تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

مقدمه

پیش‌رفت سریع تکنولوژی و توسعه روز افزون کارکدهای صنعتی و همچنین صرف زیاد کودهای شیمیایی و سموم دفع آفات و دیگر مواد شیمیایی در کشاورزی در فرآیندهای امکانات زیادی را برای آلوده شدن خاک‌ها فراهم آورده است.

1. دانشجوی سابق کارشناسی ارشد کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان و دستیار آموزشی دانشگاه پایان نور کرمان، واحد کشاورزی
2. استاد کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. استاد مهندسی اکتشاف معدن دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان
afyuni@cc.iut.ac.ir

* مستند مکانیک، پست الکترونیکی:
علی‌الدین و فرود کشاورزی و منابع طبیعی. علوم آب و خاک / سال سیزدهم / شماره پنجمام / زمستان 1388

عناصر خطرناک برای سلامت انسان، حیوان و گیاه است و در طول تاریخ به عنوان عامل کشنده مورد توجه بوده است. غلظت‌های بالا از این عنصر به عنوان عامل سرطان‌زا و جهش‌زا شناخته شده و باعث ایجاد آنیا، خطرناک بیشتر ایمیل می‌شود (21). شیعه ترین گونه‌های آرسنیک در طبیعت به شکل آرسنات (As3+), آرسنیت (As5+) و (As3+) باعث اختلالات کروموژی در سلول‌های جوندگان و انسان می‌شوند و تاثیر آرسنیک در این زمینه بیشتر است (15). اولین مورد آرسنیک به سال 1968 در تایوان کاراوش شد که باعث سرطان یوست و سرطان اداه‌ای شد. ترکیبی پدن و اسپره شاهد شد (12). محدوده غلظت آرسنیک در خاک 0/10-0/50 کیلوگرم بر هکتار است (17). در این زمینه گزارش آرسنیک در خاک از 0/20 تا 0/40 در کیلوگرم به کار می‌رسد.

با توجه به این اطلاعات، استفاده از این عنصر مورد انتظار است. در این مقاله به تغییرات خاصی از شیوع آرسنیک در مطالعات دانستگاه می‌پردازیم و به استفاده از این عنصر در حفظ سلامت انسان اشاره می‌گردد.

1- منطقه مورد مطالعه

مطالعه مورد مطالعه، محدوده‌ای به وسعت 8800 کیلومتر مربع در استان اصفهان و در حد فاصل عرض‌های جغرافیایی ۳۲/۵–۳۷/۵ و طول‌های جغرافیایی ۵۱/۵–۵۶/۵ قرار دارند (شکل ۱). این مطالعه قسمت‌های سیعی از اراضی کشاورزی استان و مرکز بزرگ صنعتی از جمله کارخانه‌های دوب‌نیا، فولاد مبارکه، پالایشگاه و نیروگاه اصفهان را در بر می‌گیرد.

ارتفاع متوسط منطقه ۱۴۰۰ متر از سطح دریاست. متوسط بارندگی در منطقه مطالعاتی به معادل سالانه آماری 66
جدول ۱. خلاصه آماری غلظت آرسنیک کل در منطقه مطالعاتی

<table>
<thead>
<tr>
<th>غلظت آرسنیک کل (میلی‌گرم بر کیلوگرم)</th>
<th>اراضی کشاورزی (٪)</th>
<th>اراضی غیر کشاورزی (٪)</th>
<th>کل منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۱۰/۴</td>
<td>۱۰/۳</td>
<td>۱۰/۴</td>
</tr>
<tr>
<td>واریانس</td>
<td>۱۵/۵</td>
<td>۱۴/۳</td>
<td>۱۵/۵</td>
</tr>
<tr>
<td>حداقل</td>
<td>۱/۱</td>
<td>۱/۲</td>
<td>۱/۲</td>
</tr>
<tr>
<td>حداقل</td>
<td>۳/۱</td>
<td>۳/۳</td>
<td>۳/۳</td>
</tr>
<tr>
<td>کشیدگی</td>
<td>چپ‌گانگی</td>
<td>۰/۸</td>
<td>۰/۸</td>
</tr>
</tbody>
</table>

شکل ۱. موقعیت استان اصفهان در تقسیمات کشوری

اواخر دوره کرناپه است (۵). شکل ۲. نقشه ۱۳۵۰۰۰۰۰ سازندخانه سطحی مطبق را نشان می‌دهد که با استفاده از نرم‌افزار ILWIS از شرکت فرانسه نقشه زمین شناسی منطقه با مقياس ۱/۲۵۰۰۰۰۰۰ نهاده شده است.

