نسبت کمیت- شدت پتاسیم و هم پستگی پارامترهای آن با خصوصیات خاک در تعدادی از خاکهای ایران

علاوه بر حسن پور و محمد کمالی

چکیده

یکی از روشهای تعبیر و ضبط پتاسیم خاک، استفاده از منحنی‌های کمیت به شدت (Q/L) و پارامترهای آن است. تحقیق حاضر برای رسماً منحنی‌های Q/L و هم پارامترهای آن برای تعدادی از خاک‌های منطقه مرکزی و شمال ایران به کمک نرم‌افزار (PHREEQC) و نرم‌افزار پتاسیم (ARK) مطرح شده است. نتایج حاصل از این بررسی نشان داد که با توجه به نرخ خاک، فاصله‌های زیرین‌تری (زمین‌های زیرین) از این فاصله به صورت قائم و متمایل به سمت فاصله پتاسیم خاک‌ها می‌باشند.

متون‌دسته Q/L به دست آمده شکل معامله گزارش شده در منابع را نشان داد و در نظر گرفته شده است. به این ترتیب، به مقداری که Q/L را با توجه به نرخ خاک و پارامترهای آن تعیین نشده است، همچنین

هم پستگی پارامترهای Q/L و بعضی از پتاسیم خاک‌ها محسوب گردیده.

واژه‌های کلیدی: پتاسیم، کمیت- شدت

مقدمه

مقدار پتاسیم نیازمند اندوزه‌گیری شده، به وسیله استانداردهای یک نظرال، به عنوان روش برای ارزیابی ضبط پتاسیم قابل

1. استادیار حاکم‌مانی، دانشکده کشاورزی، دانشگاه آزاد علوم همدان
2. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه آزاد علوم همدان

43
شدو در استان اصفهان (1)، روش استات آمونیوم یک نرمال، به‌طوری که روش عصاره‌گیری پتاسپیم تبادلی نیبوت، و روش‌های دیگر عصاره‌گیری همبستگی پهن‌تر با پتاسپیم جذب شده داشته امکان فیزیکی، شبیه به‌طوری که روش‌های مصرفی جذب پتاسپیم یک نرمال همبستگی پهن‌تر با پتاسپیم دارند. در این تحقیق، مقدار ذوب تبادل پتاسپیم با پتاسپیم، سه‌گانه می‌باشد. در هنگام عصاره‌گیری با استات آمونیوم، بخشی از آن استخراج می‌گردد (19). این موضوع احتمالاً یکی از دلایل همبستگی پهن‌تر بین پتاسپیم عصاره‌گیری شده با استات آمونیوم، و عکس از تهیه می‌گردد. به‌طوری که سه‌گانه یکی از دلایل این موضوع می‌باشد.

شدو در استان اصفهان (1)، روش استات آمونیوم یک نرمال، به‌طوری که روش عصاره‌گیری پتاسپیم تبادلی نیبوت، و روش‌های دیگر عصاره‌گیری همبستگی پهن‌تر با پتاسپیم جذب شده داشته امکان فیزیکی، شبیه به‌طوری که روش‌های مصرفی جذب پتاسپیم یک نرمال همبستگی پهن‌تر با پتاسپیم دارند. در این تحقیق، مقدار ذوب تبادل پتاسپیم با پتاسپیم، سه‌گانه می‌باشد. در هنگام عصاره‌گیری با استات آمونیوم، بخشی از آن استخراج می‌گردد (19). این موضوع احتمالاً یکی از دلایل همبستگی پهن‌تر بین پتاسپیم عصاره‌گیری شده با استات آمونیوم، و عکس از تهیه می‌گردد. به‌طوری که سه‌گانه یکی از دلایل این موضوع می‌باشد.
ثبت کمیت - شدت پتانسیم و هم بستگی یارادرهای آن با...
علائم نباتی‌های شناخته‌شده از همبستگی بین ظرفیت باورهای پتانسیم (CEC) و منابع میانی (PBC_k) حاکی می‌شود. مطالعات تکاملی PBC_k با تغییر در pH و مقدار مصرف آن به میزان میانگین می‌باشند. در این باره، آگاهی از وضعیت حاصل‌شده خاک از نظر پتانسیم خاک دارد.

یکی از دو مدلی می‌باشد:
1. مدل علائم است (17)
2. مدل علائم است (18)

در تعداد عمدی از خاک‌های

مقدمای بعنوان نامه است.

