‌گردد. و با استفاده از دستگاه جذب اتمی و غلظت
فسفر به روش راوفی و رایفر (37) تهیه گردید.

پاسخ‌های گیاهی شامل، وزن خشک و نسبت اندام‌هایی گیاه
غلظت آهن، فسفر، روی، مگنزیوم و مس و جذب کل این عنصر
(حاصل ضرب وزن خشک در غلظت عصاره‌گیری) به
وسله روش‌های آماری و تحلیل فارار
MSTATC و با استفاده از
آزمون‌های T جزیی و ارایانش شد، میانگین‌های مربوط به اثر

۹۵
جدول ۱- برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>ویژگی خاک</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ژن (درصد)</td>
<td>۳۰</td>
</tr>
<tr>
<td>سیفت (درصد)</td>
<td>۴۶</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>۲۴</td>
</tr>
<tr>
<td>بات (درصد)</td>
<td>۹/۸</td>
</tr>
<tr>
<td>ب-هاس (سم)</td>
<td>۷/۵</td>
</tr>
<tr>
<td>قابلیت هدایت الکتریکی (دسی‌زیمنس بر متر)</td>
<td>۱</td>
</tr>
<tr>
<td>طرفین تبادل کالیومی (سانتیمول در کیلوگرم خاک)</td>
<td>۱۰/۱</td>
</tr>
<tr>
<td>کربنات کلسیم معادل (درصد)</td>
<td>۵۶/۵</td>
</tr>
<tr>
<td>فسفور محلول در پی کربنات سدیم (میکروگرم در گرم خاک)</td>
<td>۷/۰</td>
</tr>
<tr>
<td>نیتروژن کل (درصد)</td>
<td>۷/۵</td>
</tr>
<tr>
<td>نیتروژن تبادلی (میکروگرم در گرم خاک)</td>
<td>۹/۶</td>
</tr>
<tr>
<td>پتاسیم محلول در استان آمونیوم (میکروگرم در گرم خاک)</td>
<td>۳/۰</td>
</tr>
<tr>
<td>DTPA آهن محلول در (میکروگرم در گرم خاک)</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>DTPA روز محلول در (میکروگرم در گرم خاک)</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>DTPA مغنیس محلول در (میکروگرم در گرم خاک)</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>DTPA مس محلول در (میکروگرم در گرم خاک)</td>
<td>۰/۹۶</td>
</tr>
</tbody>
</table>

غلاظت و جذب کل آهن در سویا شده است. با افزایش فسفور، میانگین غلاظت آهن بطور معنی‌داری نسبت به شاهد کاهش یافته، و کاربرد ۱۵۰ میلی‌گرم فسفور در کیلوگرم خاک باعث بیشترین کاهش در میانگین غلاظت آهن گردید (جدول ۱). دلیل این کاهش را می‌توان به کاهش قابلیت استفاده آهن در خاک در اثر فسفر و کاهش جذب آن تأثیر افزایش فسفر بر انتقال آهن از ریشه به قسمت هواپیم‌ها نسبت داد. باضابط (۱۴) نتیجه گرفتند که کاهش غلاظت آهن در سویا می‌تواند به دلیل تأثیر منفی فسفر بر مکانیسم جذب آهن توسط گیاه مبتنی بر طور کلی کاربرد فسفر سبب کاهش معنی‌دار میانگین کاهش کل آهن نسبت به شاهد شده (جدول ۳).

درصد) در تمام سطوح فسفر بوئنده، والپس و همکاران (۳۱) گزارش کردند که فسفر افزوده شده به خاک، غلاظت فسفر در پنج رقم سیسم را به طور معنی‌داری افزایش داده است. با این حال و اورا (۷) نتیجه گرفتند که با افزایش فسفر قابل استفاده، جذب فسفر توسط سویا افزایش یافته، و این افزایش در خاک‌های با میزان فسفر محلول اولیه کمتر آنها، بیشتر بوده است.

