تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

سمه صدر، مجید افونی و نادر فتحیان پور

تاریخ دریافت: ۱۳۸۶/۱۱/۰۴ تاریخ پذیرش: ۱۳۸۷/۱۰/۲۸

چکیده

ترکیب فعالیتهای صنعتی، کشاورزی، و شهرنشینی در شهرها باعث آلودگی و تجمع فلزات سنگین در خاک شده است. با توجه به اهمیت استان اصفهان از نظر فعالیتهای کشاورزی و صنعتی، همچنین جمعیت زیاد این استان، این تحقیق به هدف ارزیابی تغییرات مکانی آرسنیک در بخش‌هایی از استان اصفهان و همچنین تهیه نقشه آلودگی این عصار در خاک‌هایی منطقه‌ای انجام گرفت. در این تحقیق نمونه‌های خاک روی یک شبکه منظم با فاصله حدود ۴ کیلومتر برداشت شد. موقعیت جغرافیایی نقاط با استفاده از GPS تعیین و کاربرد محل‌های نهایی نمونه‌های خاک از آزمایشگاه، فلزات کل آلودگی در نمونه‌ها با استفاده از کریچیگن نقطه‌ای روي تایید به دست آمده. آنالیز نمونه‌های خاک توسط نرم‌افزار زمین‌آزمایی WinGislib و نرم‌افزار Surfer نقشه آلودگی مکانی در استان اصفهان تهیه شد. ساختار مکانی متغیر به کمک نگارش برنیش شد. نگارش این به شکل جهت محاسبه و ترسیم گرده. نتایج نشان داد، انگل‌کردن، بهترین مدل برای تایید بود. میانگین در پلاک‌هایی با ابعاد ۱۰۰×۱۰۰ متر به روش کریچیگن صورت گرفت و به منظور تعیین دقت تخمین‌های انجام شده از میانگین مربع خطای تخمین (MSE) و ضریب همبستگی پرسون (Pearson) استفاده گردید و تایید حاکی از دقت نسبتاً خوب تخمین‌ها بود. بر اساس نقشه‌های پرکش آرسنیک، جهت پایدار در توزیع آرسنیک حاصل از صنایع تکنسی در بخش جنوب غربی استان و اطراف کارخانه‌های بزرگ صنعت فولادسازی مورد بررسی، است. در مجموع سی‌نوا تلقی جنس سنگ ماده را در دیگر غرب و شمال شرق تغییرات مکانی آرسنیک در محدوده‌های تهیه نهایی (محدوده‌های K) وسعت شمال غرب و شمال شرق) مؤثر دانست.

واژه‌های کلیدی: آرسنیک، آلودگی، تغییرات مکانی، کریچیگن، اصفهان، تغییرنا

مقدمه

پیشرفت سریع تکنولوژی و توسعه روز افزون کارخانه‌های صنعتی و همچنین صرف زیاد کودهای شیمیایی و سموم دفع آفات و دیگر مواد شیمیایی در کشاورزی در دهه‌های اخیر امکانات زیادی را برای آلودگی خاک افراد آورده است.

1 دانشجوی سابق کارشناسی ارشد حاشیه‌نشینی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان و دانشگاه آموزشی دانشگاه پایتخت، تهران، واحد کشاورزی
2 استاد حاشیه‌نشینی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3 استاد هم‌کاری اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان
afyuni@cc.iut.ac.ir

* مسئول مکانیات، پست الکترونیکی:
علم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک / سال سیزدهم / شماره پنجم / زبان فارسی

عناصر خطرناک برای سلامت انسان، حیوان و گیاهی است و در طول تاریخ به عنوان عامل کشنده مورد توجه بوده است. خلط‌های بیش از حد مجاز این عنصر به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده و باعث ایجاد آنگر خطرناک می‌شوند. این عنصر به نام مس (As) شناخته می‌شود. شیوع مس (As) در جهان بسیار است و این عنصر به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌за شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیوان و گیاهی شناخته می‌شود و به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده است. مس به عنوان عنصری از کل انسان، حیان
تلخیرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

جدول 1: خلاصه آماری غلظت آرسنیک کل در منطقه مطالعاتی

<table>
<thead>
<tr>
<th>غلظت آرسنیک کل (میلی گرم بر کیلوگرم)</th>
<th>غلظت کمتر از کانوارژی</th>
<th>غلظت بیشتر از کانوارژی</th>
<th>کل مطالعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>15/6</td>
<td>15/1</td>
<td>15/10</td>
</tr>
<tr>
<td>گردشکر</td>
<td>11/3</td>
<td>10/7</td>
<td>10/10</td>
</tr>
<tr>
<td>چوگنگی</td>
<td>11/1</td>
<td>11/1</td>
<td>11/10</td>
</tr>
</tbody>
</table>