۲- نمونه‌برداری

در مطالعه حاضر به مدت وسعت زیاد منطقه و وجود مواضع زیاد جغرافیایی و شهری از روش نمونه‌برداری نتایج از طبقه‌بندی استان در یک دوره ۳۰ ساله در حدود ۱۲۰ میلی‌متر و حداقل حدود ۳۰۰ میلی‌متر در سال است. جهت وزش بادهای غالب منطقه در پایتخت، زمستان و بهار عموماً از سمت غرب و جنوب غربی بوده، در حالی که در تابستان سمت شرق و شمال شرقی است. شکل ۲. گزارش منطقه مطالعاتی (بر اساس آمار ۲۵ ساله سازمان هوشمندی استان اصفهان) را نشان می‌دهد. تشكيلات زمين‌شناسي غالب در منطقه، رسوبات كوارترنه و همینطور تشكيلات آهکي حاوي اوربيتاليين و شيل مربوط به...
شکل 2. توزیع نقاط نمونه برداری در منطقه مطالعاتی به وسعت 880 کیلومتر مربع

جدول 2. مقادیر کنترل اعتبار جهت تخمین کریجینگ

<table>
<thead>
<tr>
<th>MSE</th>
<th>نهایی درجه افتخار</th>
<th>حد آستانه از قطعاتی</th>
<th>دامنه تأثیر</th>
<th>ناهمسانگردی</th>
<th>آرسینیک</th>
<th>کروی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/157</td>
<td>0/67</td>
<td>0/46</td>
<td>0/26</td>
<td>0/9</td>
<td>90</td>
<td>018</td>
</tr>
</tbody>
</table>

3- آنالیزهای شیمیایی
نمونه‌های حاک موجود در هر 20 سانتی‌متر از سطح حاک انگاج و پس از خاک شدن نمونه‌های ساده از آن یک نمونه مربوط از گرفته شد. با توجه به وجود برخی مواد از کل 207 نمونه از این منطقه برداشت و کاربری محل نمونه‌برداری به همراه موقعيت خرافاتی نمونه‌ها و متغیر از XRF: Fluorescence در کشور سوئیس انجام گیری شد. این روش بر اساس بر انگیخته شدن الکتریک استوار است و یکی از روش‌های تجزیه‌ای پرکاربرد برای شناسایی کیفی عناصر با اعداد اتمی پیش از 8 (بعد از اکسیون) است. به علاوه این روش غالباً برای تجزیه‌های عصاره به صورت نرم‌کشی و کمی نیز به کار گرفته می‌شود (8).

جدول 3: استفاده گردید (Stratified Random Sampling) شده نمونه برداری از عمق 20 سانتی‌متر از سطح حاک انجم و پس از خاک شدن نمونه‌های ساده از آن یک نمونه مربوط گرفته شد. با توجه به وجود برخی مواد از کل 207 نمونه از این منطقه برداشت و کاربری محل نمونه‌برداری به همراه موقعيت خرافاتی نمونه‌ها و متغیر از XRF: Fluorescence در کشور سوئیس انجام گیری شد. این روش بر اساس بر انگیخته شدن الکتریک استوار است و یکی از روش‌های تجزیه‌ای پرکاربرد برای شناسایی کیفی عناصر با اعداد اتمی پیش از 8 (بعد از اکسیون) است. به علاوه این روش غالباً برای تجزیه‌های عصاره به صورت نرم‌کشی و کمی نیز به کار گرفته می‌شود (8).

۶۸
جدول ۳. میزان کود شیمیایی و لجن فاضلاب مصرف شده در بخش‌های مختلف استان اصفهان

<table>
<thead>
<tr>
<th>میانگین کود مبارک (تن بر سال)</th>
<th>فلور‌جان</th>
<th>نجف آباد</th>
<th>خمینی‌شهر</th>
<th>اصفهان</th>
<th>برخوار</th>
<th>سفره</th>
<th>ازته و سفره</th>
<th>لجن فاضلاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
<td>۸۰۰</td>
</tr>
<tr>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
</tr>
<tr>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
<td>۲۰۰۰</td>
</tr>
<tr>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
</tr>
<tr>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
<td>۱۴۰۰</td>
</tr>
<tr>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
<td>۶۵۰۰</td>
</tr>
<tr>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
<td>۱۵۵۴</td>
</tr>
<tr>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
<td>۲۴۲۰</td>
</tr>
<tr>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
<td>۱۳۰۸</td>
</tr>
</tbody>
</table>

شکل ۲. نقشه سازندگی سطحی منطقه مطالعاتی (مقیاس ۱:۳۳۵۰۰۰۰) (حاصل از زئورفسنس منطقه مطالعاتی توسط نرم‌افزار ILWIS)
مطالعات آماری

پارامترهای آمار توصیفی شامل میانگین، واریانس، مانند، کوواریانس و چگالی آرایه‌کردن کل، در کاربردهای مختلف اراضی، توسط نرم‌افزار SPSS بیان دست آمد.