طبق جدول ۳، افزایش سطوح آهن مصرفی سبب افزایش معنی‌دار میانگین غلاظت و جذب کل آهن نسبت به شاهد شده، و بیشترین افزایش با افزودن ۱۰ میلی‌گرم آهن در کیلوگرم خاک ایجاد گردید. رومیزاده و همکاران (۲۹) دریافتند که کاربرد آهن به صورت FeEDDHA سبب افزایش معنی‌دار
جدول ۲: تأثیر سطوح مختلف فسفر و آهن بر وزن خشک اندام هواپی. غلظت و جذب کل فسفر در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح سفدر (میلی‌گرم در کیلو‌گرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلو‌گرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک اندام هواپی (گرم در گلدان)</th>
<th>غلظت فسفر (میکرو‌گرم در گرم)</th>
<th>جذب کل فسفر (میلی‌گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.39 B</td>
<td>0.57 a</td>
<td>0.66 b</td>
</tr>
<tr>
<td>0.37 v</td>
<td>0.53 c</td>
<td>0.62 d</td>
</tr>
<tr>
<td>0.35 c</td>
<td>0.50 e</td>
<td>0.61 f</td>
</tr>
<tr>
<td>0.33 d</td>
<td>0.49 g</td>
<td>0.58 h</td>
</tr>
<tr>
<td>0.31 e</td>
<td>0.48 i</td>
<td>0.56 j</td>
</tr>
<tr>
<td>0.29 f</td>
<td>0.47 k</td>
<td>0.54 l</td>
</tr>
<tr>
<td>0.27 g</td>
<td>0.45 m</td>
<td>0.52 n</td>
</tr>
<tr>
<td>0.25 h</td>
<td>0.43 o</td>
<td>0.50 p</td>
</tr>
<tr>
<td>0.23 i</td>
<td>0.41 q</td>
<td>0.48 r</td>
</tr>
<tr>
<td>0.21 j</td>
<td>0.39 s</td>
<td>0.46 t</td>
</tr>
<tr>
<td>0.19 k</td>
<td>0.37 u</td>
<td>0.43 v</td>
</tr>
<tr>
<td>0.17 l</td>
<td>0.35 w</td>
<td>0.40 x</td>
</tr>
<tr>
<td>0.15 m</td>
<td>0.33 y</td>
<td>0.38 z</td>
</tr>
<tr>
<td>0.13 n</td>
<td>0.31 a</td>
<td>0.36 b</td>
</tr>
<tr>
<td>0.11 o</td>
<td>0.29 c</td>
<td>0.34 d</td>
</tr>
<tr>
<td>0.09 p</td>
<td>0.27 e</td>
<td>0.33 f</td>
</tr>
<tr>
<td>0.07 q</td>
<td>0.25 g</td>
<td>0.30 h</td>
</tr>
<tr>
<td>0.05 r</td>
<td>0.23 i</td>
<td>0.28 j</td>
</tr>
<tr>
<td>0.03 s</td>
<td>0.21 k</td>
<td>0.26 l</td>
</tr>
<tr>
<td>0.01 t</td>
<td>0.19 m</td>
<td>0.24 n</td>
</tr>
<tr>
<td>0.00 u</td>
<td>0.17 a</td>
<td>0.22 b</td>
</tr>
<tr>
<td>0.00 v</td>
<td>0.15 c</td>
<td>0.20 d</td>
</tr>
<tr>
<td>0.00 w</td>
<td>0.13 e</td>
<td>0.18 f</td>
</tr>
<tr>
<td>0.00 x</td>
<td>0.11 g</td>
<td>0.16 h</td>
</tr>
<tr>
<td>0.00 y</td>
<td>0.09 i</td>
<td>0.15 j</td>
</tr>
<tr>
<td>0.00 z</td>
<td>0.07 k</td>
<td>0.13 l</td>
</tr>
</tbody>
</table>

* برای هر یک از پایه‌های کیلی‌گرم، میانگین‌های که در هر رنگ‌یافته در یک حرف کرونگ و یا میانگین‌های که در میان گردید در یک حرف کرونگ مشترک هستند، طبق آزمون دانتی در سطح پنج درصد تفاوت معنی‌داری ندارند.

توجه کردیم که این امر احتمالاً به دلیل تشكیل فسفات آهن یا فسفات هیدرو‌کسید آهن بوده است.