شکل 1: موقعیت استان اصفهان در تقسیمات کشوری

واختر دوره کریمه است (5). شکل 2: نقشه 1/350000 سازندگی سطحی منطقه را نشان می‌دهد که با استفاده از نرم‌افزار ILWIS و از زون‌فرم‌رسی نقشه زمین‌شناسی منطقه با مقياس 1/250000، 1/10 به شکل است. 2- نمونه‌برداری

در مطالعه حاضر به‌عهده وسعت زبد منطقه وجود موارد زیاد جغرافیایی و شهری می‌باشد. نمونه‌برداری تصادفی طبقه‌بندی

استان در یک دوره 30 ساله در حدود 120 میلیون هکتار، به‌ویژه حدود 130 میلیون هکتار در سال است. جهت ورود به‌دست‌آوردن غالب منطقه در پاتیز، زمردستان و به‌هم‌آمدی زمین‌شناسی منطقه با مقياس 250000، 1/10 به‌شکل است. 3- گل‌دان منطقه مطالعاتی (بر اساس آمار 2015 استان سازمان هوشمندی استان اصفهان)، را نشان می‌دهد. تهیه‌سازی نقشه‌های تفصیلی و سرمایه‌کاری آزمایشگاه، توسعه و هم‌اندازه‌گذاری نمونه‌های آزمایشگاهی حاصل آزمایش‌ها و پژوهش‌های تخصصی طبقه‌بندی
شکل 2. توزیع نقاط نمونه برداری در منطقه مطالعاتی به وسعت 6880 کیلومتر مربع

جدول 2. مقادیر کنترل اعتبار جهت تخمین کریجینگ

<table>
<thead>
<tr>
<th>MSE</th>
<th>نام‌نام‌گردنی</th>
<th>حد آستانه</th>
<th>اثر قطعه‌ای</th>
<th>دامنه تأثیر</th>
<th>آلفا آماری</th>
<th>کریجینگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

۳- آنالیزهای شیمیایی
نمونه‌های خاک، در نمونه‌های خاک توسط دستگاه XRF: Fluorescence در کشور سوئیس اندازه‌گیری شد. این روش بر اساس انگیخته شدن الکترون استوار است و یکی از روش‌های تجزیه‌ای پرکاربرد بای شناسایی کیفی عناصر با اعداد اتمی پیش از 8 (بعد از اکسیون) است. به علاوه این روش غالباً برای تجزیه‌های عصاری به صورت نیمه‌کمکی و کمی نیز به کار گرفته می‌شود (8).

(استفاده گردیده (16).) شده نمونه‌برداری از عمق ۰ تا ۲۰ سانتی‌متر از سطح خاک انگیج و پس از مخلوط شدن نمونه‌های ساده از آن یک نمونه مرکب گرفته شد. با توجه به وجود جریان موج در کل ۲۰۷ نمونه از تمام منطقه برداشت و کاربری محل نمونه‌برداری به همراه موقعیت GPS در دستگاه نمود. شکل ۲ توزیع نقاط نمونه برداری را در منطقه مطالعاتی نشان می‌دهد. کاربری نقاط در منطقه به سه دسته کشافی (۴/۵ درصد)، مطلق (۲/۳ درصد) و شهروی و صنعتی (۱/۶ درصد) تقسیم بندی شد. حداقل و حداکثر فاصله بین مکان‌های نمونه‌برداری به ترتیب ۵۰۰ و ۵۰۰۰ متر می‌باشد.