اطلاعات آماره‌های توصیفی در جدول اول آوردگه شده است.

مطالعات آمار مکانی

اولین تجربه استفاده از روش‌های میان‌بایین باینری به‌طور عمومی مقایسه در حدود 50 سال پیش آغاز شد ولی در سال 1969، نخستین تجربه‌هایی که با کاربردی روش‌های زمان‌آمیزی توسط کمیل (11) وارد خاک شاخص شد و برای تجزیه و تحلیل پ‌ه‌ها و مسیران شن خاک استفاده شد. هم‌چنین مکانی (تغییرات یک متغیر با تغییرات مکان) در داده‌های مربوط به علوم زمین به این مفاهیم است که نمودارهایی که از نظر مکانی به‌کارگیری نودیکاند از نظر کمی دارای نشانه‌هایی بخصوصی آشکار است. از ابزارهای آماری که برای توصیف رابطه بین دو متغیر استفاده می‌شود، می‌توان نمودار تغییرهای (Variance) برای فرضیات با تغییرات واقعی مقایسه می‌شوند (12). درصد مدل را نمودارهای دارای فاصله بین شکل از یکدیگر از نظر کمی تشکیل کمتری با یکدیگر دارند.

برد تغییرهای ابرای است که نمودارهای فاصله یک همبستگی خاص را نشان می‌دهد. همچنین بررسی آن می‌توان با استفاده از جنبه‌های تغییری بر روی توصیف نمود. تداوم و پیوستگی متغیر مورد مطالعه در آنگاه افزایش (h) نسبت به مقادیر مختلف h معکوس می‌شود. به این رابطه ما می‌توانیم به محاسبه می‌شود.

\[\gamma(h) = \text{Avd}(Z(x_1+h)-Z(x_1)) = \frac{1}{N} \sum_{i=1}^{N} [Z(x_1+h)-Z(x_1)] \]

کلمات کلیدی: تغییرهای، تغییرهای زمان‌آمیزی، تغییر واقعی، میان‌بایین باینری، تغییر زمین‌شناسی.
تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

شکل 5-الف: توزیع فراوانی غلظت آرسنیک در منطقه مرکزی اصفهان-ب) تمودار جمع‌ای مقایسه میانگین غلظت آرسنیک در کاربردهای مختلف اراضی در استان اصفهان

شکل 6- ارایه‌گر جهت آرسنیک کل -الف: زاویه 90 درجه (S-N) - ب) زاویه 180 درجه (E-W)

\[Z^*(x_i) = \sum_{i=1}^{n} \lambda_i Z(x_i) \]

در رابطه 2، \(Z^*(x_i)\) مقدار نهایی زده شده و مقدار \(Z(x_i)\) در نقاط مختلف تخمین مقدار \(Z\) در نقاط مختلف \(Z\) و \(n\) تعداد نمونه به کار رفته در کریچنج است. کریچنج یک تخمین گنرالیزه با کمترین واریانس تخمین است، و یکی از کنکایگ در آن است که ضرایب \(\lambda\) را به گونه‌ای تعیین می‌کند.

در رابطه 3، تخمین گر کریچنج به صورت رابطه (3) تعیین می‌شود:

\[Z_{(x_i)} = \frac{n}{i} \]
شکل 7. واریوگرام سطحی آرسنیک کل

در عین تاریخ بودن، واریانس تخمین نیز حداکثر باشد.

با استفاده از این واریوگرام می‌توان قسمت‌هایی که در آن خطا تخمین، به دلیل تعداد نمونه کم، با استفاده کند و به منظور کاهش خطأ تحت پوشش لازم قرار داد (۴). در مطالعه حاضر واریوگرام (محاسبه و رسم تغییرنما)،

۹۶ درجه و با توجه به حداکثر ۱۵ درجه شد. بیشترین و

کمترین دامنه تأثیر در میان جهات مختلف به دست می‌آمد (شکل

۴). پس از تعیین مدل واریوگرام‌های منفی حداکثر ماله، است.

سمت‌هایی که در آن خطا تخمین، به دلیل تعداد نمونه کم،

با استفاده را مشخص کرد و به منظور کاهش خطأ تحت پوشش

لازم قرار داد (۴). در مطالعه حاضر واریوگرام (محاسبه و رسم تغییرنما)،

۹۶ درجه و با توجه به حداکثر ۱۵ درجه شد. بیشترین و

کمترین دامنه تأثیر در میان جهات مختلف به دست می‌آمد (شکل

۴). پس از تعیین مدل واریوگرام‌های منفی حداکثر ماله، است.