مقایسه میانگین‌های نسبت فسفر به آهن نشان می‌دهد که مصرف فسفر پس از آغاز مهندسی از نسبت در سویا شده است (جدول ۳). این نتایج با توجه به فاصله غلظت و کاهش غلظت آهن بر اثر تکرار فسفر در آن اندازه‌گیری نیست. فسفری که در این قسمت شامل فسفر قابل استفاده به شکل‌های غیر قابل استفاده را ذکر کرد دانشگاه و سینگ (۱۹۸۳) دریافتند که افزودن آهن سیب کاهش غلظت فسفر در گیاه یاولان شده و اظهار کردند که این امر احتمالاً به دلیل تشكیل فسفات آهن یا فسفات هیدرو‌کسید آهن بوده است.
جدول 3 تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل آهن و نسبت فسفر به آهن در سوا، میکرگرم

<table>
<thead>
<tr>
<th>میکرگرم</th>
<th>سطح فسفر (میلیگرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلیگرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/0 A</td>
<td>13/46 b</td>
<td>43/33 b</td>
</tr>
<tr>
<td>37/5 C</td>
<td>23/46 f</td>
<td>33/47 f</td>
</tr>
<tr>
<td>44/6 B</td>
<td>22/47 f</td>
<td>19/47 f</td>
</tr>
<tr>
<td>57/0 A</td>
<td>22/47 f</td>
<td>22/47 f</td>
</tr>
</tbody>
</table>

جدول 4 (میکرگرم در گلدان)

<table>
<thead>
<tr>
<th>نسبت فسفر به آهن</th>
<th>میکرگرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 A</td>
<td>517 h</td>
</tr>
<tr>
<td>88 B</td>
<td>153 c</td>
</tr>
<tr>
<td>52 C</td>
<td>71 h</td>
</tr>
<tr>
<td>24 D</td>
<td>56 hi</td>
</tr>
<tr>
<td>167 A</td>
<td>152 B</td>
</tr>
</tbody>
</table>

برای هر یک از پایان‌های گلیمی، میکرگرم‌هایی که در هر دیده‌بان در هر سونو در یک حرف بزرگ و یا میکرگرم‌هایی که در متن جدول در یک حرف کوچک مشترک هستند، طبق آزمون دانک در سطح پنج درصد تفاوت معنی‌داری دارد.

همکاران (8) نشان دادند که در ماس کشت شده در خاک کوشاک بیشترین و کمترین رشد در نسبت فسفر به آهن بین 30 تا 40 به دست آمد. این افزایش کمتر است (جدول 3). در کار 16 و 17 گزارش داد که افزایش چشمگیر این نسبت نشان دهنده اختلالات شدید تغذیه‌ای آهن در گیاه می‌باشد. بنابراین، تغییر نسبت فسفر به آهن با مصروف مناسب و همزمان فسفر و آهن قابل توصیف است. ای جابه‌ی به این که حداکثر عملکرد وزن خشک سویا در سطح 30 میلی‌گرم فسفر و 20 میلی‌گرم آهن در کیلوگرم خاک به دست آمد. مناسب‌ترین نسبت به دست آمد فسفر به آهن در پژوهش حاضر را 2 می‌توان حذف 70/30 و کردن، بصیری و
پاسخ سویا به کاربرد آهن و فسفر در یک خاک آهنکی

سویا سبب کاهش معنی‌دار غلظت و جذب کل مگنتی شده است. آنان دلیل این را محدودیت‌های جدی شده توسط آهن در انتقال مگنتی از خاک به ریشه و از ریشه به اندازه‌های بازیگر گیاه ذکر کرده، لویا و همکاران (۲۴) نشان داده‌اند که هرجمی در خاک‌های آهنک سکسترین آهن مناسب‌ترین کود آهن است. ولی با توجه داشته که استفاده از مقدار زیاد آن می‌تواند منجر به برز خودکم مگنتی در گیاه سویا شود.

در پژوهش حاضر، میزان آهن سبب افزایش معنی‌دار میانگینی نسبت آهن به مگنتی شد (جدول ۲). به طوری که میزانی در تمام سطوح با یکدیگر و شاهد تفاوت معنی‌دار داشتند. در این ترکیب، افزایش غلظت آهن و کاهش غلظت منگنز در نتیجه کاربرد آهن در گیاه است. نسبت کم آهن به منگنز در محلول گذاری منجر به برز کم‌میزان آهن می‌شود، و به نظر می‌رسد که این پدیده مربوط به اختلال در فعالیت آنزیمی آهن باشد (۲). با بررسی برهمکنش فسفر و آهن بر نسبت آهن به منگنز، می‌توان نتیجه گرفت که نسبت مناسب آهن به منگنز در بگ سویا در پژوهش حاضر برای تولید حادثه‌ای ضرر نزدیک دانه‌های ۱/۵ می‌باشد. که با مصرف آهن و فسفر به ترتیب به میزان‌هاي ۲/۵ و ۸۰ میلی گرم در کیلوگرم خاک به دست آمده است.