در مطالعات دیگر

کلی، و موردی

موردی

کلی،

c-t]6={CEC).K_G

PBC_k (1)

1. Vansele exchange coefficient

[1]
کمیت - شدت پتاسیم و هم پتاسیم پارامترهای آن با...

به صورت غیرخطی و در مقادیر بالایی این رابطه خطی است، ولی از نظر مقدار 4\(k\) و 4\(K_p\) تفاوت‌های زیادی بین گراف‌ها و مسیرها که نمایانگر وضعیت متفاوت پتاسیم در داخل خاک‌های می‌باشد.

که معروف می‌باشد. شدت فعالیت پتاسیم در حالت تبادل 4\(AR^k\) تحت تأثیر یک عامل مقدار پتاسیم تبادلی گنجانیش تبادلی کاتیونی و ثابت گیاهان گیاهان می‌باشند. در حالی که مقدارش هر پتاسیم در داخل خاک 8 و پیش‌تر از آن در خاک 7 می‌باشد.

می‌شود (جدول 2). در خاک 7 و 8 ها مقدار CEC نسبتاً نازک و همچنین با روند مقدار پتاسیم تبادلی چنین نیز انتظار می‌رسد.

ویژگی‌های داشته مرکزی چنین نیز تبادلی می‌باشد. ولی در خاک 8 و 9 و جدول 3 تحت تأثیر مقدار پتاسیم در حال تبادل 4\(AR^k\) کم‌ترین مقدار است، این احتمالاً به دلیل زیاد بودن ثابت تبادلی گیاهان در این خاک می‌باشد. در حالی که دیگر نیز مقدار گنجانیش تبادلی کاتیونی و مقدار پتاسیم تبادلی متفاوت است. ضمناً مقدار پتاسیم سطح قابل تبادل در خاک 8 ها مقدار 65-40 و

40 گنجانیش تبادل کاتیونی، شکل‌های مختلفی نشان می‌دهد.

پارامترهای CA+Mg

که این امر از نظر کاهش (جدول 2) با توجه به مقدار 4\(k\) می‌باشد. اگر چه این AR

راطع و وجود 1 و ضرب هم‌شکلی آن با نیست (جدول 3، که می‌دانیم احتمالاً نتوان خاک‌ها و تفاوت‌های

خصوصیات

فیزیکی، شیمیایی و میزان‌سازی خاک‌های مورد مطالعه بوده، که باعث تغییرات زیادی در مقدار ثابت گیاهان شد.

متعارف 6 نشان داده که این دیدگاه به دو راستای پتاسیم تبادلی (EPP)

و نسبت فعالیت پتاسیم 4\(AR^k\) نیز رابطه و وجود مسیرها با شاد.

همانطور که در جدول 3 مشاهده می‌شود، بین دیدگاه پتاسیم

تابادلی و 4\(AR^k\) رابطه‌ای معنای دارد با ضرب هم‌شکلی

موجود است.

1. Davis Equation

27
جدول 1. پیش‌بینی میزان نیتریک اسید برخی سلیت‌های موردطالعه

<table>
<thead>
<tr>
<th>محل نمونه‌برداری</th>
<th>گل اشباع</th>
<th>USC</th>
<th>pH</th>
<th>ماده آلی</th>
<th>کربنات کلسیم</th>
<th>رس</th>
<th>شیمیایی خاک‌های مورد مطالعه</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصفهان</td>
<td>329</td>
<td>0/2</td>
<td>4/1</td>
<td>350</td>
<td>212</td>
<td>7/5</td>
<td>سه‌رخ فیروزی</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>280</td>
<td>12/5</td>
<td>240</td>
<td>17/5</td>
<td>7/4</td>
<td>558</td>
<td>14/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>60</td>
<td>14/5</td>
<td>320</td>
<td>7/4</td>
<td>3/4</td>
<td>372</td>
<td>7/4</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>70</td>
<td>14/5</td>
<td>350</td>
<td>720</td>
<td>7/4</td>
<td>382</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>100</td>
<td>12/5</td>
<td>410</td>
<td>7/4</td>
<td>5/5</td>
<td>382</td>
<td>7/4</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>500</td>
<td>7/4</td>
<td>372</td>
<td>201</td>
<td>7/4</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>300</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>251</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>300</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>0/0</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>200</td>
<td>12/5</td>
<td>365</td>
<td>7/5</td>
<td>3/4</td>
<td>382</td>
<td>7/5</td>
</tr>
</tbody>
</table>