سمت‌هایی که در آن خطا تخمین، به دلیل تعداد نمونه کم،

با استفاده را مشخص کرد و به منظور کاهش خطأ تحت پوشش

لازم قرار داد (۴). در مطالعه حاضر واریوگرام (محاسبه و رسم تغییرنما)،

۹۶ درجه و با توجه به حداکثر ۱۵ درجه شد. بیشترین و

کمترین دامنه تأثیر در میان جهات مختلف به دست می‌آمد (شکل

۴). پس از تعیین مدل واریوگرام‌های منفی حداکثر ماله، است.

سمت‌هایی که در آن خطا تخمین، به دلیل تعداد نمونه کم،

با استفاده را مشخص کرد و به منظور کاهش خطأ تحت پوشش

لازم قرار داد (۴).
تغییرات مکانی آرسنیک در اراضی با کاربردهای مختلف در استان اصفهان

اراضی مشاهده شده است که بر این اساس می‌توانعامل جنس سیگ ماده را تغییر دهنده به کشاورزی و سعنگ در توزیع آرسنیک در محیط مؤثر دانست.

یکی از دوگرگر از روشهای تشخیص جهات اصلی، ناهامانگری، استفاده از تغییرات سطحی (variogram) می‌باشد. شکل 7 واریوگرام سطحی مربوط به غلظت آرسنیک کل در خاک را نشان می‌دهد. نوع رگ‌گر کمتر در این تغییرات، نشان دهنده تغییرات کمتر متناسب با افزایش فاصله است. همان‌طور که در شکل 7 مشاهده می‌گردد، محور حداکثر تغییرات منطقی بر حداکثر شمع تأخیر (90 درجه) و محور حداکثر تغییرات را منطقی بر حداکثر شمع تأخیر (180 درجه) در نظر گرفته با توجه به جهت کشیدگی خطوط شار غلظت در نقشه توزیع آرسنیک منطقه، جهت باد غالب در توزیع آرسنیک حاصل از صنایع در نهایت شمالی منطقه تأثیری نداشته و نهایا در
نتیجه‌گیری

با توجه به جهت کشیدگی خطوط تراز غلظت، در نهایت توزیع آرسنیک در منطقه، جهت بان بالاب در توزیع آرسنیک حاصل از صنایع در نیمه شمایی منطقه تأثیری نداشته و نهایا در بخش جنوب غربی و اطراف کارخانه‌های زیر حوزه صنعتی فولاد سازی مؤثر بوده است. در مجموع نقشه جنس سیگن مادر را می‌توان، در بالا بردن غلظت آرسنیک در شمال منطقه مؤثر دانست، با

منابع مورد استفاده

1. آفونی‌نی, م، ج، خامی، ح، شریعت‌مقدمی، م، امینی، و. خسروی، 1381، گزارش نهایی بررسی آلودگی خاک‌های سطحی منطقه مرکزی اصفهان، دانشگاه صنعتی اصفهان.
2. امینی، م، 1382، دلیل سازی روند تجمع عنصر سنگین در کوستپتازی های زراعی و ارزیابی عدم قطعیت آن در منطقه اصفهان رعاهه دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
3. پارسا، پور، 1383، مطالعه بر روی‌گرافی و زئوئیمیاپی آنتی‌اپی‌ویدردرما در منطقه راکان (جنوب غرب اردستان)، پایان‌نامه کارشناسی ارشد زمین‌شناسی، دانشگاه اصفهان.
4. حسنی پاک، ع، 1377، بررسی آماری آنتی‌اپی‌ویدردرما (انتشارات دانشگاه تهران).
5. حسنی پاک، ع، 1383، اصول انتشارات زئوئیمیاپی، جام پنج‌گانه، انتشارات دانشگاه تهران.
6. کردوانی، پ، 1381، تحلیل غلظت خاک انتشارات دانشگاه تهران.
7. مدینی، ح، 1373، مبانی زمین‌شناسی، جام گنجاب، دانشگاه صنعتی امیرکبیر، اول انتشارات دانشگاه تهران.
8. سکوک، د، و، ونس، 1376، اصول تجزیه دستکاهی (ترجهم: آزاد، ز، ع، ر، سلاجقه، ش، شمسی پور و ک، کارگزار)، مرکز نشر دانشگاهه‌های تهران.

23. WinGslib software(version 1/030004),2000