قابلیت میانگینی‌های غلظت معنی‌دار می‌باشد که با افزایش سطح فسفر در کیلوگرم خاک به میزان‌های ۷۶ میلی گرم سبب کاهش معنی‌داری می‌باشد. ولی سطح بالاتر سبب افزایش معنی‌دار آن نسبت به شاهد شده است. هرچند که میانگین‌های غلظت می‌باشد.

به طور کلی نسبت آهن به منگنز به طور معنی‌داری افزایش یافته، ولی شامل سطح بالاتر سبب افزایش معنی‌دار آن نسبت به شاهد شده است. هرچند که میانگین‌های غلظت می‌باشد.

۳۰ و ۱۲۰ میلی گرم فسفر در کیلوگرم خاک تفاوت معنی‌داری با یکدیگر نداشتند. نتیجه کاربرد ۴۰ میلی گرم سبب کاهش معنی‌داری در مناسب‌ترین جذب کل مناسب‌ترین کود آهن است. ولی دیگر میانگین‌ها با یکدیگر نسبت به شاهد شده است. ولی دیگر میانگین‌ها با یکدیگر نسبت به شاهد شده است.

در ب‌های سیستم‌های افزایش فسفر سبب کاهش معنی‌دار آهن در کیلوگرم خاک ایجاد کرد. ولی سطح بالاتر سبب کاهش آهن شده است. نتیجه کاربرد سبب کاهش معنی‌داری نسبت به شاهد کاهش داد. این تغییرات در نتیجه تأثیر فسفر بر غلظت آهن و منگنز می‌باشد (جدول ۱ و ۲).

کاربرد آهن در تمام سطوح معنی‌دار سبب کاهش معنی‌دار غلظت و جذب کل منگنز گردیده (جدول ۵) و پیشینه کنیستگی را تیمار ۱۰ میلی گرم آهن در کیلوگرم خاک ایجاد کرد. رومی زاده و کریمیان (۲۹) گزارش کرده که کاربرد آهن در
جدول ۴: تأثیر سطح مختلف فسفر و آهن بر غلظت و جذب کل‌رو و نسبت فسفر به روز در سویا

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میلی‌گرم در کیلوکرم خاک)</th>
<th>سطح آهن (میلی‌گرم در کیلوکرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۲۱ A</td>
<td>۶/۵۸ d</td>
<td>۶/۲۲ e</td>
</tr>
<tr>
<td>۸/۳۳ A</td>
<td>۶/۷۰ c</td>
<td>۶/۵۱ c</td>
</tr>
<tr>
<td>۸/۲۰ A</td>
<td>۶/۵۲ c</td>
<td>۶/۲۱ b</td>
</tr>
<tr>
<td>۸/۲۹ A</td>
<td>۶/۵۵ c</td>
<td>۶/۱۶ b</td>
</tr>
<tr>
<td>۸/۷۸ D</td>
<td>۶/۷۸ g</td>
<td>۶/۲۴ B</td>
</tr>
</tbody>
</table>

غلظت روي (میکروگرم در گرم):

<table>
<thead>
<tr>
<th>میانگین</th>
<th>حداقل کل روی (میکروگرم در کل‌دان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۷/۶۰ B</td>
<td>۳۰/۴۵ b</td>
</tr>
<tr>
<td>۴۵/۶۰ A</td>
<td>۴۰/۴۵ c</td>
</tr>
<tr>
<td>۵۰/۷۸ B</td>
<td>۳۸/۷۱ g</td>
</tr>
<tr>
<td>۶۰/۲۰ A</td>
<td>۷۰/۴۳ e</td>
</tr>
</tbody>
</table>

نسبت فسفر به روزی:

