انتقال برماید در خاک‌های زیر کشت گیاهان مختلف

محمود شعابشور شهرستانی، مجید افونی و سیدرضا موسوی

چکیده
انتقال برماید (به عنوان رایج) در منابع زیر سه خاک گندم و پونجه، با یک شاهد در سه تکرار و با طرح‌های کامل، از نظر برنامه حرارتی در دو سال پی در پی برسی‌گردید. مقدار ۳۰۰ کیلوگرم در هر برماید نادرست خاصی به پوست گیاهان تفاوتی در آب حل و به صورت یک‌تخته‌ای به مایه‌های ۱۵ میلی‌متری بازآوری که به سطح کشت گیاهان آزمایش افزوده شد. آب‌سوزی در هر سال اول در مراحلی، و در هر مراحلی به مایه‌های آب‌سوزی انجام گرفت. در مدت رویش در سال دوم آب‌سوزی که در هر سال اول بر خاک افزوده شد و آب‌سوزی در ۹ مراحل و به ترتیب افزوده به مایه‌های آب‌سوزی انجام گرفت. نمونه‌برداری به وسیله اگر از بخش‌های ۳-۲-۱-۰ و ۹-۸-۷-۶ سانتی‌متر، بدست‌آمد. بر اساس نتایج مطالعاتی، مقدار آب‌سوزی با تغییرات، از مساحتی که در خاک در هر مراحل آب‌سوزی، مقدار آب خلاص‌افزوده، در پراکنش مدل‌سازی، برای مدل‌سازی حرکت (RSM) شاهد به گیره‌ها در شاخص سرفرازی نمونه‌برداری محسوب‌گردید. از برنامه XFIT و مدال انتقال منطقه‌ای (RSM) برای پراکنش مدل‌سازی استفاده شد.

نتایج نشان داد که با تغییر یارایی‌های در فرآیند حفرک نسبت به سرعت جریان بسیار کمتر است و غالباً می‌توان از تاثیر آن در حفرک چشم‌پوشی کرد. سرعت جریان در تیمارهای گیاهان شاهد، گندم و پونجه در سال دوم به ترتیب ۱۴/۸۲ و ۱/۳ در تیمارهای شاهد بود. برخی از پراکنش‌های در سال دوم به ترتیب ۳/۴ و ۳/۵ برابر تیمارهای شاهد بود. افزایش سرعت جریان و پراکنش یارایی‌های تیمارهای گیاهان ترجیحی در تیمارهای افزوده، در سال دوم است. به دقت‌های میانگین و پوسته گیاهان یارایی در پیشینه گیاهان سال دوم بیشتر. برماید آب‌سوزی در ارتفاعات زیاد از لاوها ۴۰ سانتی‌متر آب خلاص‌افزوده در حدود ۳۰ درصد بود. در تیمارهای گندم، در تر خاک و پونجه در سال دوم، این مقدار به ترتیب ۳۷ و ۷۰ درصد بود. که نشان دهنده حفرک سرعت برماید به سرعت حفرک در هر افزایش سرعت جریان و گیاهان ترجیحی می‌باشد.

واژه‌های کلیدی: برماید، آب‌سوزی، مدل‌سازی انتقال املاح، پراکنش‌پذیری، ریشه‌گاه

1. استادان خاک‌شناسی، دانشکده علوم کشاورزی، دانشگاه گیلان
2. دانش‌پژوهان، خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. استاد آب‌پزشی، دانشکده برق‌یاری، دانشگاه صنعتی اصفهان
مقیده

آب‌شیوع مواد شیمیایی از زمین‌های کشاورزی و انتقال آنها به آب‌های زیرزمینی باعث آلودگی مصرف آب می‌شود. پژوهش‌های زیادی در باره حمایت از خاک در انتقال مواد شیمیایی انجام گرفته است (6، 8، 10، 11). تقلیل مشترک در پیوسته‌های مزرعه‌ای وجود نمایش مکانیزم‌های بسیار زیاد در حفظ املاح، به ویژه در موارد انتقال اطلاعات مکانی مایه گرفته می‌گردد. بهبود و بهبود ابزار و ابزار فناوری اطلاعات انجام گرفته است (6).