فاصله پتانسیم در حال تعادل در خاک‌های مطالعه شده، مقدار AR0 در خاک شدت داشته کمترین مقدار پتانسیم محلول حداکثر، و در خاک 7، با داشتن بیشترین مقدار پتانسیم محلول، حداکثر می‌باشد. در خاک‌های میکرونجمز، شارب و همکاران (22) بین نسبت پتانسیم تبدیل به مجموع کلسیم و منیزیم تبدیلی (EP) و نسبت جذب پتانسیم (PAR) دیگر نیز چنین وندی مشاهده کرده، از نظر ازبینه بیشتر گان می‌باشد.

دانشگاه سالک (22) نسبت فعالیت پتانسیم در حال تعادل را که یکی از پارامترهای مهم نماد می‌باشد، با اندازه‌گیری پتانسیم محلول برآورد کرده.

BRASAS نظریه‌دارهای بین درصد پتانسیم تبدیلی (EPP) و نسبت همی‌بستگی معنی‌داری بین درصد پتانسیم تبدیلی (EPP) و نسبت
جدول ۲: بعضی از ویژگی‌های شیمیایی و پارامترهای Q1 خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>PBC<sup>k</sup> (mmol L<sup>-1</sup>)</th>
<th>AR°</th>
<th>K<sub>x</sub></th>
<th>ΔK°</th>
<th>P<sub>1</sub></th>
<th>T<sub>1</sub></th>
<th>T<sub>2</sub></th>
<th>T<sub>3</sub></th>
<th>T<sub>4</sub></th>
<th>T<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۲۸</td>
<td>۱۰</td>
<td>۲۰۷</td>
<td>۱۳۲</td>
<td>۳/۱۰</td>
<td>۱۱/۰</td>
<td>۱۳/۰</td>
<td>۲/۵۰</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱۱/۸۵</td>
<td>۴۳</td>
<td>۳۴۹</td>
<td>۲۰۵</td>
<td>۴/۰۱</td>
<td>۱۲/۰</td>
<td>۱۶/۵</td>
<td>۲/۴۰</td>
<td>۲</td>
<td>۳</td>
</tr>
<tr>
<td>۱۸/۳۱</td>
<td>۲۵۴</td>
<td>۳۲۹</td>
<td>۱۷۶</td>
<td>۶/۹۴</td>
<td>۲۲/۰</td>
<td>۱۴/۲</td>
<td>۵/۰۰</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۷/۷۷</td>
<td>۲۴۱</td>
<td>۴۵۱</td>
<td>۲۱۹</td>
<td>۳/۴۰</td>
<td>۸/۴۸</td>
<td>۱۱/۵</td>
<td>۸</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۶/۹۸</td>
<td>۲۶۸</td>
<td>۳۸۴</td>
<td>۲۴۲</td>
<td>۴/۰۸</td>
<td>۱۹/۷</td>
<td>۱۱/۲</td>
<td>۵۰/۵</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>۸/۷۲</td>
<td>۷۷</td>
<td>۲۸۲</td>
<td>۲۲۵</td>
<td>۳/۴۷</td>
<td>۱۲/۰</td>
<td>۱۴/۵</td>
<td>۲۰/۰</td>
<td>۷</td>
<td>۹</td>
</tr>
<tr>
<td>۸/۷۵</td>
<td>۳۲</td>
<td>۱۹۸</td>
<td>۲۱۲</td>
<td>۳/۴۰</td>
<td>۱۲/۰</td>
<td>۱۴/۵</td>
<td>۲۰/۰</td>
<td>۷</td>
<td>۹</td>
</tr>
<tr>
<td>۱۳/۸۲</td>
<td>۵۰</td>
<td>۲۴۰</td>
<td>۱۶۵</td>
<td>۴/۴۰</td>
<td>۱۴/۷</td>
<td>۱۵/۵</td>
<td>۲۰/۰</td>
<td>۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۵/۶۰</td>
<td>۳۲</td>
<td>۲۴۷</td>
<td>۱۴۲</td>
<td>۳/۴۰</td>
<td>۱۴/۵</td>
<td>۱۵/۵</td>
<td>۲۰/۰</td>
<td>۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۵۷/۳۰</td>
<td>۳۷</td>
<td>۳۲۸</td>
<td>۱۵۵</td>
<td>۴/۴۰</td>
<td>۱۴/۷</td>
<td>۱۵/۵</td>
<td>۲۰/۰</td>
<td>۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۸/۰۰</td>
<td>۳۵</td>
<td>۲۲۹</td>
<td>۱۰۲</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۲/۹۰</td>
<td>۴۵</td>
<td>۲۲۹</td>
<td>۹۰</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲۱/۹۰</td>
<td>۳۳</td>
<td>۲۰۸</td>
<td>۶۷</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۵/۵۰</td>
<td>۷۵</td>
<td>۲۳۳</td>
<td>۴۵</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۴/۰۰</td>
<td>۲۴</td>
<td>۱۴۱</td>
<td>۳۲</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۹/۲۵</td>
<td>۶۷</td>
<td>۳۳۲</td>
<td>۲۵۰</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۹/۲۵</td>
<td>۶۷</td>
<td>۳۳۲</td>
<td>۲۵۰</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۹/۲۵</td>
<td>۶۷</td>
<td>۳۳۲</td>
<td>۲۵۰</td>
<td>۴/۴۰</td>
<td>۱۵/۵</td>
<td>۱۸/۰</td>
<td>۲۰/۰</td>
<td>۸</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