۶۸
جدول ۳. میزان کود شیمیایی و لجن فاضلاب مصرف شده در بخش‌های مختلف استان اصفهان

<table>
<thead>
<tr>
<th>میانگین کود(Mean)</th>
<th>بخش‌های شهرستان</th>
<th>اصفهان</th>
<th>خمینیشهر</th>
<th>لنگان</th>
<th>فلاورجان</th>
<th>نجف آباد</th>
<th>مارکه</th>
<th>فاریاب</th>
<th>فکر</th>
<th>اینا</th>
<th>فیروزکوه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۱۲۰۰</td>
<td>۱۵۰۰</td>
<td>۱۹۰۰</td>
<td>۲۰۰۰</td>
<td>۲۵۰۰</td>
<td>۳۵۰۰</td>
<td>۵۰۰</td>
<td>۱۴۰۰</td>
<td>۱۳۰۰</td>
<td>۱۷۰۰</td>
<td>۱۵۰۰</td>
</tr>
<tr>
<td>۸۸</td>
<td>۱۲۸</td>
<td>۱۵۵</td>
<td>۱۹۰</td>
<td>۲۰۰</td>
<td>۲۵۰</td>
<td>۳۵۰</td>
<td>۵۰۰</td>
<td>۱۴۰۰</td>
<td>۱۳۰۰</td>
<td>۱۷۰۰</td>
<td>۱۵۰۰</td>
</tr>
<tr>
<td>لجن فاضلاب</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل ۳. نقشه سازندگی سطحی منطقه مطالعاتی (مقیاس ۱:۳۵۰۰۰) (حاصل از زنده‌رنگ منطقه‌سازی توسط نرم‌افزار (ILWIS))

شکل ۴. گلیاد منطقه مطالعاتی (آمار ۲۵ ساله سازمان هویش‌نگاری استان اصفهان)
طالبانه‌ی خاک به روش سوزانن (Hutchinson 1980) نشان‌دهنده‌ی ارتباط بین تعدادی از متغیرهای مختلف ترتیبی، هم‌سانتی، و اطلاعات آماری کنترلوسیفی در جدول 6 اورده شده است.

5- مطالعات آماری مکانی

اولین تجربه استفاده از روش‌های میان‌بینی باین‌تی با تغییرات مکانی در حدود 50 سال پیش آغاز شد ولی در سال 1987، بهینه‌سازی روش‌های با کاربردی رویه‌های زیست‌محیط آماری توسط کمیل (19) و مرکز خاک‌سنجی شد و برای تجزیه و تحلیل پـ: هم‌سانتی مکانی (تغییرات یک متغیر با تغییرات مکان) در داده‌های مربوط به علوم زیستی به این مفهوم است که نمونه‌هایی که از نظر مکانی به یکدیگر نزدیک‌کنند به نظر کمی دارای نسبت به‌شان‌هستند و این در حالتی است که در نمونه‌های دارای فاصله‌ای مشترک از یکدیگر در نظر گرفته که منحنی کاربردی یا یک‌دیگری در نظر گرفته شده‌اند. از این‌رو به آماری که برای توصیف رابطه بین متغیر (Variogram) استفاده می‌شود می‌توان نمونه‌گیری مکانی (کم‌متغیر) برای تجزیه و تحلیل مکانی کم‌متغیری است که تغییرات فاصله‌ای یک متغیر خاص را نشان می‌دهد. همچنین میان این رابطه آن می‌توان بسیاری از جهات تغییرپذیری خاک را توصیف نمود. تداوم و پیوستگی متغیر مورد مطالعه در این مورد افراصی (h) نسبت به مقادیر مختلف h دلخواه می‌شود. نتایج این مطالعه نشان‌دهنده مقادیر همبستگی مکانی متغیر یک متغیر مشخص می‌شود که توسط رابطه 1 محاسبه می‌شود.

\[
\gamma(h) = \text{Avd}[Z(x_i+h) - Z(x_i)]^\gamma, \quad \gamma = \sum_{i} \frac{1}{n} \left[Z(x_i+h) - Z(x_i) \right]^\gamma
\]
تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

شکل 5-الف. توزیع نرخ فراوانی آرسنیک در منطقه مرکزی اصفهان-ب) توزیع جمع‌آوری مقادیر میانگین نرخ آرسنیک در کاربردهای مختلف اراضی در استان اصفهان

شکل 6-واریوگرام چهار آرسنیک کل-الف: زاویه ۹۰ درجه (S-N) ب) زاویه ۱۸۰ درجه (E-W).

\[Z^*(x) = \sum_{i=1}^{n} \lambda_i Z(x_i) \]
[۳]

در رابطه ۳ مقدار تخمین زده شده و \(Z^*(x) \) مقدار تخمینی زده شده و \(\lambda_i \) واقعی می‌باشد.

کمیت یک متغیر در نقطه‌ای با مختصات معلوم را با استفاده از مقدار همان کمیت در نقطه دیگری با مختصات معلوم، فراهم می‌سازد (۳). تخمین کمیت گر کریجینگ به صورت رابطه (۳) تعیین می‌شود (۷).
شکل 7. واریوگرام سطحی آرسنیک کل

که در عین ناریب بودن، واریانس تخمین‌گر حداکثر باشد. بنابراین هم‌اکنون هر تخمین، مقدار خطای آن را به محاسبه می‌کنند و به این ترتیب علائم بر مقیاس متوسط، توزیع خطا (واریانس تخمین) را در محدوده مورد بررسی، به دست اورده. با استفاده از این ویژگی منحصربه‌فرد کریجینگ می‌توان قسمت‌هایی که در آن خطای تخمین، به دلیل تعدد نمونه کم، بالاتر را مشخص کرد و به منظور کاهش خطای تحت پوشش لازم قرار داد.