<table>
<thead>
<tr>
<th>میانگین</th>
<th>۷۰۹ c</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰۰ a</td>
<td>۶۰۰ b</td>
</tr>
<tr>
<td>۵۰۰ c</td>
<td>۵۰۰ d</td>
</tr>
<tr>
<td>۴۰۰ e</td>
<td>۴۰۰ f</td>
</tr>
<tr>
<td>۳۰۰ g</td>
<td>۳۰۰ h</td>
</tr>
</tbody>
</table>

نتیجه‌گیری:

در این پژوهش، تأثیر مصرف برنج از نیاز فسفر و آهن بر وزن ماده حسک، جذب و غلظت دیگر عناصر غذایی گیاه مانند روی، مس و متفاوت، گویای اهمیت کاربرد بیشتری کودهای مانند تهیه کردن غذایی مصرف کننده نشان داد که مصرف فسفر نیاز به میلی‌گرم ور.
جدول ۵. تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل مانگنز و نسبت آهن به مانگنز در سoya

<table>
<thead>
<tr>
<th>میانگین</th>
<th>سطح فسفر (میلی گرم در کیلوگرم خاک)</th>
<th>سطح آهن (میلی گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/81 A</td>
<td>73/72 d</td>
<td>94/80 b</td>
</tr>
<tr>
<td>30/55 B</td>
<td>27/54 e</td>
<td>30/35 h</td>
</tr>
<tr>
<td>77/64 C</td>
<td>71/74 f</td>
<td>31/44 g</td>
</tr>
<tr>
<td>16/15 D</td>
<td>37/39 i</td>
<td>18/40 k</td>
</tr>
</tbody>
</table>

جدول ۶. تأثیر سطوح مختلف فسفر و آهن بر غلظت و جذب کل مس در سoya

<table>
<thead>
<tr>
<th>جاذب کل مس</th>
<th>غلظت مس (میلی گرم در کیلوگرم)</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/26 B</td>
<td>5/49 A</td>
<td>۰</td>
</tr>
<tr>
<td>23/3 A</td>
<td>4/48 B</td>
<td>40</td>
</tr>
<tr>
<td>21/26 AB</td>
<td>4/36 C</td>
<td>۰۰</td>
</tr>
<tr>
<td>22/24 AB</td>
<td>4/38 C</td>
<td>۰۵۰</td>
</tr>
<tr>
<td>22/59 AB</td>
<td>4/34 B</td>
<td>۰۱۰</td>
</tr>
<tr>
<td>21/14 B</td>
<td>4/49 A</td>
<td>۰۵۰</td>
</tr>
<tr>
<td>20/11 A</td>
<td>4/49 A</td>
<td>۰۵۰</td>
</tr>
<tr>
<td>21/24 B</td>
<td>4/37 B</td>
<td>۰۵۰</td>
</tr>
</tbody>
</table>

برای هر یک از پایه‌های گیاهی، میانگین‌های که در هر روش افزایش یافت و یا میانگین‌های که در هر جدول در یک حرف کوچک مشترک هستند، طبق آزمون دانک در سطح پنجم به تفاوت معنی‌داری دارند.
سپاسگزاری

به منظور پرداخت شرایط مربوط به گلخانه، پیش از هر گونه توصیه کودی شابنده است که مصرف توأم فسفر و آهن در شرایط مزرعه در خاك‌های مختلف و با طبیعت‌های متفاوت سویا بررسی گردد.

منابع مورد استفاده

1. رومی‌زاده، س. 1373. ارزیابی وضعیت آهن قابل استفاده گیاهی به روش‌های مختلف آزمایشگاهی و گلخانه‌ای در خاك‌های آهکی منطقه زیر سد دردون اصفهان فارس. پایان‌نامه کارشناسی ارشد خاك‌شناسي، دانشگاه كشاورزي، دانشگاه شيراز.

2. سالاردينی، غ. 1373. تحلیلی بر مصرف آهن و آلومینیوم از طریق انرژی معادن فلزی در خاك‌های آهکی.

3. سالاردينی، غ. 1373. تحلیلی بر مصرف آهن و آلومینیوم از طریق انرژی معادن فلزی در خاك‌های آهکی.

4. قنبری، غ. 1371. ارزیابی گلخانه‌ای و آزمایشگاهی چندین عصاره کربنات که تبعیضات توأم فسفر قابل استفاده در بعضی از خاك‌های آهکی مهم است. پایان‌نامه کارشناسی ارشد خاك‌شناسي، دانشگاه كشاورزي، دانشگاه شيراز.