برخی پژوهش‌ها نشان می‌دهند که بسته به نوع گیاه و میکروبه، حساسیت آنها، خواص هیدروفیک خاک تغییر می‌کند. برای مثال، گیاه‌های سایدی، بونه‌کر یک دارای ریشه‌های عیبی هستند، که تا حدی عمقی در خاک ارتجاع می‌کنند. به این دلیل حمایت از خاک از انتقال مواد شیمیایی سبب جریان تردد املاح به عمق خاک می‌شود (جیرین ترددی یا حمایت از خاک املاح). (Preferential flow)

مطالعه‌ای را باره می‌ریزد، حمایت املاح. مدل‌سازی در این شرایط بسیار محدود است. (7)

پژوهش‌های انتقال املاح در باره از فراوان‌های مهم خاکشناسی‌های آلوگی خاک و آب‌های زیرزمینی، آب‌شیوعی و حمایت عناصر غذایی در خاک مهم می‌باشند و توصیف این فراوان‌ها و هر گونه بحث کن در باره آنها مستلزم مدل‌سازی انتقال املاح در خاک است.

مقدمه

اثرگذاری مواد شیمیایی از زمین‌های کشاورزی و انتقال آنها به آب‌های زیرزمینی باعث آلودگی مصرف آب می‌شود. پژوهش‌های زیادی در باره حمایت املاح در خاک، در آزمایشگاه و در مزرعه انجام گرفته است (6، 8، 10، 11). تقلیل مشترک در پیوسته‌های مزرعه‌ای وجود نمایش مکانیزم‌های بسیار زیاد در حفظ املاح، به ویژه در موارد انتقال اطلاعات مکانی مایه گرفته می‌گردد. بهبود و بهبود ابزار و ابزار فناوری اطلاعات انجام گرفته است (6).

برخی پژوهش‌ها نشان می‌دهند که بسته به نوع گیاه و میکروبه، حساسیت آنها، خواص هیدروفیک خاک تغییر می‌کند. برای مثال، گیاه‌های سایدی، بونه‌کر یک دارای ریشه‌های عیبی هستند، که تا حدی عمقی در خاک ارتجاع می‌کنند. به این دلیل حمایت از خاک املاح. (Preferential flow)
مواد و روش‌ها

به منظور بررسی نحوه حرکت برماید در خاک تحت کشت‌های مختلف پس از اعمال نیماره‌ای کشت و کار، برماید به مقدار مشخص به سطح کرت‌ها انوشه گردید. سپس غلظت برماید در مراحل مختلف آب‌شوری و در عمق‌های مختلف اندازه‌گیری شد. این پژوهش در استحکام خاک و آب کرج (واقع در مشخص دشت) انجام گردید. انرژی استفاده از سطح دریا 120 متر و دارای آب و هوای معناداری بوده و سرما به میانگین 237 میلی‌متر است. خاک منطقه از آبرفت‌های بادی‌نشینی شامل رودخانه کرج تولید شده و خاکی است یمیقی با شرک کلی صفر تا 8 درصد، که از نظر جیب‌گذاری Fine loamy, over fragmental, mixed, thermic, قرار دارد. طولانی‌ترین شده در شمال استگیاگه واقع است، و خاک آن از سری فرخ آباد با عمق بیش از 120 سانتی‌متر می‌باشد. بنابرایان گزارش 50 سانتی‌متر لوم رسی، در عمق‌های بیشتر رش سیلی‌است. میانگین جرم مخصوص ظاهری خاک 1/0 گرم بر سانتی‌متر مکعب است. اراضی انجام شده حاصل در بین سال قبل از آزمایش‌زیر کشت نیم‌درصدی در آن آب‌شوری نگررفته است.