نتایج و بحث

بر اساس مطالعات، میانگین غلظت آرسنیک ۱۰۲ میلی‌گرم بر کیلوگرم و دامنه تغییرات آن ۲۸ با حداقل ۱۱ و حداکثر ۲۱/۲ میلی‌گرم بر کیلوگرم می‌باشد (جدول ۱). با توجه به میزان حداکثر غلظت آرسنیک در منطقه و مقایسه آن با مقادیر مجاز کشورهای مختلف (استانداردهای انگلستان، کانادا و فرانسه) حدود ۷۲/۳ درصد از مکان‌های مورد بررسی دارای غلظت بیش از حد مجاز آرسنیک می‌باشد. (شکل ۵ - اFAILURE) نیز حاکی از نرمال بودن توزیع آرسنیک در منطقه با چگالی ۱/۱ و کشیدگی ۳/۱ است.

بر اساس تقارن مقایسه میانگین (شکل ۵ - ب)، اختلاف معنی‌داری بین غلظت آرسنیک در کاربردی‌های مختلف
تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

شکل 8. نشان حاصل از کریجینگ تغییرات آرسنیک کل (mg/kg) در سطح زمین استان اصفهان.

اراضی، مشاهده شده است که بر این اساس می‌توان عامل جنس سلغی مادر یا رژیم غذایی و کشاورزی و صنعت در توزیع آرسنیک در محیط زیست دانست.

یکی دیگر از روش‌های تشخیص جهات اصلی Surface ناهماهنگی استفاده از تغییرنماهای سطحی (variogram) می‌باشد. شکل 7 واریوگرام سطحی مربوط به گلفظت آرسنیک کل در خاک را نشان می‌دهد. نوعی کمتر در این تغییرنما نشان دهنده تغییرات کمتری می‌باشد که در این رشته، فاصله این سطحی می‌تواند در شکل 7 مشاهده می‌گردد. محور حداکثر تغییرات منطبق بر حداکثر شعاع تأثیر (90 درجه) و محور حداکثر تغییرات را منطبق بر حداکثر شعاع تأثیر (180 درجه) در نظر گرفته با توجه به چیزی که خطوط شریان غالب در نشان توزیع آرسنیک منطقه، جهت گذار غالب در توزیع آرسنیک حاصل از چنین در نیمه شمالی منطقه تأثیری نداشت و نه در...
نتیجه گیری

یک توجه به جهت کشیدگی خطوط تراز غلظت، در نشر توزیع آرسنیک در منطقه، جهت باد غبار در توزیع آرسنیک حاصل از صنایع در ناحیه شمال منطقه تأثیری نداشته و تنهای در بخش جنوب غربی و اطراف کارخانه‌های برگ صنعت فولاد سازی مؤثر بوده است. در مجموع نشان دهنده آرسنیک در بالا بردن غلظت آرسنیک در شمال منطقه مؤثر دانست، با

منابع مورد استفاده

1. افیونی، م. ح. خاکی، ح. شریعتمداری، م. امینی، و ح. خسروی. 1381. گزارش نهایی بررسی آلودگی خاک‌های سطحی منطقه مرکزی اصفهان، دانشگاه صنعتی اصفهان.
2. امینی، م. 1382. مطالعه مدل سازی روند تجمع عناصر سنگین در اکوسیستم‌های زراعی و ارزیابی عدم قطعیت آن در منطقه اصفهان، رساله دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
3. پارسی، پ. 1383. مطالعه بر روی گرافی و زوئوژیمیا آلتراژیون هیدروترمو در منطقه رگان (جنوب غرب اردستان). پایان‌نامه کارشناسی ارشد زمین شناسی، دانشگاه اصفهان.
4. حسینی پاک، ع. 1377. مدل آماری توزیعی (آنتیسیستیک). انتشارات دانشگاه تهران.
5. حسینی پاک، ع. 1383. اصول آنتیسیستیک. پایان‌نامه، انتشارات دانشگاه تهران.
6. کردوئی، ب. 1381. انتشارات دانشگاه تهران.
7. سیفی، ح. 1373. مبانی زمین آمار. چاپ اول، دانشگاه صنعتی امیرکبیر، واحد تهران.

23. WinGslib software(version 1/030004),2000