۱. شاخه‌سنج پنجم‌شانه‌سنجار
۲. پنجم‌شانه‌سنجار
۳. شیمی‌سنج پنجم‌شانه‌سنجار
شماره ۱: نتایج آزمایش معادله پیشنهادی

\[Y = -6.72 + 12778X \quad r = 0.994 \]

شماره ۲

\[Y = 0.01 + 11/185X \quad r = 0.950 \]

شماره ۳

\[Y = -9.27 + 18/31X \quad r = 0.998 \]

شماره ۴

\[Y = 0.26 + 3.777X \quad r = 0.990 \]

شماره ۵

\[Y = -2.03 + 5.878X \quad r = 0.912 \]

شکل ۲: روابط کمیتی - شدت پتاسیم در تعدادی از شاکاهای اصفهان
شکل ۳. روابط کمیتی - شدت پتاسیم در تعدادی از خاک‌های چهارمحال و بختیاری

شماره ۱

شماره ۲

شماره ۳

شماره ۴

شماره ۵

شماره ۶

شماره ۷

شماره ۸

شماره ۹

شماره ۱۰
شکل ۴. روابط کمیتی - شدت پتاسیم در تعدادی از خاک‌های گیلان

شماره ۱۱

نقاط آزمایش:

معادله بخش خطی:

\[y = -0.625 + 3.79x \quad r = 0.998 \]

شماره ۱۲

معادله بخش خطی:

\[y = 0.124 + 11.8x \quad r = 0.980 \]

شماره ۱۳

معادله بخش خطی:

\[y = -0.877 + 2.71x \quad r = 0.994 \]

شماره ۱۴

معادله بخش خطی:

\[y = -0.417 + 16.1x \quad r = 0.994 \]

شماره ۱۵

معادله بخش خطی:

\[y = -0.692 + 2.32x \quad r = 0.998 \]
بنیت کمیت - شدت پتاسیم و هم پتاسیم پارامترهای آن یا...
دلادی، ولی ضرایب هم‌سانتی گی به دلیل تفاوت در خصوصیات فیزیکی، شیمیایی و میکروژی خاک‌ها با نسبت گر چنین مطالعاتی در خاک‌های با خصوصیات یکسان انجام شرود. می‌توان پارامترهای Q/I از خصوصیات خاک‌که در آزمایشگاه تعیین می‌شود و معادلات به دست آمده با اطمینان برآورده کرد. لذا بیشتر می‌شود، چنین مطالعاتی در هر منطقه مورد استفاده می‌باشد.

1. کالیکسپر، س. 1377. انتخاب عصاره‌های مناسب جهت استخراج پتاسیم قابل جذب برای گیاه ذرت در خاک‌های منطقه مرکزی استان اصفهان. پایان‌نامه کارشناسی ارشد دانشگاه صنعتی اصفهان.
ions on soils. J. Agric. Sci. 58: 59-64.