آزمایش به صورت بلوک‌های کامل تصادفی با سه تیمار گردید. درخت بیانگر در سه تکرار در کرت‌های ده متربیه انجام گرفت. فاصله بین تیمارها 1/0 متر و فاصله بین تکرارها یک متربیه پدیده به ارتفاع بین 15 و عرض 50 سانتی‌متر اجرا شد. به منظور تعیین رطوبت خاک با استفاده نورون‌متر، در هر کرت یک لوله
جدول 1. نتایج آزمایش‌های فیزیکی و شیمیایی خاک محل طرح در مهر ۱۳۹۷

<table>
<thead>
<tr>
<th>بناهای خاک</th>
<th>درصد رس</th>
<th>درصد سپلت</th>
<th>pH</th>
<th>(dS/m) EC</th>
<th>عملق (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-L</td>
<td>۳۵۰</td>
<td>۳۹</td>
<td>۷/۵</td>
<td>۲/۹</td>
<td>۲۰-۲۵</td>
</tr>
<tr>
<td>C-L</td>
<td>۳۳۵</td>
<td>۴۲</td>
<td>۷/۵</td>
<td>۲/۹</td>
<td>۳۰-۵۰</td>
</tr>
<tr>
<td>Si·C-L</td>
<td>۴۰۰</td>
<td>۴۵</td>
<td>۷/۵</td>
<td>۱/۹</td>
<td>۵۰-۷۵</td>
</tr>
<tr>
<td>Si·C-L</td>
<td>۴۰۰</td>
<td>۴۶</td>
<td>۷/۴</td>
<td>۸/۷</td>
<td>۷۵-۱۰۰</td>
</tr>
<tr>
<td>Si-C</td>
<td>۴۱۲</td>
<td>۴۷</td>
<td>۷/۴</td>
<td>۸/۷</td>
<td>۱۰۰-۱۲۵</td>
</tr>
<tr>
<td>Si-C</td>
<td>۴۱۲</td>
<td>۴۷</td>
<td>۷/۴</td>
<td>۸/۷</td>
<td>۱۲۵-۱۵۰</td>
</tr>
</tbody>
</table>

در جدول ۲ نشان داده شده است.

MDA=I+P-E dC

MDA مقدار نفوذ عمیق و مقدار تجمعی آن در هر مرجع آب‌اشیوی در جدول ۲ نشان داده شده است.

نمونه‌های خاک پس از خشک کردن و کویسنسی از که میلی‌متری بزرگ‌تر داده شد. سپس به ۱۰ گرم خاک خشک هر میلی‌متری عبور داده شد. میانگین ۵۰ میلی‌متر از هر نقطه درست ۵/۰ مولار برای تثبیت قدرت بینی افزوده شد. سوپرسیون حاصل به مدت ۵/۰ ساعت نکن داده شد. پس از یک روز غذایی برای دیدن مخلوط صاف شده با استفاده از اکسیدرها انتخاب گردید. بناهای این آزمایش گردید. در سال ۱۳۹۷ در دو مرحله، با توجه به نحوه تبخیر نوعی آب‌اشیوی در هر مرجع آب‌اشیوی در جدول ۲ نشان داده شده است.

در جدول ۲ نشان داده شده است.

نمونه‌های خاک پس از خشک کردن و کویسنسی از که میلی‌متری بزرگ‌تر داده شد. سپس به ۱۰ گرم خاک خشک هر میلی‌متری عبور داده شد. میانگین ۵۰ میلی‌متر از هر نقطه درست ۵/۰ مولار برای تثبیت قدرت بینی افزوده شد. سوپرسیون حاصل به مدت ۵/۰ ساعت نکن داده شد. پس از یک روز غذایی برای دیدن مخلوط صاف شده با استفاده از اکسیدرها انتخاب گردید. بناهای این آزمایش گردید. در سال ۱۳۹۷ در دو مرحله، با توجه به نحوه تبخیر نوعی آب‌اشیوی در هر مرجع آب‌اشیوی در جدول ۲ نشان داده شده است.
نتایج و بحث
غلظت‌های اندازه‌گیری شده و مقداری برای هر شده و سیلیس مدل در چهار عمق اندازه‌گیری در سال‌های اول و دوم در RSM شکل‌های 1 و 2 نشان داده شده است. چون توزیع غلظت‌ها در مزرعه لگ نرم‌ال است، از میانگین هندسی غلظت در سه مدل برای هر روش اندازه‌گیری مقدار می‌گیریم.

<table>
<thead>
<tr>
<th>مراحل آبشویی در سال</th>
<th>نفوذ عمقی (mm)</th>
<th>نفوذ عمقی تجمعی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50/1</td>
<td>153/1</td>
</tr>
<tr>
<td>2</td>
<td>47/4</td>
<td>278/3</td>
</tr>
<tr>
<td>3</td>
<td>50/7</td>
<td>380/9</td>
</tr>
<tr>
<td>4</td>
<td>49/7</td>
<td>224/4</td>
</tr>
<tr>
<td>5</td>
<td>43/3</td>
<td>167/1</td>
</tr>
<tr>
<td>6</td>
<td>42/5</td>
<td>105/3</td>
</tr>
<tr>
<td>7</td>
<td>45/4</td>
<td>65/2</td>
</tr>
<tr>
<td>8</td>
<td>58/7</td>
<td>85/6</td>
</tr>
<tr>
<td>9</td>
<td>59/4</td>
<td>78/5</td>
</tr>
<tr>
<td>10</td>
<td>58/7</td>
<td>85/6</td>
</tr>
<tr>
<td>11</td>
<td>52/6</td>
<td>75/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مراحل آبشویی در سال دوم</th>
<th>نفوذ عمقی (mm)</th>
<th>نفوذ عمقی تجمعی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60/7</td>
<td>193/3</td>
</tr>
<tr>
<td>2</td>
<td>60/7</td>
<td>193/3</td>
</tr>
<tr>
<td>3</td>
<td>52/6</td>
<td>75/2</td>
</tr>
<tr>
<td>4</td>
<td>58/7</td>
<td>85/6</td>
</tr>
<tr>
<td>5</td>
<td>59/4</td>
<td>78/5</td>
</tr>
<tr>
<td>6</td>
<td>58/7</td>
<td>85/6</td>
</tr>
<tr>
<td>7</td>
<td>52/6</td>
<td>75/2</td>
</tr>
<tr>
<td>8</td>
<td>58/7</td>
<td>85/6</td>
</tr>
<tr>
<td>9</td>
<td>59/4</td>
<td>78/5</td>
</tr>
<tr>
<td>10</td>
<td>58/7</td>
<td>85/6</td>
</tr>
</tbody>
</table>

برای برآورد مدل اندازه‌گیری (12) بر داده‌های مشاهده شده از برنامه کامپیوتری CXTFIT استفاده شد. داده‌های مشاهده شده از برنامه کامپیوتری CXTFIT استفاده شد. داده‌ها نشان مدل به صورت تعداد زیادی ستون مستقل جریان فضای می‌شود. اندازه‌گیری در هر سنتر به‌صورت میانگین، V و ضریب پراکشی D به‌صورت CDE می‌باشد و در فضای می‌شود که پیش‌تر یک محاسبه جریانی وجود ندارد. برای سرعت جریان در سنتر نهایی مختلف توزیع لگ نرم‌ال فرضی می‌شود. اساس این فرضیه است که سیاره از طوهوه‌گان نشان داده‌که توزیع سرعت جریان در مزرعه لگ نرمال است (5).

\[V = \exp(\mu t + 0.5\sigma^2) \]

در این معادله، \(\mu \) و \(\sigma \) به ترتیب میانگین و انحراف معيار \(V \) می‌باشند. \(V \) به‌صورت

\[\ln V = \ln \mu + \frac{\sigma^2}{2} \]

در این معادله، \(\mu \) به ترتیب میانگین و \(\sigma \) به ترتیب میانگین و انحراف معيار \(V \) می‌باشد. در این معادله، V به‌صورت \(V \) می‌باشد. در این

\[D = \frac{2\pi V}{\rho \cdot \rho_0} \]

در این معادله، \(\rho \) به ترتیب میانگین و انحراف معيار \(V \) می‌باشد. در این

\[\theta = \frac{1}{\rho} \ln \left(\frac{\rho_0}{\rho} \right) \]

در این معادله، \(\rho \) به ترتیب میانگین و انحراف معيار \(V \) می‌باشد. در این تا باید به‌صورت

\[\theta = \frac{1}{\rho} \ln \left(\frac{\rho_0}{\rho} \right) \]

در این معادله، \(\rho \) به ترتیب میانگین و انحراف معيار \(V \) می‌باشد. در این تا باید به‌صورت

\[\theta = \frac{1}{\rho} \ln \left(\frac{\rho_0}{\rho} \right) \]
شکل 1. گزارش‌های اندازه‌گیری شده (شناخته شده) و مقادیر پیش‌بینی شده (خطوط) به وسیله مدل RSM در سال اول. محور افقی نمودارها بر حسب عمیقی و محور عمودی نموداری از P (DP) بر حسب میلی‌متر و محور عمودی نمودار بر حساب میکروگرم بر سانتی‌متر مکعب باکس است.
شکل ۲. گلولت‌های اندازه‌گیری شده (نشان‌دهنده) و مقادیر برآورد شده (خطوط) به وسیله مدل RSM در سال دوم. محور افقی نمودارها مقدار نفوذ عمیقی (DP) بر حسب میلی‌متر و محور عمودی گلولت‌بر میلی‌متر مکعب در سال‌های مختلف مکعب‌شده است.
جدول 3: نتایج برآورش مدل RSM بر داده‌های اندازه‌گیری شده غلظت به صورت هیدروزان در چهار عمق

<table>
<thead>
<tr>
<th>DP (cm)</th>
<th>ر2</th>
<th>MV (cm/day)</th>
<th>V (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0.957</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>29</td>
<td>0.952</td>
<td>0.06</td>
<td>0.88</td>
</tr>
<tr>
<td>34</td>
<td>0.957</td>
<td>0.15</td>
<td>0.84</td>
</tr>
<tr>
<td>32/5</td>
<td>0.960</td>
<td>0.06</td>
<td>0.87</td>
</tr>
<tr>
<td>25</td>
<td>0.992</td>
<td>0.37</td>
<td>0.76</td>
</tr>
<tr>
<td>47/4</td>
<td>0.994</td>
<td>0.44</td>
<td>0.79</td>
</tr>
<tr>
<td>77</td>
<td>0.988</td>
<td>0.60</td>
<td>0.80</td>
</tr>
</tbody>
</table>

نتکرار استفاده شده است. مدل متقابل با یکدیگر در سطح برآورش در سال‌های اول و دوم تولید سرعت جریان را در سال‌های اول و دوم نمی‌توان سرعت جریان را در دو سال به هم مقایسه کرد. برای تیمارهای بزرگ‌تر، تغییرات به سرعت حرکت بروز می‌دهند و به صورت زیر است:

\[MV = V / q \]

با توجه به شکل‌های 1 و 2 مشاهده می‌شود که تغییرات غلظت نسبت به نفوذ عمیق روند مشخصی دارد. اینه انحرافی نیز وجود دارد که ناشی از تغییرات طیات و تغییرات مکانی زایای عوامل اقلیمی (قد) در خاک است. همچنین، به داشته‌باشد همین و سیستانی که در خاک است، که فیلآی به وسیله بیگانگان تولید شده است.

برازش مدل بر داده‌های هر تیمار به صورت هیدروزان در چهار عمق نمونه‌برداری انجام گرفته است. تا یک پیشرفت در همه تیمارهای خاک تولید در هر تیمار به دست آید. این کار در صورتی ممکن است که پرفروش خاک از نظر عمیق همگن فرض نشود. که در شرایط آزمایش فرضی منطقی می‌باشد، ولی به حال باعث انجام انحرافات در پرآوری می‌شود. بدین‌طور است اگر برآورش مدل در هر عمق جدایگان صورت آمده بتوان به دست می‌آید. ولی این کار منجر به محاسبه چهار مقدار برای عوامل در هر تیمار می‌شود، و مقایسه تیمارها.
منابع مورد استفاده

1- شعبانی، شهرستانی، م. 1378. انتقال مالح در شرایط مزرعه. پایان‌نامه دکتری خاکشناسی، دانشگاه تربیت مدرس.